Ointment-Based Combination of Dittrichia viscosa L. and Marrubium vulgare L. Accelerate Burn Wound Healing
Abstract
:1. Introduction
2. Results
2.1. HPLC-DAD Analysis
2.2. Analgesic Activity
2.3. Carrageenan-Induced Rat Paw Test
2.4. Wound Healing Activity
3. Discussion
4. Materials and Methods
4.1. Harvesting and Identification of Plants
4.2. Preparation of Hydro-Ethanolic Extracts and the Mixture
4.3. Animal Handling and Housing
4.4. HPLC-DAD Analysis
4.5. Analgesic Activity
4.6. Carrageenan-Induced Rat Paw Inflammation
4.7. Wound Healing Test
4.7.1. Ointments Preparation
4.7.2. Burn Wound Induction
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Moura, F.B.R.; Ferreira, B.A.; Deconte, S.R.; Landim, B.C.; Justino, A.B.; Aro, A.A.d.; Espindola, F.S.; Rodrigues, R.A.F.; Ribeiro, D.L.; Araújo, F.d.A.; et al. Wound Healing Activity of the Hydroethanolic Extract of the Leaves of Maytenus Ilicifolia Mart. Ex Reis. J. Tradit. Complement. Med. 2021, 11, 446–456. [Google Scholar] [CrossRef] [PubMed]
- Tessema, Z.; Molla, Y. Evaluation of the Wound Healing Activity of the Crude Extract of Root Bark of Brucea antidysentrica, the Leaves of Dodonaea angustifolia and Rhamnus prinoides in Mice. Heliyon 2021, 7, e05901. [Google Scholar] [CrossRef] [PubMed]
- Adewumi, S.S.; Akinpelu, B.A.; Akinpelu, D.A.; Aiyegoro, O.A.; Alayande, K.A.; Agunbiade, M.O. Studies on Wound Healing Potentials of the Leaf Extract of Terminalia avicennioides (Guill. & Parr.) on Wistar Rats. S. Afr. J. Bot. 2020, 133, 285–297. [Google Scholar] [CrossRef]
- Udegbunam, S.O.; Kene, R.O.C.; Anika, S.M.; Udegbunam, R.I.; Nnaji, T.O.; Anyanwu, M.U. Evaluation of Wound Healing Potential of Methanolic Crinum jagus Bulb Extract. J. Intercult. Ethnopharmacol. 2015, 4, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Remoué, N.; Bonod, C.; Fromy, B.; Sigaudo-Roussel, D. Chapter 12—Animal Models in Chronic Wound Healing Research: For Innovations and Emerging Technologies in Wound Care. In Innovations and Emerging Technologies in Wound Care; Gefen, A., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 197–224. ISBN 978-0-12-815028-3. [Google Scholar]
- Belachew, T.F.; Asrade, S.; Geta, M.; Fentahun, E. In Vivo Evaluation of Wound Healing and Anti-Inflammatory Activity of 80% Methanol Crude Flower Extract of Hagenia abyssinica (Bruce) J.F. Gmel in Mice. Available online: https://www.hindawi.com/journals/ecam/2020/9645792/ (accessed on 25 February 2021).
