Study for Evaluation of Hydrogels after the Incorporation of Liposomes Embedded with Caffeic Acid
Abstract
:1. Introduction
2. Results
2.1. Preparation of Hydrogels
2.2. Determination of Macroscopic Properties and pH
2.3. Viscoelastic Measurement of Liposomal Hydrogels
2.3.1. The Steady-State Flow Test
2.3.2. Dynamic Tests (Oscillators)
2.3.3. Determination of Yield Stress
2.3.4. Texture Analysis
2.3.5. Determination of Consistency by the Penetrometric Method
2.3.6. Spreadability Capacity Determination
2.4. The Release Studies
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Encapsulation of Liposomes with Caffeic Acid in Hydrogels
4.3. Determination of Macroscopic Characteristics and pH
4.4. Viscoelastic Measurements of Liposomal Hydrogels
4.4.1. The Steady-State Flow Test
4.4.2. Dynamic Tests (Oscillators)
4.4.3. The Yield Stress
4.4.4. Texture Analysis of Hydrogels
4.4.5. Determination of Consistency
4.4.6. Spreadability Capacity Determination
4.5. Release of Caffeic Acid from Hydrogels
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hallan, S.S.; Sguizzato, M.; Drechsler, M.; Mariani, P.; Montesi, L.; Cortesi, R.; Björklund, S.; Ruzgas, T.; Esposito, E. The Potential of Caffeic Acid Lipid Nanoparticulate Systems for Skin Application: In Vitro Assays to Assess Delivery and Antioxidant Effect. Nanomaterials 2021, 11, 171. [Google Scholar] [CrossRef] [PubMed]
- Razboršek, M.I.; Ivanović, M.; Krajnc, P.; Kolar, M. Choline Chloride Based Natural Deep Eutectic Solvents as Extraction Media for Extracting Phenolic Compounds from Chokeberry (Aronia melanocarpa). Molecules 2020, 25, 1619. [Google Scholar]
- Im, N.R.; Kim, K.M.; Young, S.J.; Park, S.N. Physical characteristics and in vitro skin permeation of elastic liposomes loaded with caffeic acid-hydroxypropyl-β-cyclodextrin. Korean J. Chem. Eng. 2016, 33, 2738–2746. [Google Scholar] [CrossRef]
- Nam, G.S.; Park, H.-J.; Nam, K.-S. The antithrombotic effect of caffeic acid is associated with a cAMP-dependent pathway and clot retraction in human platelets. Thromb. Res. 2020, 195, 87–94. [Google Scholar] [CrossRef]
- Matejczyk, M.; Świsłocka, R.; Golonko, A.; Lewandowski, W.; Hawrylik, E. Cytotoxic, genotoxic and antimicrobial activity of caffeic and rosmarinic acids and their lithium, sodium and potassium salts as potential anticancer compounds. Adv. Med. Sci. 2018, 63, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Razboršek, M.I.; Ivanović, M.; Kolar, M. Validated Stability-Indicating GC-MS Method for Characterization of Forced Degradation Products of Trans-Caffeic Acid and Trans-Ferulic Acid. Molecules 2021, 26, 2475. [Google Scholar] [CrossRef] [PubMed]
- Działo, M.; Mierziak, J.; Korzun, U.; Preisner, M.; Szopa, J.; Kulma, A. The Potential of Plant Phenolics in Prevention and Therapy of Skin Disorders. Int. J. Mol. Sci. 2016, 17, 160. [Google Scholar] [CrossRef] [Green Version]
