In Vivo Imaging of Rat Vascularity with FDG-Labeled Erythrocytes
Abstract
:1. Introduction
2. Results
2.1. Detecting Changes in Total Rat Cerebrovascular Volume after Pharmacological Vasodilation
2.2. Detecting Changes in Rat LV Myocardial Volume after Pharmacological Vasodilation
2.3. Imaging LV Intramyocardial Vascularity with FDG RBC PET in a Rat Myocardial Infarction Model
2.4. Detecting Differences in Pharmacologically Induced Vasodilation in the Total Rat LV Intramyocardial Vasculature between Normal and Diabetic Rats
3. Discussion
4. Materials and Methods
4.1. Myocardial and Cerebral Vascular Value Measurement
4.2. FDG-Labeled RBC Preparation
4.3. Small Animal PET/CT Imaging
4.4. PET Image Analysis
4.5. Myocardial Infarction Size Measurement
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taqueti, V.R.; Di Carli, M.F. Coronary Microvascular Disease Pathogenic Mechanisms and Therapeutic Options JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2018, 72, 2625–2641. [Google Scholar] [PubMed]
- Berry, C.; Sidik, N.; Pereira, A.C.; Ford, T.J.; Touyz, R.M.; Kaski, J.C.; Hainsworth, A.H. Small-Vessel Disease in the Heart and Brain: Current Knowledge, Unmet Therapeutic Need, and Future Directions. J. Am. Heart Assoc. 2019, 8, e011104. [Google Scholar] [CrossRef]
- Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; et al. Heart Disease and Stroke Statistics—2019 Update: A Report From the American Heart Association. Circulation 2019, 139, e56–e528. [Google Scholar] [CrossRef]
- Reis, S.E.; Holubkov, R.; Conrad Smith, A.J.; Kelsey, S.F.; Sharaf, B.L.; Reichek, N.; Rogers, W.J.; Merz, C.N.; Sopko, G.; Pepine, C.J. WISE Investigators. Coronary microvascular dysfunction is highly prevalent in women with chest pain in the absence of coronary artery disease: Results from the NHLBI WISE study. Am. Heart J. 2001, 141, 735–741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wardlaw, J.M.; Smith, E.E.; Biessels, G.J.; Cordonnier, C.; Fazekas, F.; Frayne, R.; Lindley, R.I.; O’Brien, J.T.; Barkhof, F.; Benavente, O.R.; et al. Standards for Reporting Vascular changes on neuroimaging (STRIVE v1). Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013, 12, 822–838. [Google Scholar] [CrossRef] [Green Version]
- Nowroozpoor, A.; Gutterman, D.; Safdar, B. Is microvascular dysfunction a systemic disorder with common biomarkers found in the heart, brain, and kidneys?—A scoping review. Microvasc. Res. 2021, 134, 104123. [Google Scholar] [CrossRef] [PubMed]
- Tonelli, M.; Wiebe, N.; Culleton, B.; House, A.; Rabbat, C.; Fok, M.; McAlister, F.; Garg, A.X. Chronic kidney disease and mortality risk: A systematic review. J. Am. Soc. Nephrol. 2006, 17, 2034–2047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, H.; Demir, O.M.; Khan, F.; Ryan, M.; Ellis, H.; Mills, M.T.; Chiribiri, A.; Webb, A.; Perera, D. Physiological Stratification of Patients With Angina Due to Coronary Microvascular Dysfunction. J. Am. Coll. Cardiol. 2020, 75, 2538–2549. [Google Scholar] [CrossRef] [PubMed]
- Ford, T.J.; Rocchiccioli, P.; Good, R.; McEntegart, M.; Eteiba, H.; Watkins, S.; Shaukat, A.; Lindsay, M.; Robertson, K.; Hood, S.; et al. Systemic microvascular dysfunction in microvascular and vasospastic angina. Eur. Heart J. 2018, 39, 4086–4097. [Google Scholar] [CrossRef] [Green Version]
- Sinha, A.; Rahman, H.; Perera, D. Ischaemia without obstructive coronary artery disease: The pathophysiology of microvascular dysfunction. Curr. Opin. Cardiol. 2020, 6, 720–725. [Google Scholar] [CrossRef]
- Sucato, V.; Novo, G.; Saladino, A.; Rubino, M.; Caronna, N.; Luparelli, M.; D’Agostino, A.; Novo, S.; Evola, S.; Galassi, A.R. Ischemia in patients with no obstructive coronary artery disease: Classification, diagnosis and treatment of coronary microvascular dysfunction. Coron. Artery Dis. 2020, 31, 472–476. [Google Scholar] [CrossRef] [PubMed]
- Fearon, W.F.; Yuhei, K. Invasive Assessment of the Coronary Microvasculature: The Index of Microcirculatory Resistance. Circ. Cardiovasc. Interv. 2017, 10, e005361. [Google Scholar] [CrossRef] [PubMed]
- Berry, C.; Corcoran, D.; Hennigan, B.; Watkins, S.; Layland, J.; Oldroyd, K.G. Fractional flow reserve-guided management in stable coronary disease and acute myocardial infarction: Recent developments. Eur. Heart J. 2015, 36, 3155–3164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathew, R.C.; Bourque, J.M.; Salerno, M.; Kramer, C.M. Cardiovascular Imaging Techniques to Assess Microvascular Dysfunction. JACC Cardiovasc. Imaging 2020, 13, 1577–1590. [Google Scholar] [CrossRef] [PubMed]