- Mathieu, D.; Linke, J.-C.; Wattel, F. Non-Healing Wounds. In Handbook on Hyperbaric Medicine; Mathieu, D., Ed.; Springer: Dordrecht, The Netherlands, 2006; pp. 401–428. ISBN 978-1-4020-4448-9. [Google Scholar]
- Andrews, K.L.; Derby, K.M.; Jacobson, T.M.; Sievers, B.A.; Kiemele, L.J. Prevention and Management of Chronic Wounds. In Braddom’s Physical Medicine and Rehabilitation; Elsevier: Amsterdam, The Netherlands, 2021; pp. 469–484.e4. ISBN 978-0-323-62539-5. [Google Scholar]
- Ghosh, D.; Mondal, S.; Ramakrishna, K. A Topical Ointment Formulation Containing Leaves Extract of Aegialitis rotundifolia Roxb., Accelerates Excision, Incision and Burn Wound Healing in Rats. Wound Med. 2019, 26, 100168. [Google Scholar] [CrossRef]
- Van Yperen, D.T.; Van Lieshout, E.M.M.; Nugteren, L.H.T.; Plaisier, A.C.; Verhofstad, M.H.J.; Van der Vlies, C.H. Adherence to the Emergency Management of Severe Burns Referral Criteria in Burn Patients Admitted to a Hospital with or without a Specialized Burn Center. Burns 2021, 47, 1810–1817. [Google Scholar] [CrossRef]
- Sayah, K.; Chemlal, L.; Marmouzi, I.; El Jemli, M.; Cherrah, Y.; Faouzi, M.E.A. In Vivo Anti-Inflammatory and Analgesic Activities of Cistus salviifolius (L.) and Cistus monspeliensis (L.) Aqueous Extracts. S. Afr. J. Bot. 2017, 113, 160–163. [Google Scholar] [CrossRef]
- Wahid, S.; Alqahtani, A.; Alam Khan, R. Analgesic and Anti-Inflammatory Effects and Safety Profile of Cucurbita maxima and Cucumis sativus Seeds. Saudi J. Biol. Sci. 2021, 28, 4334–4341. [Google Scholar] [CrossRef]
- Nair, A.; Thankachen, R.U.; Raj, J.; Gopi, S. 1—Inflammation, Symptoms, Benefits, Reaction, and Biochemistry. In Inflammation and Natural Products; Gopi, S., Amalraj, A., Kunnumakkara, A., Thomas, S., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 1–19. ISBN 978-0-12-819218-4. [Google Scholar]
- Garrido, G.; González, D.; Delporte, C.; Backhouse, N.; Quintero, G.; Núñez-Sellés, A.J.; Morales, M.A. Analgesic and Anti-Inflammatory Effects of Mangifera indica L. Extract (Vimang). Phytother. Res. PTR 2001, 15, 18–21. [Google Scholar] [CrossRef]
- Morales, F.; Padilla, S.; Falconí, F. Medicinal Plants Used in Traditional Herbal Medicine in The Province of Chimborazo, Ecuador. Afr. J. Tradit. Complement. Altern. Med. 2016, 14, 10–15. [Google Scholar] [CrossRef] [Green Version]
- Mssillou, I.; Agour, A.; El Ghouizi, A.; Hamamouch, N.; Lyoussi, B.; Derwich, E. Chemical Composition, Antioxidant Activity, and Antifungal Effects of Essential Oil from Laurus nobilis L. Flowers Growing in Morocco. J. Food Qual. 2020, 2020, e8819311. [Google Scholar] [CrossRef]
- Chirumbolo, S. Flavonoids in Propolis Acting on Mast Cell-Mediated Wound Healing. Inflammopharmacology 2012, 20, 99–101. [Google Scholar] [CrossRef]
- Okur, M.E.; Karadağ, A.E.; Özhan, Y.; Sipahi, H.; Ayla, Ş.; Daylan, B.; Kültür, Ş.; Demirci, B.; Demirci, F. Anti-Inflammatory, Analgesic and in Vivo-in Vitro Wound Healing Potential of the Phlomis rigida Labill. Extract. J. Ethnopharmacol. 2021, 266, 113408. [Google Scholar] [CrossRef] [PubMed]
- Veerapur, V.; Palkar, M.; Srinivasa, H.; Kumar, M.S.; Patra, S.; Rao, P.G.M.; Srinivasan, K.K. The Effect of Ethanol Extract of Wrightia tinctoria Bark on Wound Healing in Rats. J. Nat. Remedies 2004, 4, 155–159. [Google Scholar] [CrossRef]
- Yadav, S.; Mishra, A.P.; Kumar, S.; Negi, A.; Asha; Maurya, V.K. Herbal wound healing agents. In Preparation of Phytopharmaceuticals for the Management of Disorders; Elsevier: Amsterdam, The Netherlands, 2021; pp. 169–184. ISBN 978-0-12-820284-5. [Google Scholar]
