Antidiabetic Potential of Novel 1,3,5-Trisubstituted-2-Thioxoimidazloidin-4-One Analogues: Insights into α-Glucosidase, α-Amylase, and Antioxidant Activities
Abstract
:1. Introduction
2. Results and Discussion
2.1. Assessment of α-Glucosidase Inhibitory Activity
2.2. Assessment of α-Amylase Inhibitory Activity
2.3. Assessment of In Vitro Cytotoxicity Activity against WI-38 Cells
2.4. Assessment of Antioxidant Activity
2.4.1. Evaluation of Free Radical Scavenging Activity
2.4.2. Evaluation of Reactive Oxygen Species Production
2.5. Molecular Modelling Simulation Study
3. Materials and Methods
3.1. Reagents and Instruments
3.2. Compound Synthesis and Structure Characterization
3.2.1. Synthesis of 3-(2-hydroxyphenyl ethylidene) amino-2-thioxoimidazolidin-4-one (3)
3.2.2. Synthesis of Compounds 4a–b
5-(2-Hydroxybenzylidene)-3-(2-hydroxyphenylethylidene)-amino-2- thioxoimidazolidin-4-one (4a)
5-(5-Bromo-2-hydroxybenzylidene)-3-(2-hydroxyphenylethylidene)-amino-2-thioxoimidazolidin-4-ones (4b)
3.2.3. General Procedure for the Synthesis of Methyl [5-arylidnene-4-oxo-3-(2-hydroxyphenyl ethylidene) amino-2-thioxoimidazolidin-1-yl] propionates (5a–b)
Methyl [5-(2-hydroxybenzylidene)-4-oxo-3-(2-hydroxyphenylethylidene) amino-2-thioxoimidazolidin-1-yl] propionate (5a)
Methyl [5-(5-Bromo-2-hydroxybenzylidene)-4-oxo-3-(2-hydroxyphenylethylidene) amino-2-thioxoimidazolidin-1-yl] propionate (5b)
3.2.4. Synthesis of Compounds 6a–b
5-(2-Acetoxybenzylidene)-3-(2-acetoxyphenylethylidene)amino-2-thioxoimidazolidin-4-one (6a)
5-(5-Bromo-2-hydroxybenzylidene)-3-(2-acetoxyphenylethylidene) amino-2-thioxo-1-acetyl-imidazolidin-4-one (6b)
3.2.5. Synthesis of Compounds 7a–b
Methyl [5-(2-acetoxybenzylidene)-4-oxo-3-(2-hydroxyphenylethylidene) amino-2-thioxoimidazolidin-1-yl] propionate (7a)
Methyl [5-(5-bromo-2-acetoxybenzylidene)-4-oxo-3-(2-hydroxyphenylethylidene) amino-2-thioxoimidazolidin-1-yl] propionate (7b)
3.3. Evaluation of α-Glucosidase Activity
3.4. Evaluation of α-Amylase Activity
3.5. Assessment of Cytotoxicity against the WI-38 Cell Line Using MTT Assay
3.6. Assessment of Free Radical DPPH Scavenging Activity
3.7. Assessment of ROS-Generation Capability
3.8. Molecular Modelling Simulation Study
3.9. Statistical Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Khan, M.A.B.; Hashim, M.J.; King, J.K.; Govender, R.D.; Mustafa, H.; Al Kaabi, J. Epidemiology of Type 2 Diabetes—Global Burden of Disease and Forecasted Trends. J. Epidemiol. Glob. Health 2020, 10, 107–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lo, C.; Toyama, T.; Wang, Y.; Lin, J.; Hirakawa, Y.; Jun, M.; Cass, A.; Hawley, C.M.; Pilmore, H.; Badve, S.V.; et al. Insulin and Glucose-lowering Agents for Treating People with Diabetes and Chronic Kidney Disease. Cochrane Database Syst. Rev. 2018, 2018, CD011798. [Google Scholar] [CrossRef]
- Wolff, J.L.; Starfield, B.; Anderson, G. Prevalence, Expenditures, and Complications of Multiple Chronic Conditions in the Elderly. Arch. Intern. Med. 2002, 162, 2269–2276. [Google Scholar] [CrossRef] [PubMed]
- Dhameja, M.; Gupta, P. Synthetic Heterocyclic Candidates as Promising α-Glucosidase Inhibitors: An Overview. Eur. J. Med. Chem. 2019, 176, 343–377. [Google Scholar] [CrossRef]
- Khan, S.; Khan, M.; Rehman, W.; Shah, M.; Hussain, R.; Rasheed, L.; Khan, Y.; Dera, A.; Pashameah, R.; Alzahrani, E.; et al. Design, Synthesis, In Silico Testing, and In Vitro Evaluation of Thiazolidinone-Based Benzothiazole Derivatives as Inhibitors of α-Amylase and α-Glucosidase. Pharmaceuticals 2022, 15, 1164. [Google Scholar] [CrossRef] [PubMed]
