Gender and Sex-Related Differences in Normal Tissue Effects Induced by Platinum Compounds
Abstract
:1. Introduction
2. Cisplatin-Induced Normal Tissue Toxicity
3. Sex/Gender-Difference in Normal Tissue Toxicity Induced by Cisplatin
3.1. Animal Studies
3.2. Patient Studies
4. Platinum-Based Alternative Compounds to Reduce Normal Tissue Toxicity
5. Sex/Gender-Difference in Normal Tissue Toxicity Induced by Other Platinum Compounds
5.1. Animal Studies
5.2. Patient Studies
6. Discussion and Future Prospects
- Consider sex/gender as a matched variable in clinical trials;
- Identify differences among sexes/genders in both tumour response and normal tissue toxicity;
- Implement solutions to alleviate the impact of cisplatin-based chemotherapy on normal tissues:
- (a)
- Find alternative platinum agents with similar cytotoxic effects on the tumour.
- (b)
- Use chronotherapy principles when administering platinum compounds.
- (c)
- Consider dose de-escalation without compromising tumour response.
- (d)
- Use pharmacogenomics for personalised chemotherapy.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wagner, A.D.; Oertelt-Prigione, S.; Adjei, A.; Buclin, T.; Cristina, V.; Csajka, C.; Coukos, G.; Dafni, U.; Dotto, G.P.; Ducreux, M.; et al. Gender medicine and oncology: Report and consensus of an ESMO workshop. Ann Oncol. 2019, 30, 1914–1924. [Google Scholar] [CrossRef] [Green Version]
- Shen, D.-W.; Pouliot, L.M.; Hall, M.D.; Gottesman, M.M. Cisplatin Resistance: A Cellular Self-Defense Mechanism Resulting from Multiple Epigenetic and Genetic Changes. Pharmacol. Rev. 2012, 64, 706–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcu, L.; Bezak, E.; Olver, I.; Van Doorn, T. Tumour resistance to cisplatin: A modelling approach. Phys. Med. Biol. 2004, 50, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-Y.; Hsiao, C.-H.; Chen, Y.-C.; Ho, C.-H.; Wang, J.-J.; Hsing, C.-H.; Wang, H.-Y.; Kan, W.-C.; Wu, C.-C. Cisplatin Nephrotoxicity Might Have a Sex Difference. An analysis Based on Women’s Sex Hormone Changes. J. Cancer 2017, 8, 3939–3944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Courcy, L.; Bezak, E.; Marcu, L.G. Gender-dependent radiotherapy: The next step in personalised medicine? Crit. Rev. Oncol. Hematol. 2020, 147, 102881. [Google Scholar] [CrossRef] [PubMed]
- Franconi, F.; Campesi, I.; Colombo, D.; Antonini, P. Sex-Gender Variable: Methodological Recommendations for Increasing Scientific Value of Clinical Studies. Cells 2019, 8, 476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawrence, T.S.; Blackstock, A.; McGinn, C. The mechanism of action of radiosensitization of conventional chemotherapeutic agents. Semin. Radiat. Oncol. 2003, 13, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Dasari, S.; Tchounwou, P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 2014, 740, 364–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshikawa, A.; Saura, R.; Matsubara, T. A mechanism of cisplatin action: Antineoplastic effect through inhibition of neovascularization. Kobe J. Med. Sci. 1997, 43, 109–120. [Google Scholar] [PubMed]
- McKeage, M.J. Comparative Adverse Effect Profiles of Platinum Drugs. Drug Saf. 1995, 13, 228–244. [Google Scholar] [CrossRef]