- Prasad, N.R.; Jeyanthimala, K.; Ramachandran, S. Caffeic acid modulates ultraviolet radiation-B induced oxidative damage in human blood lymphocytes. J. Photochem. Photobiol. B Biol. 2009, 95, 196–203. [Google Scholar] [CrossRef]
- Kang, N.J.; Lee, K.W.; Shin, B.J.; Jung, S.K.; Hwang, M.K.; Bode, A.M.; Heo, Y.-S.; Lee, H.J.; Dong, Z. Caffeic acid, a phenolic phytochemical in coffee, directly inhibits Fyn kinase activity and UVB-induced COX-2 expression. Carcinogenesis 2008, 30, 321–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nichols, J.A.; Katiyar, S.K. Skin photoprotection by natural polyphenols: Anti-inflammatory, antioxidant and DNA repair mechanisms. Arch Dermatol. Res. 2010, 302, 71–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katuwavila, N.P.; Perera, A.D.L.C.; Karunaratne, V.; Amaratunga, G.A.J.; Karunaratne, D.N. Improved Delivery of Caffeic Acid through Liposomal Encapsulation. J. Nanomater. 2016, 2016, 9701870. [Google Scholar] [CrossRef]
- Khan, F.; Bamunuarachchi, N.I.; Tabassum, N.; Kim, Y.-M. Caffeic Acid and Its Derivatives: Antimicrobial Drugs toward Microbial Pathogens. J. Agric. Food Chem. 2021, 69, 2979–3004. [Google Scholar] [CrossRef]
- Hua, S. Lipid-based nano-delivery systems for skin delivery of drugs and bioactives. Front Pharmacol. 2015, 6, 219. [Google Scholar] [CrossRef] [PubMed]
- Pimentel-Moral, S.; Teixeira, M.C.; Fernandes, A.R.; Arraez-Roman, D.; Martinez-Ferez, A.; Segura-Carretero, A.; Souto, E.B. Lipid nanocarriers for the loading of polyphenols—A comprehensive review. Adv. Colloid Interface Sci. 2018, 260, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Zhou, J.; Hu, Y.; Lin, Z.; Ma, Y.; Richardson, J.J.; Caruso, F. Polyphenol-Based Nanoparticles for Intracellular Protein Delivery via Competing Supramolecular Interactions. ACS Nano 2020, 14, 12972–12981. [Google Scholar] [CrossRef]
- Ghorbanzade, T.; Jafari, S.M.; Akhavan, S.; Hadavi, R. Nano-encapsulation of fish oil in nano-liposomes and its application in fortification of yogurt. Food Chem. 2017, 216, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Pu, C.; Tang, W.; Li, X.; Li, M.; Sun, Q. Stability enhancement efficiency of surface decoration on curcumin-loaded liposomes: Comparison of guar gum and its cationic counterpart. Food Hydrocoll. 2019, 87, 29–37. [Google Scholar] [CrossRef]
- Hemanthkumar, M.; Spandana, V. Liposomal encapsulation technology a novel drug delivery system designed for ayurvedic drug preparation. IRJP 2011, 2, 4–7. [Google Scholar]
- Rommasi, F.; Esfandiari, N. Liposomal Nanomedicine: Applications for Drug Delivery in Cancer Therapy. Nanoscale Res. Lett. 2021, 16, 95. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.; Zuniga, R. Skin conditions: New drugs for managing skin disorders. FP Essent. 2013, 407, 11–16. [Google Scholar] [PubMed]
- DeLouise, L.A. Applications of nanotechnology in dermatology. J. Invest. Dermatol. 2012, 132, 964–975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, H.; Qi, X.; Chen, Y.; Wu, Z. Thermo-sensitive hydrogels for delivering biotherapeutic molecules: A review. Saudi Pharm. J. 2019, 27, 990–999. [Google Scholar] [CrossRef] [PubMed]