- Kerru, N.; Singh-Pillay, A.; Awolade, P.; Singh, P. Current Anti-Diabetic Agents and Their Molecular Targets: A Review. Eur. J. Med. Chem. 2018, 152, 436–488. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Hwang, K.Y.; Kim, Y.H.; Oh, K.H.; Lee, J.Y.; Kim, K. Discovery and Biological Evaluation of Novel Alpha-Glucosidase Inhibitors with in Vivo Antidiabetic Effect. Bioorgan. Med. Chem. Lett. 2008, 18, 3711–3715. [Google Scholar] [CrossRef]
- Sangeetha, R.; Vedasree, N. In Vitro α-Amylase Inhibitory Activity of the Leaves of Thespesia Populnea. ISRN Pharmacol. 2012, 2012, 515634. [Google Scholar] [CrossRef] [Green Version]
- Gin, H.; Rigalleau, V. Post-Prandial Hyperglycemia. Post-Prandial Hyperglycemia and Diabetes. Diabetes Metab. 2000, 26, 265–272. [Google Scholar]
- Dash, R.P.; Babu, R.J.; Srinivas, N.R. Reappraisal and Perspectives of Clinical Drug–Drug Interaction Potential of α-Glucosidase Inhibitors Such as Acarbose, Voglibose and Miglitol in the Treatment of Type 2 Diabetes Mellitus. Xenobiotica 2018, 48, 89–108. [Google Scholar] [CrossRef]
- Hossain, U.; Das, A.K.; Ghosh, S.; Sil, P.C. An Overview on the Role of Bioactive α-Glucosidase Inhibitors in Ameliorating Diabetic Complications. Food Chem. Toxicol. 2020, 145, 111738. [Google Scholar] [CrossRef] [PubMed]
- Etxeberria, U.; de la Garza, A.L.; Campión, J.; Martínez, J.A.; Milagro, F.I. Antidiabetic Effects of Natural Plant Extracts via Inhibition of Carbohydrate Hydrolysis Enzymes with Emphasis on Pancreatic Alpha Amylase. Expert Opin. Ther. Targets 2012, 16, 269–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peytam, F.; Takalloobanafshi, G.; Saadattalab, T.; Norouzbahari, M.; Emamgholipour, Z.; Moghimi, S.; Firoozpour, L.; Bijanzadeh, H.R.; Faramarzi, M.A.; Mojtabavi, S.; et al. Design, Synthesis, Molecular Docking, and in Vitro α-Glucosidase Inhibitory Activities of Novel 3-Amino-2,4-Diarylbenzo[4,5]Imidazo[1,2-a]Pyrimidines against Yeast and Rat α-Glucosidase. Sci. Rep. 2021, 11, 11911. [Google Scholar] [CrossRef] [PubMed]
- Subramaniam, K.; Joseph, M.P.; Babu, L.A. A Common Drug Causing a Common Side Effect at an Uncommon Time: Metformin-Induced Chronic Diarrhea and Weight Loss After Years of Treatment. Clin. Diabetes 2021, 39, 237–240. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.-F.; Shimadate, Y.; Kato, A.; Li, Y.-X.; Jia, Y.-M.; Fleet, G.W.J.; Yu, C.-Y. Synthesis and Glycosidase Inhibition of N-Substituted Derivatives of 1,4-Dideoxy-1,4-Imino-D-Mannitol (DIM). Org. Biomol. Chem. 2020, 18, 999–1011. [Google Scholar] [CrossRef] [PubMed]
- Rajasekaran, P.; Ande, C.; Vankar, Y.D. Synthesis of (5,6 & 6,6)-Oxa-Oxa Annulated Sugars as Glycosidase Inhibitors from 2-Formyl Galactal Using Iodocyclization as a Key Step. Arkivoc 2022, 2022, 5–23. [Google Scholar] [CrossRef]
- Pessoa, A.; Miranda, C.F.; Batista, M.; Bosio, M.; Marques, G.; Nunes, F.; Quinta-Ferreira, R.M.; Quinta-Ferreira, M.E. Action of Bioactive Compounds in Cellular Oxidative Response. Energy Rep. 2020, 6, 891–896. [Google Scholar] [CrossRef]
- Rana, P.; Naven, R.; Narayanan, A.; Will, Y.; Jones, L.H. Chemical Motifs That Redox Cycle and Their Associated Toxicity. Med. Chem. Commun. 2013, 4, 1175–1180. [Google Scholar] [CrossRef]
- Gilliam, L.A.A.; Moylan, J.S.; Patterson, E.W.; Smith, J.D.; Wilson, A.S.; Rabbani, Z.; Reid, M.B. Doxorubicin Acts via Mitochondrial ROS to Stimulate Catabolism in C2C12 Myotubes. Am. J. Physiol.-Cell Physiol. 2012, 302, C195–C202. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Lian, G. ROS and Diseases: Role in Metabolism and Energy Supply. Mol. Cell. Biochem. 2020, 467, 1–12. [Google Scholar] [CrossRef]