- Chen, W.C.; Jackson, A.; Budnick, A.S.; Pfister, D.G.; Kraus, D.H.; Hunt, M.A.; Stambuk, A.S.; Pfister, D.G.; Kraus, D.H.; Hunt, M.A.; et al. Sensorineural hearing loss in combined modality treatment of nasopharyngeal carcinoma. Cancer 2006, 106, 820–829. [Google Scholar] [CrossRef] [PubMed]
- Teft, W.A.; Winquist, E.; Nichols, A.C.; Kuruvilla, S.; Richter, S.; Parker, C.; Francis, P.; Trinnear, M.; Lukovic, J.; Bukhari, N.; et al. Predictors of cisplatin-induced ototoxicity and survival in chemoradiation treated head and neck cancer patients. Oral Oncol. 2018, 89, 72–78. [Google Scholar] [CrossRef]
- Brouwers, E.E.M.; Huitema, A.D.R.; Boogerd, W.; Beijnen, J.H.; Schellens, J.H.M. Persistent neuropathy after treatment with cisplatin and oxaliplatin. Acta Oncol. 2009, 48, 832–841. [Google Scholar] [CrossRef] [PubMed]
- Cetinkaya-Fisgin, A.; Luan, X.; Reed, N.; Jeong, Y.E.; Oh, B.C.; Hoke, A. Cisplatin induced neurotoxicity is mediated by Sarm1 and calpain activation. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Perazella, M.A. Onco-Nephrology: Renal Toxicities of Chemotherapeutic Agents. Clin. J. Am. Soc. Nephrol. 2012, 7, 1713–1721. [Google Scholar] [CrossRef]
- Hanigan, M.H.; Lykissa, E.D.; Townsend, D.M.; Ou, C.; Barrios, R.; Lieberman, M.W. Gamma-glutamyl transpepti-dase-deficient mice are resistant to the nephrotoxicity of cisplatin. Am. J. Pathol. 2001, 159, 1889–1894. [Google Scholar] [CrossRef]
- Volarevic, V.; Djokovic, B.; Jankovic, M.G.; Harrell, C.R.; Fellabaum, C.; Djonov, V.; Arsenijevic, N. Molecular mechanisms of cisplatin-induced nephrotoxicity: A balance on the knife edge between renoprotection and tumor toxicity. J. Biomed. Sci. 2019, 26, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Shahid, F.; Farooqui, Z.; Khan, F. Cisplatin-induced gastrointestinal toxicity: An update on possible mecha-nisms and on available gastroprotective strategies. Eur. J. Pharmacol. 2018, 827, 49–57. [Google Scholar] [CrossRef]
- Conte, E.; Bresciani, E.; Rizzi, L.; Cappellari, O.; De Luca, A.; Torsello, A.; Liantonio, A. Cisplatin-Induced Skeletal Muscle Dysfunction: Mechanisms and Counteracting Therapeutic Strategies. Int. J. Mol. Sci. 2020, 21, 1242. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.B.; Fisher, N.D.; Hollenberg, N.K. Gender and the renal nitric oxide synthase system in healthy hu-mans. Clin. J. Am. Soc. Nephrol. 2007, 2, 926–931. [Google Scholar] [CrossRef] [Green Version]
- Wangensteen, R.; Moreno, J.M.; Sainz, J.; Rodríguez-Gómez, I.; Chamorro, V.; Luna, J.D.D.; Osuna, A.; Vargas, F. Gender difference in the role of endothelium-derived relaxing factors modulating renal vascular reactivity. Eur. J. Pharmacol. 2004, 486, 281–288. [Google Scholar] [CrossRef]
- Eshraghi-Jazi, F.; Nematbakhsh, M.; Nasri, H.; Talebi, A.; Haghighi, M.; Pezeshki, Z.; Safari, T.; Ashrafi, F. The protective role of endogenous nitric oxide donor (L-arginine) in cisplatin-induced nephrotoxicity: Gender related differences in rat model. J. Res. Med. Sci. 2011, 16, 1389–1396. [Google Scholar]