- Kumawat, R.; Sharma, S.; Vasudeva, N.; Kumar, S. In Vivo Anti-Inflamatory Potential of Various Extracts of Sida tiagii Bhandari. Asian Pac. J. Trop. Biomed. 2012, 2, S947–S952. [Google Scholar] [CrossRef]
- Olayinka, J.N.; Ozolua, R.I.; Akhigbemen, A.M. Phytochemical Screening of Aqueous Leaf Extract of Blighia sapida K.D. Koenig (Sapindaceae) and Its Analgesic Property in Mice. J. Ethnopharmacol. 2021, 273, 113977. [Google Scholar] [CrossRef] [PubMed]
- Reza, M.S.; Jashimuddin, M.; Ahmed, J.; Abeer, M.; Naznin, N.E.; Jafrin, S.; Haque, M.E.; Barek, M.A.; Ud Daula, A.F.M.S. Pharmacological Investigation of Analgesic and Antipyretic Activities of Methanol Extract of the Whole Part of Aeginetia indica. J. Ethnopharmacol. 2021, 271, 113915. [Google Scholar] [CrossRef]
- Tadić, V.; Arsić, I.; Zvezdanović, J.; Zugić, A.; Cvetković, D.; Pavkov, S. The Estimation of the Traditionally Used Yarrow (Achillea millefolium L. Asteraceae) Oil Extracts with Anti-Inflamatory Potential in Topical Application. J. Ethnopharmacol. 2017, 199, 138–148. [Google Scholar] [CrossRef] [PubMed]
- Lampiri, E.; Agrafioti, P.; Levizou, E.; Athanassiou, C.G. Insecticidal Effect of Dittrichia viscosa Lyophilized Epicuticular Material against Four Major Stored-Product Beetle Species on Wheat. Crop Prot. 2020, 132, 105095. [Google Scholar] [CrossRef]
- Mssillou, I.; Agour, A.; Slighoua, M.; Tourabi, M.; Nouioura, G.; Lyoussi, B.; Derwich, E. Phytochemical Characterization, Antioxidant Activity, and in Vitro Investigation of Antimicrobial Potential of Dittrichia viscosa L. Leaf Extracts against Nosocomial Infections. Acta Ecol. Sin. 2021, in press. [Google Scholar] [CrossRef]
- Brahmi-Chendouh, N.; Piccolella, S.; Crescente, G.; Pacifico, F.; Boulekbache, L.; Hamri-Zeghichi, S.; Akkal, S.; Madani, K.; Pacifico, S. A Nutraceutical Extract from Inula viscosa Leaves: UHPLC-HR-MS/MS Based Polyphenol Profile, and Antioxidant and Cytotoxic Activities. J. Food Drug Anal. 2019, 27, 692–702. [Google Scholar] [CrossRef] [PubMed]
- Aćimović, M.; Jeremić, K.; Salaj, N.; Gavarić, N.; Kiprovski, B.; Sikora, V.; Zeremski, T. Marrubium vulgare L.: A Phytochemical and Pharmacological Overview. Molecules 2020, 25, 2898. [Google Scholar] [CrossRef]
- Akbar, S. Marrubium vulgare L. (Lamiaceae). In Handbook of 200 Medicinal Plants: A Comprehensive Review of Their Traditional Medical Uses and Scientific Justifications; Akbar, S., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1137–1145. ISBN 978-3-030-16807-0. [Google Scholar]
- Mssillou, I.; Agour, A.; Hamamouch, N.; Lyoussi, B.; Derwich, E. Chemical Composition and In Vitro Antioxidant and Antimicrobial Activities of Marrubium vulgare L. Sci. World J. 2021, 2021, 7011493. [Google Scholar] [CrossRef] [PubMed]
- Mssillou, I.; Agour, A.; Lyoussi, B.; Derwich, E. Chemical Constituents, In Vitro Antibacterial Properties and Antioxidant Activity of Essential Oils from Marrubium vulgare L. Leaves. Trop. J. Nat. Prod. Res. 2021, 5, 661–667. [Google Scholar] [CrossRef]
- Rezgui, M.; Majdoub, N.; Mabrouk, B.; Baldisserotto, A.; Bino, A.; Ben Kaab, L.B.; Manfredini, S. Antioxidant and Antifungal Activities of Marrubiin, Extracts and Essential Oil from Marrubium vulgare L. against Pathogenic Dermatophyte Strains. J. Mycol. Médicale 2020, 30, 100927. [Google Scholar] [CrossRef]
- Boussouf, L.; Boutennoune, H.; Kebieche, M.; Adjeroud, N.; Al-Qaoud, K.; Madani, K. Anti-Inflammatory, Analgesic and Antioxidant Effects of Phenolic Compound from Algerian Mentha rotundifolia L. Leaves on Experimental Animals. S. Afr. J. Bot. 2017, 113, 77–83. [Google Scholar] [CrossRef]