- Baell, J.; Walters, M.A. Chemistry: Chemical Con Artists Foil Drug Discovery. Nature 2014, 513, 481–483. [Google Scholar] [CrossRef] [PubMed]
- Nogueira-Machado, J.A.; Chaves, M.M. From Hyperglycemia to AGE-RAGE Interaction on the Cell Surface: A Dangerous Metabolic Route for Diabetic Patients. Expert Opin. Ther. Targets 2008, 12, 871–882. [Google Scholar] [CrossRef] [PubMed]
- Collin, F. Chemical Basis of Reactive Oxygen Species Reactivity and Involvement in Neurodegenerative Diseases. Int. J. Mol. Sci. 2019, 20, 2407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brieger, K.; Schiavone, S.; Miller, F.J., Jr.; Krause, K.-H. Reactive Oxygen Species: From Health to Disease. Swiss Med. Wkly. 2012, 142, w13659. [Google Scholar] [CrossRef]
- Volpe, C.M.O.; Villar-Delfino, P.H.; Dos Anjos, P.M.F.; Nogueira-Machado, J.A. Cellular Death, Reactive Oxygen Species (ROS) and Diabetic Complications. Cell Death Dis. 2018, 9, 119. [Google Scholar] [CrossRef] [Green Version]
- Saied, E.M.; Arenz, C. Small Molecule Inhibitors of Ceramidases. CPB 2014, 34, 197–212. [Google Scholar] [CrossRef]
- Khalifa, S.A.M.; Shedid, E.S.; Saied, E.M.; Jassbi, A.R.; Jamebozorgi, F.H.; Rateb, M.E.; Du, M.; Abdel-Daim, M.M.; Kai, G.-Y.; Al-Hammady, M.A.M.; et al. Cyanobacteria—From the Oceans to the Potential Biotechnological and Biomedical Applications. Mar. Drugs 2021, 19, 241. [Google Scholar] [CrossRef]
- Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A Review on Recent Advances in Nitrogen-Containing Molecules and Their Biological Applications. Molecules 2020, 25, 1909. [Google Scholar] [CrossRef] [Green Version]
- Metwally, M.A.; Abdel-Latif, E. Thiohydantoins: Synthetic Strategies and Chemical Reactions. J. Sulfur Chem. 2012, 33, 229–257. [Google Scholar] [CrossRef]
- Sudha Vengurlekar Piyush Trivedi, R.S. A Study on the Biological Activity of 2-Thioxo-Imidazolidin-4-Ones. Lett. Drug Des. Discov. 2012, 9, 549–555. [Google Scholar] [CrossRef]
- Elhady, H.A.; El-Sayed, R.; Al-nathali, H.S. Design, Synthesis and Evaluation of Anticancer Activity of Novel 2-Thioxoimidazolidin-4-One Derivatives Bearing Pyrazole, Triazole and Benzoxazole Moieties. Chem. Cent. J. 2018, 12, 51. [Google Scholar] [CrossRef]
- Mutlaq, D.Z.; Al-shawi, A.A.A.; Abduljabar, L.A. Antioxidant and Antimicrobial Activities of Some Novel 2-Thiohydantoin Derivatives. Egypt. J. Chem. 2021, 64, 1315–1321. [Google Scholar] [CrossRef]
- COLTON, D.G.; MEHLMAN, M.A.; RUEGAMER, W.R. Effect of Thyroxine and 5,5-Diphenyl-2-Thiohydantoin on Enzyme Activities of Rat Liver and Kidney. Endocrinology 1972, 90, 1521–1528. [Google Scholar] [CrossRef]
- Somsák, L.; Nagy, V. A New, Scalable Preparation of a Glucopyranosylidene-Spiro-Thiohydantoin: One of the Best Inhibitors of Glycogen Phosphorylases. Tetrahedron Asymmetry 2000, 11, 1719–1727. [Google Scholar] [CrossRef]
- Docsa, T.; Czifrák, K.; Hüse, C.; Somsák, L.; Gergely, P. Effect of Glucopyranosylidene-Spiro-Thiohydantoin on Glycogen Metabolism in Liver Tissues of Streptozotocin-Induced and Obese Diabetic Rats. Mol. Med. Rep. 2011, 4, 477–481. [Google Scholar] [CrossRef] [Green Version]
- Bozdağ, O.; Verspohl, E.J.; Ertan, R. Synthesis and Hypoglycemic Activity of Some New Flavone Derivatives 2nd Communication: 4’-Flavonyl-2,4-thiazolidinediones. Arzneimittelforschung 2000, 50, 539–543. [Google Scholar] [CrossRef]
- Bozdağ-Dündar, O.; Waheed, A.; Verspohl, E.J.; Ertan, R. Synthesis and Hypoglycemic Activity of Some New Flavone Derivatives. Arzneimittelforschung 2001, 51, 623–627. [Google Scholar] [CrossRef]