- Haghighi, M.; Nematbakhsh, M.; Talebi, A.; Nasri, H.; Ashrafi, F.; Roshanaei, K.; Pezeshki, Z.; Safari, T. The role of angiotensin II re-ceptor 1 (AT1) blockade in cisplatin-induced nephrotoxicity in rats: Gender-related differences. Ren. Fail. 2012, 34, 1046–1051. [Google Scholar] [CrossRef]
- Nematbakhsh, M.; Ebrahimian, S.; Tooyserkani, M.; Eshraghi-Jazi, F.; Talebi, A.; Ashrafi, F. Gender Difference in Cisplatin-Induced Nephrotoxicity in a Rat Model: Greater Intensity of Damage in Male Than Female. Nephro-Urology Mon. 2013, 5, 818–821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jokar, Z.; Nematbakhsh, M.; Moeini, M.; Talebi, A. Role of endothelin-1 antagonist; bosentan, against cispla-tin-induced nephrotoxicity in male and female rats. Adv. Biomed. Res. 2015, 11, 83. [Google Scholar]
- El-Arabey, A.A. Gender Difference in Cisplatin-Induced Nephrotoxicity in a Rat Model. Nephro-Urology Mon. 2015, 7, e23595. [Google Scholar] [CrossRef] [Green Version]
- Zamani, Z.; Nematbakhsh, M.; Eshraghi-Jazi, F.; Talebi, A.; Jilanchi, S.; Navidi, M.; Shirdavani, S.; Ashrafi, F. Effect of enalapril in cis-platin-induced nephrotoxicity in rats; gender-related difference. Adv. Biomed. Res. 2016, 5, 14. [Google Scholar]
- Pezeshki, Z.; Maleki, M.; Talebi, A.; Nematbakhsh, M. Age and Gender Related Renal Side Effects of Cisplatin in Animal Model. Asian Pac. J. Cancer Prev. 2017, 18, 1703–1705. [Google Scholar] [CrossRef]
- Jilanchi, S.; Talebi, A.; Nematbakhsh, M. Cisplatin Alters Sodium Excretion and Renal Clearance in Rats: Gen-der and Drug Dose Related. Adv. Biomed. Res. 2018, 7, 54. [Google Scholar]
- Kirkim, G.; Olgun, Y.; Aktas, S.; Kiray, M.; Kolatan, E.; Altun, Z.; Erçetin, P.; Bagriyanik, A.; Yilmaz, O.; Ellidokuz, H. Is there a gender-related susceptibility for cisplatin ototoxicity? Eur. Arch. Otorhinolaryngol. 2015, 272, 2755–2763. [Google Scholar] [CrossRef]
- Naji-Esfahani, H.; Vaseghi, G.; Safaeian, L.; Pilehvarian, A.-A.; Abed, A.; Rafieian-Kopaei, M. Gender differences in a mouse model of chemotherapy-induced neuropathic pain. Lab. Anim. 2015, 50, 15–20. [Google Scholar] [CrossRef] [Green Version]
- Wongtawatchai, T.; Agthong, S.; Kaewsema, A.; Chentanez, V. Sex-related differences in cisplatin-induced neuropathy in rats. J. Med. Assoc. Thail. 2009, 92, 1485–1491. [Google Scholar]
- Wakelee, H.A.; Wang, W.; Schiller, J.H.; Langer, C.J.; Sandler, A.B.; Belani, C.P.; Johnson, D.H. Eastern Cooperative Oncology Group. Survival differences by sex for patients with advanced non-small cell lung cancer on Eastern Cooperative Oncology Group trial 1594. J. Thorac. Oncol. 2006, 1, 441–446. [Google Scholar] [CrossRef]
- Knight, K.R.; Kraemer, D.F.; Neuwelt, E.A. Ototoxicity in children receiving platinum chemotherapy: Underes-timating a commonly occurring toxicity that may influence academic and social development. J. Clin. Oncol. 2005, 23, 8588–8596. [Google Scholar] [CrossRef] [Green Version]
- Yancey, A.; Harris, M.S.; Egbelakin, A.; Gilbert, J.; Pisoni, D.B.; Renbarger, J. Risk factors for cisplatin-associated ototoxicity in pediatric oncology patients. Pediatr. Blood Cancer 2012, 59, 144–148. [Google Scholar] [CrossRef] [Green Version]
- Delhez, A.; Lefebvre, P.; Péqueux, C.; Malgrange, B.; Delacroix, L. Auditory function and dysfunction: Estrogen makes a difference. Cell Mol. Life Sci. 2019, 77, 619–635. [Google Scholar] [CrossRef] [PubMed]