- Song, Y.; Zeng, R.; Hu, L.; Maffucci, K.G.; Ren, X.; Qu, Y. In Vivo Wound Healing and in Vitro Antioxidant Activities of Bletilla striata Phenolic Extracts. Biomed. Pharmacother. 2017, 93, 451–461. [Google Scholar] [CrossRef]
- Grauso, L.; Cesarano, G.; Zotti, M.; Ranesi, M.; Sun, W.; Bonanomi, G.; Lanzotti, V. Exploring Dittrichia viscosa (L.) Greuter Phytochemical Diversity to Explain Its Antimicrobial, Nematicidal and Insecticidal Activity. Phytochem. Rev. 2020, 19, 659–689. [Google Scholar] [CrossRef]
- Ouahchia, C.; Hamaidi-Chergui, F.; Cherif, H.-S.; Hemma, R.; Negab, I.; Azine, K.; Saidi, F. Total Phenolic Content, Anti-Inflammatory, Analgesic, and Antipyretic Activities of Some Extracts of Inula viscosa (L.) from Algeria. Phytothérapie 2020, 18, 81–91. [Google Scholar] [CrossRef]
- Martin, J.; Alarcon De La Lastra, C.; Marhuenda, E.; Jimenez, B. Study of the analgesic and antipyretic activity of Dittrichia viscosa (L.) W. Greuter [Asteraceae]. Plantes Med. Phytother. Fr. 1987, 21, 285–291. [Google Scholar]
- De Souza, M.M.; de Jesus, R.A.P.; Cechinel-Filho, V.; Schlemper, V. Analgesic Profile of Hydroalcoholic Extract Obtained from Marrubium vulgare. Phytomedicine 1998, 5, 103–107. [Google Scholar] [CrossRef]
- Meyre-Silva, C.; Yunes, R.A.; Schlemper, V.; Campos-Buzzi, F.; Cechinel-Filho, V. Analgesic Potential of Marrubiin Derivatives, a Bioactive Diterpene Present in Marrubium vulgare (Lamiaceae). Il Farm. 2005, 60, 321–326. [Google Scholar] [CrossRef]
- Seddighfar, M.; Mirghazanfari, S.M.; Dadpay, M. Analgesic and Anti-Inflammatory Properties of Hydroalcoholic Extracts of Malva sylvestris, Carum carvi or Medicago sativa, and Their Combination in a Rat Model. J. Integr. Med. 2020, 18, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Hua, Y.; Wang, Y.; Gu, W.; Zhou, W.; Duan, J.; Jiang, H.; Chen, T.; Tang, Y. Evaluation of the Anti-Inflammatory and Analgesic Properties of Individual and Combined Extracts from Commiphora myrrha, and Boswellia carterii. J. Ethnopharmacol. 2012, 139, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Al-Ostoot, F.H.; Zabiulla; Grisha, S.; Mohammed, Y.H.E.; Vivek, H.K.; Ara Khanum, S. Molecular Docking and Synthesis of Caffeic Acid Analogous and Its Anti-Inflammatory, Analgesic and Ulcerogenic Studies. Bioorg. Med. Chem. Lett. 2021, 33, 127743. [Google Scholar] [CrossRef]
- Filho, A.W.; Filho, V.C.; Olinger, L.; de Souza, M.M. Quercetin: Further Investigation of Its Antinociceptive Properties and Mechanisms of Action. Arch. Pharm. Res. 2008, 31, 713–721. [Google Scholar] [CrossRef]
- Krogh, R.; Yunes, R.A.; Andricopulo, A.D. Structure–Activity Relationships for the Analgesic Activity of Gallic Acid Derivatives. Il Farm. 2000, 55, 730–735. [Google Scholar] [CrossRef]
- Sakiyama, Y.; Sujaku, T.; Furuta, A. A Novel Automated Method for Measuring the Effect of Analgesics on Formalin-Evoked Licking Behavior in Rats. J. Neurosci. Methods 2008, 167, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Adzu, B.; Amos, S.; Kapu, S.D.; Gamaniel, K.S. Anti-Inflammatory and Anti-Nociceptive Effects of Sphaeranthus senegalensis. J. Ethnopharmacol. 2003, 84, 169–173. [Google Scholar] [CrossRef]
- Deliorman Orhan, D.; Hartevioğlu, A.; Küpeli, E.; Yesilada, E. In Vivo Anti-Inflammatory and Antinociceptive Activity of the Crude Extract and Fractions from Rosa canina L. Fruits. J. Ethnopharmacol. 2007, 112, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Wang, X.; Gui, X.; Chen, L.; Huang, B. Natural Flavonoids as Promising Analgesic Candidates: A Systematic Review. Chem. Biodivers. 2016, 13, 1427–1440. [Google Scholar] [CrossRef] [PubMed]