- Uma, S.; Devika, P. In vitro studies on the antidiabetic activity of 2-thiohydantoin using α-amylase and α-glucosidase. Asian J. Pharm. Clin. Res. 2019, 155–157. [Google Scholar] [CrossRef]
- Qamar, R.; Saeed, A.; Saeed, M.; Shah, B.H.; Ashraf, Z.; Abbas, Q.; Seo, S.Y. Synthesis and Enzyme Inhibitory Kinetics of Some Novel 3-(Substituted Benzoyl)-2-Thioxoimidazolidin-4-One Derivatives as α-Glucosidase/α-Amylase Inhibitors. Med. Chem. Res. 2018, 27, 1528–1537. [Google Scholar] [CrossRef]
- Singh, V.; Singh, A.; Singh, G.; Verma, R.K.; Mall, R. Novel Benzoxazole Derivatives Featuring Rhodanine and Analogs as Antihypergycemic Agents: Synthesis, Molecular Docking, and Biological Studies. Med. Chem. Res. 2018, 27, 735–743. [Google Scholar] [CrossRef]
- Camargo, P.G.; Fabris, M.; da Silva, T.U.; Silva Lima, C.H.; de Paula Machado, S.; Tonin, L.T.D.; de Lima Ferreira Bispo, M.; Macedo, F., Jr. Thiohydantoins as Potential Antioxidant Agents: In Vitro and in Silico Evaluation. ChemistrySelect 2021, 6, 10429–10435. [Google Scholar] [CrossRef]
- Stefanowicz, P.; Jaremko, Ł.; Jaremko, M.; Lis, T. Crystal-State Studies on p-Toluenesulfonates of N-Oxyimides—A Possible Structural Basis of Serine Proteases Inhibition. New J. Chem. 2006, 30, 258–265. [Google Scholar] [CrossRef]
- Khirallah, S.M.; Ramadan, H.M.M.; Shawky, A.; Qahl, S.H.; Baty, R.S.; Alqadri, N.; Alsuhaibani, A.M.; Jaremko, M.; Emwas, A.-H.; Saied, E.M. Development of Novel 1,3-Disubstituted-2-Thiohydantoin Analogues with Potent Anti-Inflammatory Activity; In Vitro and In Silico Assessments. Molecules 2022, 27, 6271. [Google Scholar] [CrossRef]
- Salem, M.G.; El-Maaty, D.M.A.; El-Deen, Y.I.M.; Elesawy, B.H.; Askary, A.E.; Saleh, A.; Saied, E.M.; Behery, M.E. Novel 1,3-Thiazole Analogues with Potent Activity against Breast Cancer: A Design, Synthesis, In Vitro, and In Silico Study. Molecules 2022, 27, 4898. [Google Scholar] [CrossRef]
- El Azab, I.H.; Saied, E.M.; Osman, A.A.; Mehana, A.E.; Saad, H.A.; Elkanzi, N.A. Novel N-Bridged Pyrazole-1-Carbothioamides with Potential Antiproliferative Activity: Design, Synthesis, in Vitro and in Silico Studies. Future Med. Chem. 2021, 13, 1743–1766. [Google Scholar] [CrossRef]
- Saied, E.M.; Arenz, C. Stereoselective Synthesis of Novel Sphingoid Bases Utilized for Exploring the Secrets of Sphinx. Int. J. Mol. Sci. 2021, 22, 8171. [Google Scholar] [CrossRef]
- Saied, E.M.; Diederich, S.; Arenz, C. Facile Synthesis of the CERT Inhibitor HPA-12 and Some Novel Derivatives. Chem. Asian J. 2014, 9, 2092–2094. [Google Scholar] [CrossRef]
- Saied, E.M.; Banhart, S.; Bürkle, S.E.; Heuer, D.; Arenz, C. A Series of Ceramide Analogs Modified at the 1-Position with Potent Activity against the Intracellular Growth of Chlamydia Trachomatis. Future Med. Chem. 2015, 7, 1971–1980. [Google Scholar] [CrossRef]
- Saied, E.M.; Le, T.L.-S.; Hornemann, T.; Arenz, C. Synthesis and Characterization of Some Atypical Sphingoid Bases. Bioorganic Med. Chem. 2018, 26, 4047–4057. [Google Scholar] [CrossRef]
- Gaber, A.; Alsanie, W.F.; Kumar, D.N.; Refat, M.S.; Saied, E.M. Novel Papaverine Metal Complexes with Potential Anticancer Activities. Molecules 2020, 25, 5447. [Google Scholar] [CrossRef]
- Refat, M.S.; Ibrahim, H.K.; Sowellim, S.Z.A.; Soliman, M.H.; Saeed, E.M. Spectroscopic and Thermal Studies of Mn(II), Fe(III), Cr(III) and Zn(II) Complexes Derived from the Ligand Resulted by the Reaction Between 4-Acetyl Pyridine and Thiosemicarbazide. J. Inorg. Organomet. Polym. Mater. 2009, 19, 521. [Google Scholar] [CrossRef]