- Zagórska-Dziok, M.; Sobczak, M. Hydrogel-Based Active Substance Release Systems for Cosmetology and Dermatology Application: A Review. Pharmaceutics 2020, 12, 396. [Google Scholar] [CrossRef]
- Jacob, S.; Nair, A.B.; Shah, J.; Sreeharsha, N.; Gupta, S.; Shinu, P. Emerging Role of Hydrogels in Drug Delivery Systems, Tissue Engineering and Wound Management. Pharmaceutics 2021, 13, 357. [Google Scholar] [CrossRef]
- Brady, J.; Drig, T.; Lee, P.I.; Li, J.X. Polymer Properties and Characterization; Academic Press: Cambridge, MA, USA, 2017; pp. 181–223. [Google Scholar]
- Migliozzi, S.; Angeli, P.; Mazzei, L. Effect of D-Mannitol on the Microstructure and Rheology of Non-Aqueous Carbopol Microgels. Materials 2021, 14, 1782. [Google Scholar] [CrossRef]
- Lambers, H.; Piessens, S.; Bloem, A.; Pronk, H.; Finkel, P. Natural skin surface pH is on average below 5, which is beneficial for its resident flora. Int. J. Cosmet. Sci. 2006, 28, 359–370. [Google Scholar] [CrossRef] [PubMed]
- Popovici, I.; Lupuliasa, D. Tehnologie Farmaceutică; Ed. Polirom: Iași, România, 2017; Volume II, p. 782. [Google Scholar]
- Islam, M.T.; Rodríguez-Hornedo, N.; Ciotti, S.; Ackermann, C. Rheological Characterization of Topical Carbomer Gels Neutralized to Different pH. Pharm. Res. 2014, 21, 1192–1199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.H.; Moturi, V.; Lee, Y. Thixotropic property in pharmaceutical formulations. J. Control. Release 2009, 136, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Sinko, P.J. Martin’s Physical Pharmacy and Pharmaceutical Sciences. Physical, Chemical and Biopharmaceutical Principles in the Pharmaceutical Sciences, 6th ed.; Lippincott Williams & Wilkins: Baltimore, MD, USA, 2011; pp. 856–860. [Google Scholar]
- Jiménez, M.M.; Fresno, M.J.; Ramírez, A. The influence of cosolvent polarity on the flow properties of hydroalcoholic gels: Empirical models. Chem. Pharm. Bull. 2005, 53, 1097–1102. [Google Scholar] [CrossRef] [Green Version]
- Shalaby, S.; Shukr, M. The influence of the type and concentration of alcohol on the rheological and mucoadhesive properties of carbopol 940 hydroalcoholic gels. Der Pharm. Sin. 2011, 2, 161–171. [Google Scholar]
- Rebiha, M.; Moulai-Mostefa, N.; HadjSadok, A. Proprietes physicochimiques et rheologiques d’un melange aqueux de biopolymeres et d’un tensioactif non ionique. Rev. Sci. Technol. Synth. 2011, 23, 99–106. [Google Scholar]
- Mourtas, S.; Fotopoulou, S.; Duraj, S.; Sfika, V.; Tsakiroglou, C.; Antimisiaris, S.G. Liposomal drugs dispersed in hydrogels. Effect of liposome, drug and gel properties on drug release kinetics. Colloids Surf. B Biointerfaces. 2007, 55, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Russel, W.B.; Saville, D.A.; Schowalter, W.R. Colloidal Dispersions; Cambridge University Press: Cambridge, UK; pp. 456–506.