- Tekulu, G.H.; Hiluf, T.; Brhanu, H.; Araya, E.M.; Bitew, H.; Haile, T. Anti-Inflammatory and Anti-Nociceptive Property of Capparis tomentosa Lam. Root Extracts. J. Ethnopharmacol. 2020, 253, 112654. [Google Scholar] [CrossRef]
- Nwidu, L.L.; Airhihen, B.; Ahmadu, A. Anti-Inflammatory and Anti-Nociceptive Activities of Stem-Bark Extracts and Fractions of Carpolobia lutea (Polygalaceae). J. Basic Clin. Pharm. 2016, 8, 25–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murthuza, S.; Manjunatha, B.K. In Vitro and in Vivo Evaluation of Anti-Inflammatory Potency of Mesua ferrea, Saraca Asoca, Viscum Album & Anthocephalus cadamba in Murine Macrophages Raw 264.7 Cell Lines and Wistar Albino Rats. Beni-Suef Univ. J. Basic Appl. Sci. 2018, 7, 719–723. [Google Scholar] [CrossRef]
- Adnan, M.; Nazim Uddin Chy, M.; Mostafa Kamal, A.T.M.; Barlow, J.W.; Faruque, M.O.; Yang, X.; Uddin, S.B. Evaluation of Anti-Nociceptive and Anti-Inflammatory Activities of the Methanol Extract of Holigarna caustica (Dennst.) Oken Leaves. J. Ethnopharmacol. 2019, 236, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Máñez, S.; Hernández, V.; Giner, R.-M.; Ríos, J.-L.; Recio, M.d.C. Inhibition of Pro-Inflammatory Enzymes by Inuviscolide, a Sesquiterpene Lactone from Inula Viscosa. Fitoterapia 2007, 78, 329–331. [Google Scholar] [CrossRef]
- Sahpaz, S.; Garbacki, N.; Tits, M.; Bailleul, F. Isolation and Pharmacological Activity of Phenylpropanoid Esters from Marrubium vulgare. J. Ethnopharmacol. 2002, 79, 389–392. [Google Scholar] [CrossRef]
- Ueda, H.; Yamazaki, C.; Yamazaki, M. A Hydroxyl Group of Flavonoids Affects Oral Anti-Inflammatory Activity and Inhibition of Systemic Tumor Necrosis Factor-Alpha Production. Biosci. Biotechnol. Biochem. 2004, 68, 119–125. [Google Scholar] [CrossRef] [Green Version]
- Butenko, I.G.; Gladtchenko, S.V.; Galushko, S.V. Anti-Inflammatory Properties and Inhibition of Leukotriene C4 Biosynthesis in Vitro by Flavonoid Baicalein from Scutellaria baicalensis Georgy Roots. Agents Actions 1993, 39, C49–C51. [Google Scholar] [CrossRef]
- Crovetti, G.; Martinelli, G.; Issi, M.; Barone, M.; Guizzardi, M.; Campanati, B.; Moroni, M.; Carabelli, A. Platelet Gel for Healing Cutaneous Chronic Wounds. Transfus. Apher. Sci. 2004, 30, 145–151. [Google Scholar] [CrossRef]
- Werner, S.; Krieg, T.; Smola, H. Keratinocyte–Fibroblast Interactions in Wound Healing. J. Investig. Dermatol. 2007, 127, 998–1008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, B.; Vijayakumar, M.; Govindarajan, R.; Pushpangadan, P. Ethnopharmacological Approaches to Wound Healing—Exploring Medicinal Plants of India. J. Ethnopharmacol. 2007, 114, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Dev, S.K.; Choudhury, P.K.; Srivastava, R.; Sharma, M. Antimicrobial, Anti-Inflammatory and Wound Healing Activity of Polyherbal Formulation. Biomed. Pharmacother. 2019, 111, 555–567. [Google Scholar] [CrossRef] [PubMed]
- Talekar, Y.P.; Apte, K.G.; Paygude, S.V.; Tondare, P.R.; Parab, P.B. Studies on Wound Healing Potential of Polyherbal Formulation Using in Vitro and in Vivo Assays. J. Ayurveda Integr. Med. 2017, 8, 73–81. [Google Scholar] [CrossRef]
- Amri, B.; Martino, E.; Vitulo, F.; Corana, F.; Kaâb, L.B.-B.; Rui, M.; Rossi, D.; Mori, M.; Rossi, S.; Collina, S. Marrubium vulgare L. Leave Extract: Phytochemical Composition, Antioxidant and Wound Healing Properties. Molecules 2017, 22, 1851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhimi, W.; Hlel, R.; Ben Salem, I.; Boulila, A.; Rejeb, A.; Saidi, M. Dittrichia Viscosa L. Ethanolic Extract Based Ointment with Antiradical, Antioxidant, and Healing Wound Activities. Available online: https://www.hindawi.com/journals/bmri/2019/4081253/ (accessed on 11 October 2020).