- Firschke, C.; Lindner, J.R.; Wei, K.; Goodman, N.C.; Skyba, D.M.; Kaul, S. Myocardial perfusion imaging in the setting of coronary artery stenosis and acute myocardial infarction using venous injection of a second-generation echocardiographic contrast agent. Circulation 1997, 96, 959–967. [Google Scholar]
- Porter, T.R.; Xie, F.; Kricsfeld, D.; Armbruster, R.W. Improved myocardial contrast with second harmonic transient ultrasound response imaging in humans using intravenous perfluorocarbon-exposed sonicated dextrose albumin. J. Am. Coll Cardiol. 1996, 27, 1497–1501. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Kim, H.; Han, H.; Lee, M.; Lee, S.; Yoo, H.; Chang, J.H.; Kim, H. Microbubbles used for contrast enhanced ultrasound and theragnosis. Biomed. Eng. Lett. 2017, 7, 59–69. [Google Scholar] [CrossRef]
- Rossi, A.; Wragg, A.; Klotz, E.; Pirro, F.; Moon, J.C.; Nieman, K.; Pugliese, F. Dynamic Computed Tomography Myocardial Perfusion Imaging: Comparison of Clinical Analysis Methods for the Detection of Vessel-Specific Ischemia. Circ. Cardiovasc. Imaging 2017, 10, e005505. [Google Scholar] [CrossRef] [Green Version]
- Morton, G.; Chiribiri, A.; Ishida, M.; Hussain, S.T.; Schuster, A.; Indermuehle, A.; Perera, D.; Knuuti, J.; Baker, S.; Hedström, E.; et al. Quantification of absolute myocardial perfusion in patients with coronary artery disease: Comparison between cardiovascular magnetic resonance and positron emission tomography. J. Am. Coll. Cardiol. 2012, 60, 1546–1555. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, I.S.; Hedgire, S.S.; Li, W.; Ganguli, S.; Prabhakar, A.M. Blood pool contrast agents for venous magnetic resonance imaging. Cardiovasc. Diagn. Ther. 2016, 6, 508–518. [Google Scholar] [CrossRef] [Green Version]
- Alsaedi, A.; Thomas, D.; Bisdas, S.; Golay, X. Overview and Critical Appraisal of Artereial Spin labelling technique in Brain Perfusion Imaging. Contrast. Media Mol. Imaging 2018, 8, e5360376. [Google Scholar]
- Maddahi, J.; Packard, R.R. Cardiac PET perfusion tracers: Current status and future directions. Semin. Nucl. Med. 2014, 44, 333–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Driessen, R.S.; Raijmakers, P.G.; Stuijfzand, W.J.; Knaapen, P. Myocardial perfusion imaging with PET. Int. J. Cardiovasc. Imaging 2017, 33, 1021–1031. [Google Scholar] [CrossRef] [Green Version]
- Feher, A.; Srivastava, A.; Quail, M.A.; Boutagy, N.E.; Khanna, P.; Wilson, L.; Miller, E.J.; Liu, Y.H.; Lee, F.; Sinusas, A.J. Serial Assessment of Coronary Flow Reserve by Rubidium-82 Positron Emission Tomography Predicts Mortality in Heart Transplant Recipients. JACC Cardiovasc. Imaging 2020, 13, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Munk, O.L.; Bass, L.; Feng, H.; Keiding, S. Determination of regional flow by use of intravascular PET tracers: Microvascular theory and experimental validation for pig livers. J. Nucl. Med. 2003, 44, 1862–1870. [Google Scholar]
- Salerno, M.; Beller, G.A. Noninvasive Assessment of Myocardial Perfusion. Circ. Cardiovasc. Imaging 2009, 2, 412–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maddahi, J.; Lazewatsky, J.; Udelson, J.E.; Berman, D.S.; Beanlands, R.S.B.; Heller, G.V.; Bateman, T.M.; Knuuti, J.; Orlandi, C. Phase-III Clinical Trial of Fluorine-18 Flurpiridaz Positron Emission Tomography for Evaluation of Coronary Artery Disease. J. Am. Coll. Cardiol. 2020, 76, 391–401. [Google Scholar] [CrossRef]
- Choi, J.W.; Budzevich, M.; Wang, S.; Gage, K.; Estrella, V.; Gillies, R.J. In vivo positron emission tomographic blood pool imaging in an immunodeficient mouse model using 18F-fluorodeoxyglucose labeled human erythrocytes. PLoS ONE 2019, 14, e0211012. [Google Scholar] [CrossRef]
- Barrett, E.J.; Liu, Z.; Khamaisi, M.; King, G.L.; Klein, R.; Klein, B.E.K.; Hughes, T.M.; Craft, S.; Freedman, B.I.; Bowden, D.W.; et al. Diabetic Microvascular Disease: An Endocrine Society Scientific Statement. J. Clin. Endocrinol. Metab. 2017, 102, 4343–4410. [Google Scholar] [CrossRef]
- Furman, B.L. Streptozotocin-Induced Diabetic Models in Mice and Rats. Curr. Protoc. Pharmacol. 2015, 70, 5.47.1–5.47.20. [Google Scholar] [CrossRef]
- Feher, A.; Sinusas, A.J. Quantitative Assessent of Coronary Microvascular Function. Circ. Cardiovas. Imaging 2017, 10, e006427. [Google Scholar]
- Herron, T.; Gossman, W. 111 Indium White Blood Cell Scan. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK554556/ (accessed on 30 January 2022).