- Dragicevic-Curic, N.; Winter, S.; Stupar, M.; Milic, J.; Krajisnik, D.; Gitter, B.; Fahr, A. Temoporfin-loaded liposomal gels: Viscoelastic properties and in vitro skin penetration. Int. J. Pharm. 2009, 373, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Chu, J.S.; Yu, D.M.; Amidon, G.L.; Weiner, N.D.; Goldberg, A.H. Viscoelastic properties of polyacrylic acid gels in mixed solvents. Pharm. Res. 1992, 9, 1659–1663. [Google Scholar] [CrossRef] [PubMed]
- Mourtas, S.; Haikou, M.; Theodoropoulou, M.; Tsakiroglou, C.; Antimisiaris, S.G. The effect of added liposomes on the rheological properties of a hydrogel: A systematic study. J. Colloid Interface Sci. 2008, 317, 611–619. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.B.; Son, H.H.; Um, C.M. Rheologic properties of flowable, conventional hybrid, and condensable composite resins. Dent. Mater. 2003, 19, 298–307. [Google Scholar] [CrossRef]
- Tai, A.; Bianchini, R.; Jachowicz, J. Texture analysis of cosmetic/pharmaceutical raw materials and formulations. Int. J. Cosmet. Sci. 2014, 36, 291–304. [Google Scholar] [CrossRef]
- Jones, D.S.; Woolfson, A.D.; Brown, A.F. Textural, viscoelastic and mucoadhesive properties of pharmaceutical gels composed of cellulose polymers. Int. J. Pharm. 1997, 151, 223–233. [Google Scholar] [CrossRef]
- Lukic, M.; Jaksic, I.; Krstonosic, V.; Cekic, N.; Savic, S. A combined approach in characterization of an effective w/o hand cream: The influence of emollient on textural, sensorial and in vivo skin performance. Int. J. Cosmet. Sci. 2012, 34, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Tuğcu-Demiröz, F. Vaginal Delivery of Benzydamine Hydrochloride through Liposomes Dispersed in Mucoadhesive Gels. Chem. Pharm. Bull. 2017, 65, 660–667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurler, J.; Engesland, A.; Poorahmary Kermany, B.; Škalko-Basnet, N. Improved texture analysis for hydrogel characterization: Gel cohesiveness, adhesiveness, and hardness. J. Appl. Polym. Sci. 2012, 125, 180–188. [Google Scholar] [CrossRef]
- Kasparaviciene, G.; Kalveniene, Z.; Pavilonis, A.; Marksiene, R.; Dauksiene, J.; Bernatoniene, J. Formulation and Characterization of Potential Antifungal Oleogel with Essential Oil of Thyme. Evid. Based Complement Alternat. Med. 2018, 2018, 9431819. [Google Scholar] [CrossRef] [Green Version]
- Wróblewska, M.; Słyż, J.; Winnicka, K. Rheological and textural properties of hydrogels, containing sulfur as a model drug, made using different polymers types. Polimery 2021, 64, 208–215. [Google Scholar] [CrossRef]
- Jin, S.G.; Yousaf, A.M.; Son, M.W.; Jang, S.W.; Kim, D.W.; Kim, J.O.; Yong, C.S.; Kim, J.H.; Choi, H.-G. Mechanical properties, skin permeation and in vivo evaluations of dexibuprofen-loaded emulsion gel for topical delivery. Arch. Pharm. Res. 2015, 38, 216–222. [Google Scholar] [CrossRef]
- Chauhan, G.; Verma, A.; Das, A.; Ojha, K. Rheological studies and optimization of Herschel-Bulkley flow parameters of viscous karaya polymer suspensions using GA and PSO algorithms. Rheol. Acta 2018, 57, 267–285. [Google Scholar] [CrossRef]
- Dolz, M.; Herráez, M.; González, F.; Díez, O.; Delegido, J.; Hernández, M.J. Flow behaviour of Carbopol-940® hydrogels. The influence of concentration and agitation time. Pharmazie 1998, 53, 126–130. [Google Scholar]