- Mezoughi, A.B.; Mohammed, W.A.; Ettarhouni, Z.O. Recent Biological Applications and Chemical Synthesis of Thiohydantoins. J. Chem. Rev. 2021, 3, 196–218. [Google Scholar] [CrossRef]
- Haslak, Z.P.; Cinar, S.A.; Ozbek, S.S.; Monard, G.; Dogan, I.; Aviyente, V. Elucidation of the Atroposelectivity in the Synthesis of Axially Chiral Thiohydantoin Derivatives. Org. Biomol. Chem. 2020, 18, 2233–2241. [Google Scholar] [CrossRef] [PubMed]
- Kijewska, M.; Sharfalddin, A.A.; Jaremko, Ł.; Cal, M.; Setner, B.; Siczek, M.; Stefanowicz, P.; Hussien, M.A.; Emwas, A.-H.; Jaremko, M. Lossen Rearrangement of P-Toluenesulfonates of N-Oxyimides in Basic Condition, Theoretical Study, and Molecular Docking. Front. Chem. 2021, 9, 662533. [Google Scholar] [CrossRef]
- Azam, S.S.; Uddin, R.; Wadood, A. Structure and Dynamics of Alpha-Glucosidase through Molecular Dynamics Simulation Studies. J. Mol. Liq. 2012, 174, 58–62. [Google Scholar] [CrossRef]
- Chiba, S. Molecular Mechanism in Alpha-Glucosidase and Glucoamylase. Biosci. Biotechnol. Biochem. 1997, 61, 1233–1239. [Google Scholar] [CrossRef]
- Tan, K.; Tesar, C.; Wilton, R.; Jedrzejczak, R.P.; Joachimiak, A. Interaction of Antidiabetic A-glucosidase Inhibitors and Gut Bacteria A-glucosidase. Protein Sci. 2018, 27, 1498–1508. [Google Scholar] [CrossRef] [Green Version]
- van de Laar, F.A. Alpha-Glucosidase Inhibitors in the Early Treatment of Type 2 Diabetes. Vasc. Health Risk Manag. 2008, 4, 1189–1195. [Google Scholar] [CrossRef] [Green Version]
- Akmal, M.; Wadhwa, R. Alpha Glucosidase Inhibitors. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Kim, M.K.; Suk, J.H.; Kwon, M.J.; Chung, H.S.; Yoon, C.S.; Jun, H.J.; Ko, J.H.; Kim, T.K.; Lee, S.H.; Oh, M.K.; et al. Nateglinide and Acarbose for Postprandial Glucose Control after Optimizing Fasting Glucose with Insulin Glargine in Patients with Type 2 Diabetes. Diabetes Res. Clin. Pract. 2011, 92, 322–328. [Google Scholar] [CrossRef]
- Altay, M. Acarbose Is Again on the Stage. World J. Diabetes 2022, 13, 1–4. [Google Scholar] [CrossRef]
- Osonoi, T. Alpha-glucosidase inhibitor. Nihon Rinsho 2015, 73, 390–394. [Google Scholar] [PubMed]
- Gong, L.; Feng, D.; Wang, T.; Ren, Y.; Liu, Y.; Wang, J. Inhibitors of A-amylase and A-glucosidase: Potential Linkage for Whole Cereal Foods on Prevention of Hyperglycemia. Food Sci. Nutr. 2020, 8, 6320–6337. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhou, H.; Zhang, J.; Fu, X.; Ying, Z.; Liu, X. Proteinaceous α-Amylase Inhibitors: Purification, Detection Methods, Types and Mechanisms. Int. J. Food Prop. 2021, 24, 277–290. [Google Scholar] [CrossRef]
- Asanuma-Date, K.; Hirano, Y.; Le, N.; Sano, K.; Kawasaki, N.; Hashii, N.; Hiruta, Y.; Nakayama, K.; Umemura, M.; Ishikawa, K.; et al. Functional Regulation of Sugar Assimilation by N-Glycan-Specific Interaction of Pancreatic α-Amylase with Glycoproteins of Duodenal Brush Border Membrane. J. Biol. Chem. 2012, 287, 23104–23118. [Google Scholar] [CrossRef] [Green Version]
- Naeem, F.; Nadeem, H.; Muhammad, A.; Zahid, M.A.; Saeed, A. Synthesis, α-Amylase Inhibitory Activity and Molecular Docking Studies of 2, 4-Thiazolidinedione Derivatives. Open Chem. J. 2018, 5, 134–144. [Google Scholar] [CrossRef]
- Ateeq, M. 4-Bromobenzohydrzide Derivatives as Potent α-Amylase Enzyme Inhibitors; Synthesis, in Vitro and in Silico Studies. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Dirir, A.M.; Daou, M.; Yousef, A.F.; Yousef, L.F. A Review of Alpha-Glucosidase Inhibitors from Plants as Potential Candidates for the Treatment of Type-2 Diabetes. Phytochem. Rev. 2022, 21, 1049–1079. [Google Scholar] [CrossRef]