- Gomathi, K.; Gopinath, D.; Rafiuddin Ahmed, M.; Jayakumar, R. Quercetin Incorporated Collagen Matrices for Dermal Wound Healing Processes in Rat. Biomaterials 2003, 24, 2767–2772. [Google Scholar] [CrossRef]
- Ghaisas, M.M.; Kshirsagar, S.B.; Sahane, R.S. Evaluation of Wound Healing Activity of Ferulic Acid in Diabetic Rats. Int. Wound J. 2014, 11, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, M.T.B.; Araújo-Filho, H.G.; Barreto, A.S.; Quintans-Júnior, L.J.; Quintans, J.S.S.; Barreto, R.S.S. Wound Healing Properties of Flavonoids: A Systematic Review Highlighting the Mechanisms of Action. Phytomedicine 2021, 90, 153636. [Google Scholar] [CrossRef]
- Elshamy, A.I.; Ammar, N.M.; Hassan, H.A.; El-Kashak, W.A.; Al-Rejaie, S.S.; Abd-ElGawad, A.M.; Farrag, A.-R.H. Topical Wound Healing Activity of Myricetin Isolated from Tecomaria capensis v. Aurea. Molecules 2020, 25, 4870. [Google Scholar] [CrossRef]
- Publication Office of the European Union. Council Directive 86/609/EEC of 24 November 1986 on the Approximation of Laws, Regulations and Administrative Provisions of the Member States Regarding the Protection of Animals Used for Experimental and Other Scientific Purposes, CELEX1. Available online: http://op.europa.eu/en/publication-detail/-/publication/cc3a8ccb-5a30-4b6e-8da8-b13348caeb0c/language-en (accessed on 28 May 2021).
- Karbab, A.; Mokhnache, K.; Ouhida, S.; Charef, N.; Djabi, F.; Arrar, L.; Mubarak, M.S. Anti-Inflammatory, Analgesic Activity, and Toxicity of Pituranthos scoparius Stem Extract: An Ethnopharmacological Study in Rat and Mouse Models. J. Ethnopharmacol. 2020, 258, 112936. [Google Scholar] [CrossRef]
- Winter, C.A.; Risley, E.A.; Nuss, G.W. Carrageenin-Induced Edema in Hind Paw of the Rat as an Assay for Antiiflammatory Drugs. Proc. Soc. Exp. Biol. Med. Soc. Exp. Biol. Med. 1962, 111, 544–547. [Google Scholar] [CrossRef] [PubMed]
- Heidari, M.; Bahramsoltani, R.; Abdolghaffari, A.H.; Rahimi, R.; Esfandyari, M.; Baeeri, M.; Hassanzadeh, G.; Abdollahi, M.; Farzaei, M.H. Efficacy of Topical Application of Standardized Extract of Tragopogon gaminifolius in the Healing Process of Experimental Burn Wounds. J. Tradit. Complement. Med. 2019, 9, 54–59. [Google Scholar] [CrossRef] [PubMed]
Phenolic Compounds | Formula | RT (min) |
---|---|---|
Gallic acid | C7H6O5 | 4.69 |
Caffeic acid | C9H8O4 | 7.777 |
Rosmarinic acid | C18H16O8 | 8.300 |
Ferulic acid | C10H10O4 | 8.40 |
Rutin | C27H30O16 | 9.027 |