- Schmetzer, O.; Flörcken, A. Sex Differences in the Drug Therapy for Oncologic Diseases. In Sex and Gender Differences in Pharmacology; Regitz-Zagrosek, V., Ed.; Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2013; Volume 2014. [Google Scholar] [CrossRef]
- Nagar, R.; Khan, A.R.; Poonia, A.; Mishra, P.K.; Singh, S. Metabolism of cisplatin in the organs of Rattus norvegi-cus: Role of Glutathione S-transferase P1. Eur. J. Drug Metab. Pharmacokinet. 2015, 40, 45–51. [Google Scholar] [CrossRef]
- Butera, L.; Feinfeld, D.A.; Bhargava, M. Sex Differences in the Subunits of Glutathione-S-Transferase Isoenzyme from Rat and Human Kidney. Enzyme 1990, 43, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Van der Vijgh, W.J. Clinical pharmacokinetics of carboplatin. Clin. Pharmacokinet. 1991, 21, 242–261. [Google Scholar] [CrossRef]
- Griesinger, F.; Korol, E.E.; Kayaniyil, S.; Varol, N.; Ebner, T.; Goring, S.M. Efficacy and safety of first-line car-boplatin-versus cisplatin-based chemotherapy for non-small cell lung cancer: A meta-analysis. Lung Cancer 2019, 135, 196–204. [Google Scholar] [CrossRef] [Green Version]
- Go, S.R.; Adjei, A.A. Review of the comparative pharmacology and clinical activity of cisplatin and car-boplatin. J. Clin. Oncol. 1999, 17, 409–422. [Google Scholar] [CrossRef]
- Peters, S.; Adjei, A.A.; Gridelli, C.; Reck, M.; Kerr, K.; Felip, E.; ESMO Guidelines Working Group. Metastatic non-small-cell lung cancer (NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2012, 23 (Suppl. 7), vii56–vii64. [Google Scholar] [CrossRef] [PubMed]
- O’Rourke, T.J.; Weiss, G.R.; New, P.; Burris, H.A., 3rd; Rodriguez, G.; Eckhardt, J.; Hardy, J.; Kuhn, J.G.; Fields, S.; Clark, G.M.; et al. Phase I clinical trial of or-maplatin (tetraplatin, NSC 363812). Anticancer Drugs 1994, 5, 520–526. [Google Scholar] [CrossRef]
- Schilder, R.J.; LaCreta, F.P.; Perez, R.; Johnson, S.W.; Brennan, J.M.; Rogatko, A.; Nash, S.; McAleer, C.; Hamilton, T.C.; Roby, D. Phase I and pharmacokinetic study of ormaplatin (tetraplatin, NSC 363812) administered on a day 1 and day 8 schedule. Cancer Res. 1994, 54, 709–717. [Google Scholar]
- McKeage, M.J. Lobaplatin: A new antitumour platinum drug. Expert Opin. Investig. Drugs 2001, 10, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Stordal, B.; Pavlakis, N.; Davey, R. Oxaliplatin for the treatment of cisplatin-resistant cancer: A systematic re-view. Cancer Treat Rev. 2007, 33, 347–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joseph, E.K.; Levine, J.D. Comparison of Oxaliplatin- and Cisplatin-Induced Painful Peripheral Neuropathy in the Rat. J. Pain 2009, 10, 534–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.; He, X.; Cheng, K.; Guo, W.; Bian, X.; Jiang, X.; Zhang, L.; Huang, S. Concurrent chemoradiotherapy with nedaplatin plus paclitaxel or fluorouracil for locoregionally advanced nasopharyngeal carcinoma: Survival and toxicity. Head Neck 2013, 36, 1474–1480. [Google Scholar] [CrossRef]