- Gray, G.C. 9-Adenovirus Vaccines; Plotkin, S.A., Orenstein, W.A., Offit, P.A.B.T.-V., Sixth, E., Eds.; W.B. Saunders: London, UK, 2013; pp. 113–126. ISBN 978-1-4557-0090-5. [Google Scholar]
- Abdel-Wahab, B.A.; El-Kareem, H.F.A.; Alzamami, A.; Fahmy, C.A.; Elesawy, B.H.; Mahmoud, M.M.; Ghareeb, A.; El Askary, A.; Nahas, H.H.A.; Attallah, N.G.M.; et al. Novel Exopolysaccharide from Marine Bacillus Subtilis with Broad Potential Biological Activities: Insights into Antioxidant, Anti-Inflammatory, Cytotoxicity, and Anti-Alzheimer Activity. Metabolites 2022, 12, 715. [Google Scholar] [CrossRef]
- Jiheel, M.; Rekaabi, A.; Alqurashy, N.; Al-Deresawi, M. The Effect of 2-Thioxo Imidazolidin-4-Ones (2-Thiohydantion) on Anticancer Activity: An in Vitro Study. Indian J. Forensic Med. Toxicol. 2022, 14, 3201–3206. [Google Scholar]
- Clarke, G.; Ting, K.N.; Wiart, C.; Fry, J. High Correlation of 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) Radical Scavenging, Ferric Reducing Activity Potential and Total Phenolics Content Indicates Redundancy in Use of All Three Assays to Screen for Antioxidant Activity of Extracts of Plants from the Malaysian Rainforest. Antioxidants 2013, 2, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Wang, M.; Rosen, R.T.; Ho, C.T. 2,2-Diphenyl-1-Picrylhydrazyl Radical-Scavenging Active Components from Polygonum Multiflorum Thunb. J. Agric. Food Chem. 1999, 47, 2226–2228. [Google Scholar] [CrossRef] [PubMed]
- Bacanlı, M. Chapter 27—Limonene and Ursolic Acid in the Treatment of Diabetes: Citrus Phenolic Limonene, Triterpenoid Ursolic Acid, Antioxidants and Diabetes; Preedy, V.R.B.T.-D., Second, E., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 275–283. ISBN 978-0-12-815776-3. [Google Scholar]
- Süzen, S.; Demírcígíl, B.T.; Buyukbingol, E.; Özkan, S.A. Electroanalytical Evaluation and Determination of 5-(3′-Indolyl)-2-Thiohydantoin Derivatives by Voltammetric Studies: Possible Relevance to in Vitro Metabolism. New J. Chem. 2003, 27, 1007–1011. [Google Scholar] [CrossRef]
- Kiec-Kononowicz, K.; Karolak-Wojciechowska, J.; Robak, J. Fused 2-Thiohydantoin Derivatives: Evaluation as Potential Antioxidants. Arch. Der Pharm. 1997, 330, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Jahan, I.A.; Hossain, M.H.; Ahmed, K.S.; Rahman, M.; Zzaman, W.; Hoque, M.M. Bioactive Compounds, Antioxidant Properties and Phenolic Profile of Pulp and Seed of Syzygium Cumini. Food Meas. 2021, 15, 1991–1999. [Google Scholar] [CrossRef]
- Das, K.; Roychoudhury, A. Reactive Oxygen Species (ROS) and Response of Antioxidants as ROS-Scavengers during Environmental Stress in Plants. Front. Environ. Sci. 2014, 2, 53. [Google Scholar] [CrossRef] [Green Version]
- Soares, K.M.; Blackmon, N.; Shun, T.Y.; Shinde, S.N.; Takyi, H.K.; Wipf, P.; Lazo, J.S.; Johnston, P.A. Profiling the NIH Small Molecule Repository for Compounds That Generate H2O2 by Redox Cycling in Reducing Environments. Assay Drug Dev. Technol. 2010, 8, 152–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnston, P.A.; Soares, K.M.; Shinde, S.N.; Foster, C.A.; Shun, T.Y.; Takyi, H.K.; Wipf, P.; Lazo, J.S. Development of a 384-Well Colorimetric Assay to Quantify Hydrogen Peroxide Generated by the Redox Cycling of Compounds in the Presence of Reducing Agents. Assay Drug Dev. Technol. 2008, 6, 505–518. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; May, S.; Ulrich, C.; Stockfleth, E.; Eberle, J. High ROS Production by Celecoxib and Enhanced Sensitivity for Death Ligand-Induced Apoptosis in Cutaneous SCC Cell Lines. Int. J. Mol. Sci. 2021, 22, 3622. [Google Scholar] [CrossRef]