Quercetin | C15H10O7 | 9.403 |
Diameter in cm | |||||
---|---|---|---|---|---|
Treatment | 0 h | 3 h | 4 h | 5 h | 6 h |
NaCl 0.9% | 2.16 ± 0.04 | 2.92 ± 0.07 a | 3.04 ± 0.11 a | 2.82 ± 0.06 a | 2.74 ± 0.04 a |
D. viscosa | 2.22 ± 0.14 | 2.58 ± 0.10 b | 2.82 ± 0.10 a,b | 2.62 ± 0.14 a,b | 2.36 ± 0.07 b |
M. vulgare | 2.26 ± 0.12 | 2.54 ± 0.08 b | 2.68 ± 0.10 b | 2.50 ± 0.12 b | 2.32 ± 0.10 b |
Mixture | 2.02 ± 0.03 | 2.44 ± 0.08 b,c | 2.66 ± 0.15 b | 2.56 ± 0.08 b | 2.18 ± 0.09 b |
Indomethacin | 2.28 ± 0.05 | 2.68 ± 0.05 b,d | 2.74 ± 0.04 b | 2.54 ± 0.07 b | 2.30 ± 0.06 b |
Wound Size in cm2 | ||||
---|---|---|---|---|
Treatments | Day 1 | Day 7 | Day 14 | Day 21 |
D. viscosa (10%) | 1.73 ± 0.16 a | 1.43 ± 0.4 a | 0.31 ± 0.08 b | 0.01 ± 0.005 c |
M. vulgare (10%) | 2.58 ± 0.48 a | 1.91 ± 0.48 a | 0.39 ± 0.2 b | 0.07 ± 0.16 c |
Mixture (10%) | 2.31 ± 0.4 a | 1.51 ± 0.25 a | 0.3 ± 0.16 b | 0.05 ± 0.09 c |
Madecassol (1%) | 1.45 ± 0.55 a | 1.08 ± 0.19 a | 0.57 ± 0.17 b | 0.15 ± 0.1 c |
Negative control | 1.85 ± 0.6 a | 1.34 ± 0.43 a | 0.68 ± 0.12 b | 0.45 ± 0.08 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mssillou, I.; Agour, A.; Slighoua, M.; Chebaibi, M.; Amrati, F.E.-Z.; Alshawwa, S.Z.; kamaly, O.A.; El Moussaoui, A.; Lyoussi, B.; Derwich, E. Ointment-Based Combination of Dittrichia viscosa L. and Marrubium vulgare L. Accelerate Burn Wound Healing. Pharmaceuticals 2022, 15, 289. https://doi.org/10.3390/ph15030289
Mssillou I, Agour A, Slighoua M, Chebaibi M, Amrati FE-Z, Alshawwa SZ, kamaly OA, El Moussaoui A, Lyoussi B, Derwich E. Ointment-Based Combination of Dittrichia viscosa L. and Marrubium vulgare L. Accelerate Burn Wound Healing. Pharmaceuticals. 2022; 15(3):289. https://doi.org/10.3390/ph15030289
Chicago/Turabian StyleMssillou, Ibrahim, Abdelkrim Agour, Meryem Slighoua, Mohamed Chebaibi, Fatima Ez-Zahra Amrati, Samar Zuhair Alshawwa, Omkulthom Al kamaly, Abdelfattah El Moussaoui, Badiaa Lyoussi, and Elhoussine Derwich. 2022. "Ointment-Based Combination of Dittrichia viscosa L. and Marrubium vulgare L. Accelerate Burn Wound Healing" Pharmaceuticals 15, no. 3: 289. https://doi.org/10.3390/ph15030289
APA StyleMssillou, I., Agour, A., Slighoua, M., Chebaibi, M., Amrati, F. E. -Z., Alshawwa, S. Z., kamaly, O. A., El Moussaoui, A., Lyoussi, B., & Derwich, E. (2022). Ointment-Based Combination of Dittrichia viscosa L. and Marrubium vulgare L. Accelerate Burn Wound Healing. Pharmaceuticals, 15(3), 289. https://doi.org/10.3390/ph15030289