- Yin, L.; Bian, X.-H.; Wang, X.; Chen, M.; Wu, J.; Xu, J.-H.; Qian, P.-D.; Guo, W.-J.; Jiang, X.-S.; Zhu, H.-F.; et al. Long-Term Results of Concurrent Chemoradiotherapy for Advanced N2-3 Stage Nasopharyngeal Carcinoma. PLoS ONE 2015, 10, e0137383. [Google Scholar] [CrossRef]
- Hayashi, H.; Okamoto, I.; Ueda, S.; Tanaka, K.; Okamoto, K.; Kawakami, H.; Nishina, S.; Takeda, M.; Fujisaka, Y.; Satoh, T.; et al. Phase I pharmacokinetic study of S-1 granules and nedaplatin for advanced head and neck cancer. Anticancer Res. 2013, 33, 5699–5705. [Google Scholar] [PubMed]
- Dhar, S.; Lippard, S.J. Mitaplatin, a potent fusion of cisplatin and the orphan drug dichloroacetate. Proc. Natl. Acad. Sci. USA 2009, 106, 22199–22204. [Google Scholar] [CrossRef] [Green Version]
- Xue, X.; You, S.; Zhang, Q.; Wu, Y.; Zou, G.Z.; Wang, P.C.; Zhao, Y.-L.; Xu, Y.; Jia, L.; Zhang, X.; et al. Mitaplatin increases sensitivity of tumor cells to cis-platin by inducing mitochondrial dysfunction. Mol. Pharm. 2012, 9, 634–644. [Google Scholar] [CrossRef] [Green Version]
- Bhargava, A.; Vaishampayan, U. Satraplatin: Leading the new generation of oral platinum agents. Expert Opin. Investig. Drugs 2009, 18, 1787–1797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcu, L.G.; Toma-Dasu, I.; Dasu, A.; Mercke, C. Radiotherapy and Clinical Radiobiology of Head and Neck Cancer; CRC Press: New York, NY, USA, 2018. [Google Scholar]
- Warncke, U.O.; Toma, W.; Meade, J.A.; Park, A.J.; Thompson, D.C.; Caillaud, M.; Bigbee, J.W.; Bryant, C.D.; Damaj, M.I. Impact of Dose, Sex, and Strain on Oxaliplatin-Induced Peripheral Neuropathy in Mice. Front. Pain Res. 2021, 2. [Google Scholar] [CrossRef]
- Yamamoto, H.; Sekine, I.; Yamada, K.; Nokihara, H.; Yamamoto, N.; Kunitoh, H.; Ohe, Y.; Tamura, T. Gender Differences in Treatment Outcomes among Patients with Non-Small Cell Lung Cancer Given a Combination of Carboplatin and Paclitaxel. Oncology 2008, 75, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Keira, T.; Mita, K.; Kojima, M.; Sekido, K.; Hishinuma, R.; Tanaka, T. Gender Differences in Hematological Toxicity among Patients with Non-small Cell Lung Cancer Given Combination of Platinating Agent and Gemcita-bine. J. Pharm. Health Care Sci. 2012, 38, 441–448. [Google Scholar] [CrossRef] [Green Version]
- Dimopoulou, I.; Efstathiou, E.; Samakovli, A.; Dafni, U.; Moulopoulos, L.A.; Papadimitriou, C.; Lyberopoulos, P.; Kastritis, E.; Roussos, C.; Dimopoulos, M.A. A prospective study on lung toxicity in patients treated with gemcitabine and carboplatin: Clinical, radiological and functional assessment. Ann. Oncol. 2004, 15, 1250–1255. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, S.L.; Chiang, L.; Selina, N.; Hamarman, S. Patient perceptions about chemotherapy-induced oral mu-cositis: Implications for primary/secondary prophylaxis strategies. Support Care Cancer 2004, 12, 526–530. [Google Scholar] [CrossRef]
- Arii, D.; Nojima, M. Gender difference in allergic reactions and fluctuation of blood cells induced by plati-num-based anticancer drugs. Juntendo Med. J. 2020, 66, 213–220, (In Japanese, abstract only). [Google Scholar] [CrossRef] [Green Version]
- Arii, D.; Ikeno, Y.; Murooka, K.; Nojima, M.; Kidokoro, A. Expression of allergic reactions to oxaliplatin. Cancer Chemother. 2012, 39, 593–597, (In Japanese, abstract only). [Google Scholar]