- Pritchard, R.; Rodríguez-Enríquez, S.; Pacheco-Velázquez, S.C.; Bortnik, V.; Moreno-Sánchez, R.; Ralph, S. Celecoxib Inhibits Mitochondrial O2 Consumption, Promoting ROS Dependent Death of Murine and Human Metastatic Cancer Cells via the Apoptotic Signalling Pathway. Biochem. Pharmacol. 2018, 154, 318–334. [Google Scholar] [CrossRef] [Green Version]
- Nafie, M.S.; Khodair, A.I.; Hassan, H.A.Y.; El-Fadeal, N.M.A.; Bogari, H.A.; Elhady, S.S.; Ahmed, S.A. Evaluation of 2-Thioxoimadazolidin-4-One Derivatives as Potent Anti-Cancer Agents through Apoptosis Induction and Antioxidant Activation: In Vitro and In Vivo Approaches. Molecules 2021, 27, 83. [Google Scholar] [CrossRef]
- Ghasempour, L.; Asghari, S.; Tajbakhsh, M.; Mohseni, M. One-Pot Synthesis of New Hydantoin (Thiohydantoin) Derivatives and Evaluation of Their Antibacterial and Antioxidant Activities. J. Heterocycl. Chem. 2020, 57, 4136–4148. [Google Scholar] [CrossRef]
- Martemucci, G.; Costagliola, C.; Mariano, M.; D’andrea, L.; Napolitano, P.; D’Alessandro, A.G. Free Radical Properties, Source and Targets, Antioxidant Consumption and Health. Oxygen 2022, 2, 48–78. [Google Scholar] [CrossRef]
- Saied, E.M.; El-Maradny, Y.A.; Osman, A.A.; Darwish, A.M.G.; Abo Nahas, H.H.; Niedbała, G.; Piekutowska, M.; Abdel-Rahman, M.A.; Balbool, B.A.; Abdel-Azeem, A.M. A Comprehensive Review about the Molecular Structure of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): Insights into Natural Products against COVID-19. Pharmaceutics 2021, 13, 1759. [Google Scholar] [CrossRef] [PubMed]
- Healey, R.D.; Saied, E.M.; Cong, X.; Karsai, G.; Gabellier, L.; Saint-Paul, J.; Del Nero, E.; Jeannot, S.; Drapeau, M.; Fontanel, S.; et al. Discovery and Mechanism of Action of Small Molecule Inhibitors of Ceramidases**. Angew. Chem. Int. Ed. 2022, 61, e202109967. [Google Scholar] [CrossRef]
- Gaber, A.; Refat, M.S.; Belal, A.A.M.; El-Deen, I.M.; Hassan, N.; Zakaria, R.; Alhomrani, M.; Alamri, A.S.; Alsanie, W.F.; Saied, E.M. New Mononuclear and Binuclear Cu(II), Co(II), Ni(II), and Zn(II) Thiosemicarbazone Complexes with Potential Biological Activity: Antimicrobial and Molecular Docking Study. Molecules 2021, 26, 2288. [Google Scholar] [CrossRef]
- Mohamed, D.I.; Abou-Bakr, D.A.; Ezzat, S.F.; El-Kareem, H.F.A.; Nahas, H.H.A.; Saad, H.A.; Mehana, A.E.; Saied, E.M. Vitamin D3 Prevents the Deleterious Effects of Testicular Torsion on Testis by Targeting MiRNA-145 and ADAM17: In Silico and In Vivo Study. Pharmaceuticals 2021, 14, 1222. [Google Scholar] [CrossRef]
- Samaha, D.; Hamdo, H.H.; Cong, X.; Schumacher, F.; Banhart, S.; Aglar, Ö.; Möller, H.M.; Heuer, D.; Kleuser, B.; Saied, E.M.; et al. Liposomal FRET Assay Identifies Potent Drug-Like Inhibitors of the Ceramide Transport Protein (CERT). Chem. A Eur. J. 2020, 26, 16616–16621. [Google Scholar] [CrossRef]
- Mohamed, D.I.; Ezzat, S.F.; Elayat, W.M.; El-Kharashi, O.A.; El-Kareem, H.F.A.; Nahas, H.H.A.; Abdel-Wahab, B.A.; Alshawwa, S.Z.; Saleh, A.; Helmy, Y.A.; et al. Hepatoprotective Role of Carvedilol against Ischemic Hepatitis Associated with Acute Heart Failure via Targeting MiRNA-17 and Mitochondrial Dynamics-Related Proteins: An In Vivo and In Silico Study. Pharmaceuticals 2022, 15, 832. [Google Scholar] [CrossRef]