- Hurler, J.; Žakelj, S.; Mravljak, J.; Pajk, S.; Kristl, A.; Schubert, R.; Škalko-Basnet, N. The effect of lipid composition and liposome size on the release properties of liposomes-in-hydrogel. Int. J. Pharm. 2013, 456, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Boulmedarat, L.; Grossiord, J.L.; Fattal, E.; Bochot, A. Influence of methyl-beta-cyclodextrin and liposomes on rheological properties of Carbopol 974P NF gels. Int. J. Pharm. 2003, 254, 59–64. [Google Scholar] [CrossRef]
- Elmoslemany, R.M.; Abdallah, O.Y.; El-Khordagui, L.K.; Khalafallah, N.M. Propylene glycol liposomes as a topical delivery system for miconazole nitrate: Comparison with conventional liposomes. AAPS PharmSciTech 2012, 13, 723–731. [Google Scholar] [CrossRef] [Green Version]
- Martins, D.; Rocha, C.; Dourado, F.; Gama, M. Bacterial Cellulose-Carboxymethyl Cellulose (BC:CMC) dry formulation as stabilizer and texturizing agent for surfactant-free cosmetic formulations. Colloids Surf. A Physicochem. Eng. Asp. 2021, 617, 126380. [Google Scholar] [CrossRef]
- Dejeu, I.L.; Vicas, L.G.; Jurca, T.; Teusdea, A.C.; Muresan, M.E.; Fritea, L.; Svera, P.; Gabor, G.A.; Dejeu, G.E.; Maghiar, O.A.; et al. Liposomes with Caffeic Acid: Morphological and Structural Characterisation, Their Properties and Stability in Time. Processes 2021, 9, 912. [Google Scholar] [CrossRef]
- Jurca, T.; Józsa, L.; Suciu, R.; Pallag, A.; Marian, E.; Bácskay, I.; Mureșan, M.; Stan, R.L.; Cevei, M.; Cioară, F.; et al. Formulation of Topical Dosage Forms Containing Synthetic and Natural Anti-Inflammatory Agents for the Treatment of Rheumatoid Arthritis. Molecules 2021, 26, 24. [Google Scholar] [CrossRef] [PubMed]
- Zuidema, J.M.; Rivet, C.J.; Gilbert, R.J.; Morrison, F.A. A protocol for rheological characterization of hydrogels for tissue engineering strategies. J. Biomed. Mater. Res. Part B Appl. Biomater. 2014, 102, 1063–1073. [Google Scholar] [CrossRef] [PubMed]
- Lucero, M.J.; Vigo, J.; León, M.J. A study of shear and compression deformations on hydrophilic gels of tretinoin. Int. J. Pharm. 1994, 106, 125–133. [Google Scholar] [CrossRef]
- The United States Pharmacopoeia and National Formulary USP38–NF 33; The United States Pharmacopoeial Convention: Rockville, MD, USA, 2015; p. 1625.
- Romanian Pharmacopeia, 10th ed.; Medical Publishing House: Bucharest, Romania, 2008.
- Ghica, M.V.; Hîrjau, M.; Lupuleasa, D.; Dinu-Pîrvu, C.E. Flow and thixotropic parameters for rheological characterization of hydrogels. Molecules 2016, 21, 786. [Google Scholar] [CrossRef]
- Paoletti, F.; Nardo, N.; Saleh, A.; Quaglia, G.B. Back extrusion test on emulsions stabilized whey protein concentrates. Lebensm.-Wiss. Technol. 1995, 28, 616–619. [Google Scholar] [CrossRef]
- Perrot, A.; Mélinge, Y.; Estellé, P.; Rangeard, D.; Lanos, C. The Back Extrusion Test as a Technique for Determining the Rheological and Tribological Behaviour of Yield Stress Fluids at Low Shear Rates. Appl. Rheol. 2011, 21, 53642. [Google Scholar]
- European Pharmacopeia, 9th ed.; Council of Europe: Strasbourg, France, 2017; Volume 1, pp. 313–315.
- European Pharmacopeia, 10th ed.; Council of Europe: Strasbourg, France, 2020; Volume 1, p. 337.