- Gard, A.; Kumar, P.; Chauhan, A.; Kumar, P. Does weekly versus daily low-dose of concurrent cisplatin have any effect on compliance and clinical outcomes in cases of locally advanced head and neck cancers? J. Clin. Oncol. 2019, 37 (Suppl. 15), e17569. [Google Scholar]
- Cederroth, C.R.; Albrecht, U.; Bass, J.; Brown, S.A.; Dyhrfjeld-Johnsen, J.; Gachon, F.; Green, C.B.; Hastings, M.H.; Helfrich-Förster, C.; Hogenesch, J.B.; et al. Medicine in the Fourth Dimension. Cell Metab. 2019, 30, 238–250. [Google Scholar] [CrossRef] [PubMed]
- Kireeva, G.; Gubareva, E.; Maydin, M.; Osetnik, V.; Kruglov, S.; Panchenko, A.; Dorofeeva, A.; Tyndyk, M.; Fedoros, E.; Anisimov, V. Efficacy and Safety of Systemic and Locoregional Cisplatin Chronotherapy in Rats with Ovarian Carcinoma. Onco. Targets Ther. 2021, 14, 3373–3381. [Google Scholar] [CrossRef] [PubMed]
- Seto, Y.; Okazaki, F.; Horikawa, K.; Zhang, J.; Sasaki, H.; To, H. Influence of dosing times on cisplatin-induced peripheral neuropathy in rats. BMC Cancer 2016, 16, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhawan, D.; Panchal, H.; Shukla, S.; Padh, H. Genetic variability & chemotoxicity of 5-fluorouracil & cisplatin in head & neck cancer patients: A preliminary study. Indian J. Med. Res. 2013, 137, 125–129. [Google Scholar]
- Zazuli, Z.; Vijverberg, S.; Slob, E.; Liu, G.; Carleton, B.; Veltman, J.; Baas, P.; Masereeuw, R.; Maitland-van der Zee, M.-H. Genetic Variations and Cisplatin Ne-phrotoxicity: A Systematic Review. Front. Pharmacol. 2018, 9, 1111. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.S. Early Lessons from the Implementation of Genomic Medicine Programs. Annu. Rev. Genom. Hum. Genet. 2019, 20, 389–411. [Google Scholar] [CrossRef]
Investigated Toxicity | Investigated Parameters | Gender-Dependent Effects | Study [Ref.] |
---|---|---|---|
Nephrotoxicity in Wistar rats | Serum creatinine, blood urea nitrogen, nitric oxide metabolite, malondialdehyde | Male rats: significantly greater levels of serum creatinine, blood urea nitrogen, malondialdehyde; also, greater kidney damage score (p < 0.05). | Nematbakhsh et al., 2013 [24] |
Nephrotoxicity in Wistar rats | Serum creatinine, blood urea nitrogen, kidney weight, kidney tissue damage score | Male rats: greater increase in blood urea nitrogen. Both sexes: significant body weight loss, increased serum levels of creatinine, blood urea nitrogen. | Zamani et al., 2016 [27] |
Nephrotoxicity in Wistar rats | Serum creatinine, blood urea nitrogen, aspartate aminotransferase, alkaline phosphatase, nitrite, kidney weight malondialdehyde | Male rats (young): lower blood urea nitrogen and creatinine than females; the highest creatinine clearance. Male rats (old): greater levels of serum creatinine, blood urea nitrogen, and kidney damage score than females. | Pezeshki et al., 2017 [28] |
Nephrotoxicity in Wistar rats | Creatinine levels, blood urea nitrogen levels, sodium excretion | Female rats: significantly greater levels of serum creatinine and blood urea nitrogen. | Jilanchi et al., 2018 [29] |