- Mohamed, D.I.; Alaa El-Din Aly El-Waseef, D.; Nabih, E.S.; El-Kharashi, O.A.; Abd El-Kareem, H.F.; Abo Nahas, H.H.; Abdel-Wahab, B.A.; Helmy, Y.A.; Alshawwa, S.Z.; Saied, E.M. Acetylsalicylic Acid Suppresses Alcoholism-Induced Cognitive Impairment Associated with Atorvastatin Intake by Targeting Cerebral MiRNA155 and NLRP3: In Vivo, and In Silico Study. Pharmaceutics 2022, 14, 529. [Google Scholar] [CrossRef]
- Williams, L.K.; Li, C.; Withers, S.G.; Brayer, G.D. Order and Disorder: Differential Structural Impacts of Myricetin and Ethyl Caffeate on Human Amylase, an Antidiabetic Target. J. Med. Chem. 2012, 55, 10177–10186. [Google Scholar] [CrossRef]
- Tagami, T.; Yamashita, K.; Okuyama, M.; Mori, H.; Yao, M.; Kimura, A. Molecular Basis for the Recognition of Long-Chain Substrates by Plant α-Glucosidases. J. Biol. Chem. 2013, 288, 19296–19303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernfeld, P.; Colowick, S.P. Methods in Enzymology; Colowick, S.P., Kaplan, N.O., Eds.; Academic Press Inc.: New York, NY, USA, 1955; p. 149. [Google Scholar]
- Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free Radicals and Antioxidants in Normal Physiological Functions and Human Disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef] [PubMed]
- Nasiri, H.R.; Hohmann, K.; Hatemler, M.G.; Plodek, A.; Bracher, F.; Schwalbe, H. In Vitro Production of Reactive Oxygen Species (ROS) by Sampangine. Med. Chem. Res. 2017, 26, 1170–1175. [Google Scholar] [CrossRef]
Protein (PDB Code) | Compound | S (kcal/mol) | Hydrophilic Interactions | Distance (A) | Hydrophobic Interactions |
---|---|---|---|---|---|
α-glucosidase (3w37) | 5a | −13.28 | Asp232 Trp329 Trp432 Met470 Arg552 His626 | 2.94 3.46 3.88 3.68 2.72 2.85 | Ala234, Ile358, Ile396, Trp467, Trp565, Phe601 |
7a | −11.42 | Asp357 Asp469 Met470 Arg552 His626 | 3.47 3.56 4.07 2.80 2.73 | Trp329, Ile358, Ile396, Trp432, Trp467, Met470, Phe476, Trp565, Phe601 | |
α-amylase (4gqr) | 5a | −10.34 | Tyr62 Arg195 Asp300 | 2.33 3.57 2.13 | Trp58, Trp59, Leu162, Leu165, Ala198, Ile235 |
7a | −11.69 | Trp59 Tyr62 Thr163 Arg195 His201 | 3.50 3.63 3.39 3.37 3.10 | Trp58, Trp59, Leu162, Leu165, Ala198, Ile235 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khirallah, S.M.; Ramadan, H.M.M.; Aladl, H.A.A.; Ayaz, N.O.; Kurdi, L.A.F.; Jaremko, M.; Alshawwa, S.Z.; Saied, E.M. Antidiabetic Potential of Novel 1,3,5-Trisubstituted-2-Thioxoimidazloidin-4-One Analogues: Insights into α-Glucosidase, α-Amylase, and Antioxidant Activities. Pharmaceuticals 2022, 15, 1576. https://doi.org/10.3390/ph15121576
Khirallah SM, Ramadan HMM, Aladl HAA, Ayaz NO, Kurdi LAF, Jaremko M, Alshawwa SZ, Saied EM. Antidiabetic Potential of Novel 1,3,5-Trisubstituted-2-Thioxoimidazloidin-4-One Analogues: Insights into α-Glucosidase, α-Amylase, and Antioxidant Activities. Pharmaceuticals. 2022; 15(12):1576. https://doi.org/10.3390/ph15121576
Chicago/Turabian StyleKhirallah, Salma M., Heba M. M. Ramadan, Hossam Aladl Aladl Aladl, Najla O. Ayaz, Lina A. F. Kurdi, Mariusz Jaremko, Samar Zuhair Alshawwa, and Essa M. Saied. 2022. "Antidiabetic Potential of Novel 1,3,5-Trisubstituted-2-Thioxoimidazloidin-4-One Analogues: Insights into α-Glucosidase, α-Amylase, and Antioxidant Activities" Pharmaceuticals 15, no. 12: 1576. https://doi.org/10.3390/ph15121576
APA StyleKhirallah, S. M., Ramadan, H. M. M., Aladl, H. A. A., Ayaz, N. O., Kurdi, L. A. F., Jaremko, M., Alshawwa, S. Z., & Saied, E. M. (2022). Antidiabetic Potential of Novel 1,3,5-Trisubstituted-2-Thioxoimidazloidin-4-One Analogues: Insights into α-Glucosidase, α-Amylase, and Antioxidant Activities. Pharmaceuticals, 15(12), 1576. https://doi.org/10.3390/ph15121576