- Popa, E.A.; Popovici, I.; Braha, S.L. Tehnologie Farmaceutică; Ed. Polirom: Iaşi, Romania, 2008; Volume 2, pp. 742–749. [Google Scholar]
Sample | FG I (g) | FP I (g) | FA I (g) | FG II (g) | FP II (g) | FA II (g) | FG I Blank (g) | FP I Blank (g) | FA I Blank (g) | FG II Blank (g) | FP II Blank (g) | FA II Blank (g) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Liposome DPPC-50 | 1 | 1 | 1 | - | - | - | - | - | - | - | - | - |
Liposome SC-50 | - | - | - | 1 | 1 | 1 | - | - | - | - | - | - |
Carbopol 940 | 0.50 | 0.50 | 0.50 | 1 | 1 | 1 | 0.50 | 0.50 | 0.50 | 1 | 1 | 1 |
Glycerin | 20 | - | - | 20 | - | - | 20 | - | - | 20 | - | - |
Isopropyl alcohol | - | - | 20 | - | - | 20 | - | - | 20 | - | - | 20 |
Propylene glycol | - | 20 | - | - | 20 | - | - | 20 | - | - | 20 | - |
Ethyl alcohol 96° | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
Triethanolamine | 0.50 | 0.50 | 0.50 | 1 | 1 | 1 | 0.50 | 0.50 | 0.50 | 1 | 1 | 1 |
Distillate water | 68 | 68 | 68 | 67 | 67 | 67 | 69 | 69 | 69 | 68 | 68 | 68 |
Formulation Code | Correlation Coefficient (R) Model | Parameters Model Ostwald de Waele | Parameters Model Herschel–Bulkley | ||||
---|---|---|---|---|---|---|---|
Ostwald de Waele | Herschel–Bulkley | K | n | K | n | τ0 (Pa) | |
FG I blank | 0.9964 | 0.9967 | 135.41 | 0.239 | 146.3 | 0.229 | −12.35 |
FG I | 0.9644 | 0.9817 | 23.06 | 0.173 | 118.0 | 0.044 | −94.33 |
FG II blank | 0.9926 | 0.9946 | 178.30 | 0.239 | 264.5 | 0.188 | −94.57 |
FG II | 0.9823 | 0.9940 | 149.91 | 0.183 | 377.0 | 0.086 | −219.10 |
FP I blank | 0.9948 | 0.9981 | 139.70 | 0.229 | 208.0 | 0.174 | −67.76 |
FP I | 0.9790 | 0.9934 | 14.24 | 0.197 | 46.6 | 0.079 | −32.67 |
FP II blank | 0.9942 | 0.9984 | 186.11 | 0.235 | 296.1 | 0.171 | −109.50 |
FP II | 0.9806 | 0.9950 | 115.31 | 0.191 | 464.4 | 0.059 | −341.71 |
FA I blank | 0.9952 | 0.9969 | 107.60 | 0.261 | 137.5 | 0.226 | −33.13 |
FA I | 0.9709 | 0.9934 | 20.54 | 0.173 | 137.8 | 0.034 | −116.80 |
FA II blank | 0.9943 | 0.9977 | 183.32 | 0.224 | 267.4 | 0.172 | −83.21 |
FA II | 0.9880 | 0.9944 | 131.32 | 0.211 | 276.5 | 0.119 | −140.42 |
Formulation Code | Apparent Viscosity (Pa.s) | Thixotropy Index (%) |
---|---|---|
FG I blank | 3.990 | 36.41 |
FG I | 0.518 | 6.82 |
FG II blank | 5.350 | 34.34 |
FG II | 3.429 | 32.34 |
FP I blank | 3.956 | 29.67 |
FP I | 0.353 | 5.24 |
FP II blank | 5.327 | 76.60 |
FP II | 2.806 | 31.27 |
FA I blank | 3.504 | 26.49 |
FA I | 0.454 | 7.43 |
FA II blank | 4.914 | 78.42 |
FA II | 3.464 | 42.84 |
Formulation Code | G’ (Pa) | G’’ (Pa) |
---|---|---|
FG I blank | 697.66 ± 8.11 | 53.42 ± 3.02 |
FG I | 119.16 ± 1.61 | 9.21 ± 1.41 |
FG II blank | 682.44 ± 18.18 | 55.57 ± 1.73 |