Ototoxicity in Wistar albino rats | Distortion product otoacoustic emission; Auditory brainstem response | Female rats: more pronounced hearing toxicity. | Kirkim et al., 2015 [30] |
Neuropathic pain in mice | Cold/mechanical allodynia | No sex-related differences in cold or mechanical allodynia were observed. | Naji-Esfahani et al., 2016 [31] |
Neuropathy in rats | Heat latency of hind paw; sciatic motor nerve conduction velocity; Pathological alterations in the sciatic nerve and dorsal root ganglion | Male rats: higher severity of weight loss, prolonged heat latency, slow motor nerve conduction velocity, atrophy of neuronal cell body and nucleus. Female rats: more significant reduction in myelinated fiber diameter and density, myelin thickness. | Wongtawatchai et al., 2009 [32] |
Platinum Compound | Benefits | Limitations | Normal Tissue Toxicity |
---|---|---|---|
Cisplatin | Potent cytotoxicity Most trialled platinum agent | High normal tissue toxicity Drug resistance | Nephrotoxicity Ototoxicity Neurotoxicity Gastrointestinal |
Carboplatin | Reduced normal tissue toxicity (no nephrotoxicity). | Inferior tumour response rate. | Myelosuppression |
Oxaliplatin | Reduced normal tissue toxicity and better tolerability. Greater cytotoxicity and inhibition of DNA synthesis. | Conflicting results on the efficacy on cisplatin-resistant cell lines. | Neurotoxicity Hematologic Gastrointestinal |
Nedaplatin | Reduced nephrotoxicity and gastrointestinal toxicity. Similar tumour control. | Often exhibits cross-resistance with cisplatin thus its clinical application is limited. | Thrombocytopenia |
Mitaplatin | Exhibits toxic effects on cisplatin-resistant head and neck tumour cells. Better selectivity for tumour cells than cisplatin. | More research is needed to prove its clinical efficacy. | Neurotoxicity Hepatotoxicity (possible toxicities, not studied in humans) |
Enloplatin | Tested in the 90 s without successful clinical implementation | ||
Lobaplatin | Shows activity in various tumour types. Overcomes certain forms of cisplatin/carboplatin resistance. | Underexplored agent, needs trialling in combination with radiation. | Thrombocytopenia |
Satraplatin | Efficient in cisplatin-resistant cell lines. Better toxicity profile than cisplatin. | New generation of orally active platinum agents. More investigations are needed. | Carboplatin-like toxicity profile |
Tetraplatin/ormaplatin | Tested in the 90 s; under investigation by some research groups |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcu, L.G. Gender and Sex-Related Differences in Normal Tissue Effects Induced by Platinum Compounds. Pharmaceuticals 2022, 15, 255. https://doi.org/10.3390/ph15020255
Marcu LG. Gender and Sex-Related Differences in Normal Tissue Effects Induced by Platinum Compounds. Pharmaceuticals. 2022; 15(2):255. https://doi.org/10.3390/ph15020255
Chicago/Turabian StyleMarcu, Loredana G. 2022. "Gender and Sex-Related Differences in Normal Tissue Effects Induced by Platinum Compounds" Pharmaceuticals 15, no. 2: 255. https://doi.org/10.3390/ph15020255
APA StyleMarcu, L. G. (2022). Gender and Sex-Related Differences in Normal Tissue Effects Induced by Platinum Compounds. Pharmaceuticals, 15(2), 255. https://doi.org/10.3390/ph15020255