FG II | 607.56 ± 13.20 | 30.18 ± 2.17 |
FP I blank | 614.73 ± 15.31 | 47.30 ± 4.25 |
FP I | 78.77 ± 0.85 | 8.05 ± 1.09 |
FP II blank | 699.89 ± 12.35 | 59.24 ± 4.44 |
FP II | 450.99 ± 3.96 | 29.59 ± 0.57 |
FA I blank | 673.53 ± 9.53 | 55.33 ± 2.78 |
FA I | 128.17 ± 3.46 | 9.93 ± 0.86 |
FA II blank | 669.35 ± 48.24 | 61.69 ± 2.98 |
FA II | 517.42 ± 3.38 | 34.09 ± 0.49 |
Formulation Code | Firmness (g) | Mechanical Shear Work (g·s) |
---|---|---|
FG I blank | 1764.23 ± 12.30 | 1156.10 ± 32.55 |
FG I | 46.21 ± 5.37 | 48.06 ± 20.16 |
FG II blank | 2986.66 ± 18.90 | 1615.13 ± 26.36 |
FG II | 1207.20 ± 7.82 | 946.85 ± 12.04 |
FP I blank | 1216.80 ± 11.37 | 931.40 ± 32.22 |
FP I | 927.43 ± 13.58 | 237.12 ± 11.57 |
FP II blank | 1344.75 ± 13.48 | 979.64 ± 32.39 |
FP II | 600.40 ± 20.57 | 436.52 ± 16.97 |
FA I blank | 3912.00 ± 11.46 | 1896.40 ± 13.03 |
FA I | 149.53 ± 14.38 | 105.91 ± 17.37 |
FA II blank | 4273.60 ± 22.99 | 2314.30 ± 12.28 |
FA II | 1526.10 ± 24.97 | 855.35 ± 11.01 |
Amount of Substances (mg) | Type of Liposomes | |
---|---|---|
DPPC-50 | SC-50 | |
Caffeic acid (CA) | 50 | 50 |
Phosphatidylcholine (PC) | 50 | 80 |
1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DP-PD) | 50 | - |
Sodium cholate (SC) | - | 20 |
Cholesterol (CHL) | 2.5 | 2.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dejeu, I.L.; Vicaș, L.G.; Vlaia, L.L.; Jurca, T.; Mureșan, M.E.; Pallag, A.; Coneac, G.H.; Olariu, I.V.; Muț, A.M.; Bodea, A.S.; et al. Study for Evaluation of Hydrogels after the Incorporation of Liposomes Embedded with Caffeic Acid. Pharmaceuticals 2022, 15, 175. https://doi.org/10.3390/ph15020175
Dejeu IL, Vicaș LG, Vlaia LL, Jurca T, Mureșan ME, Pallag A, Coneac GH, Olariu IV, Muț AM, Bodea AS, et al. Study for Evaluation of Hydrogels after the Incorporation of Liposomes Embedded with Caffeic Acid. Pharmaceuticals. 2022; 15(2):175. https://doi.org/10.3390/ph15020175
Chicago/Turabian StyleDejeu, Ioana Lavinia, Laura Grațiela Vicaș, Lavinia Lia Vlaia, Tunde Jurca, Mariana Eugenia Mureșan, Annamaria Pallag, Georgeta Hermina Coneac, Ioana Viorica Olariu, Ana Maria Muț, Anca Salomea Bodea, and et al. 2022. "Study for Evaluation of Hydrogels after the Incorporation of Liposomes Embedded with Caffeic Acid" Pharmaceuticals 15, no. 2: 175. https://doi.org/10.3390/ph15020175
APA StyleDejeu, I. L., Vicaș, L. G., Vlaia, L. L., Jurca, T., Mureșan, M. E., Pallag, A., Coneac, G. H., Olariu, I. V., Muț, A. M., Bodea, A. S., Dejeu, G. E., Maghiar, O. A., & Marian, E. (2022). Study for Evaluation of Hydrogels after the Incorporation of Liposomes Embedded with Caffeic Acid. Pharmaceuticals, 15(2), 175. https://doi.org/10.3390/ph15020175