- Surti, S. Update on time-of-flight PET imaging. J. Nucl. Med. 2015, 56, 98–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mullani, N.A.; Herbst, R.S.; O’Neil, R.G.; Gould, K.L.; Barron, B.J.; Abbruzzese, J.L. Tumor blood flow measured by PET dynamic imaging of first-pass 18F-FDG uptake: A comparison with 15O-labeled water-measured blood flow. J. Nucl. Med. 2008, 49, 517–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bohl, S.; Medway, D.J.; Schulz-Menger, J.; Schneider, J.E.; Neubauer, S.; Lygate, C.A. Refined approach for quantification of in vivo ischemia-reperfusion injury in the mouse heart. Am. J. Physiol. Heart Circ. Physiol. 2009, 297, H2054–H2058. [Google Scholar] [CrossRef] [PubMed]
- Redfors, B.; Shao, Y.; Omerovic, E. Myocardial infarct size and area at risk assessment in mice. Exp. Clinical. Cardiol. 2012, 17, 268–272. [Google Scholar]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
Rat | FDG% | RBC% | TTC% |
---|---|---|---|
1 | 24.38% | 37.19% | 25.97% |
2 | 29.19% | 29.49% | 26.28% |
3 | 25.46% | 32.85% | 23.58% |
4 | 29.26% | 29.81% | 21.35% |
5 | 27.46% | 35.39% | 31.90% |
6 | 25.62% | 38.64% | 27.04% |
Mean ± S.E. | 26.93 ± 0.83% | 33.89 ± 1.56% | 26.02 ± 1.45% |
Control Rat | LV Stress Activity | LV Rest Activity | Stress–Rest Difference | Increased Ratio |
---|---|---|---|---|
1 | 2496.72 | 2008.44 | 635.04 | 31.62 |
2 | 14,927.50 | 9340.60 | 6061.95 | 32.49 |
3 | 12,271.33 | 9568.55 | 3108.66 | 41.00 |
4 | 20,315.93 | 14,905.81 | 5483.7 | 36.79 |
5 | 46,501.94 | 34,927.14 | 11,760.07 | 33.70 |
Mean (± S.E.) | 35.12 ± 1.91 |
Diabetic Rat | LV Stress Activity | LV Rest Activity | Stress–Rest Difference | Increased Ratio |
---|---|---|---|---|
1 | 3386.6 | 3042.22 | 410.54 | 13.40 |
2 | 14,225.28 | 14,026.88 | 2195.59 | 15.56 |
3 | 18,781.97 | 15,579.75 | 3796.07 | 24.37 |
4 | 6124.33 | 5829.02 | 1084.05 | 18.59 |
5 | 7063.27 | 5778.81 | 1284.46 | 22.20 |
Mean (±S.E.) | 18.82 ± 2.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Budzevich, M.; Abdalah, M.A.; Balagurunathan, Y.; Choi, J.W. In Vivo Imaging of Rat Vascularity with FDG-Labeled Erythrocytes. Pharmaceuticals 2022, 15, 292. https://doi.org/10.3390/ph15030292
Wang S, Budzevich M, Abdalah MA, Balagurunathan Y, Choi JW. In Vivo Imaging of Rat Vascularity with FDG-Labeled Erythrocytes. Pharmaceuticals. 2022; 15(3):292. https://doi.org/10.3390/ph15030292
Chicago/Turabian StyleWang, Shaowei, Mikalai Budzevich, Mahmoud A. Abdalah, Yoganand Balagurunathan, and Jung W. Choi. 2022. "In Vivo Imaging of Rat Vascularity with FDG-Labeled Erythrocytes" Pharmaceuticals 15, no. 3: 292. https://doi.org/10.3390/ph15030292
APA StyleWang, S., Budzevich, M., Abdalah, M. A., Balagurunathan, Y., & Choi, J. W. (2022). In Vivo Imaging of Rat Vascularity with FDG-Labeled Erythrocytes. Pharmaceuticals, 15(3), 292. https://doi.org/10.3390/ph15030292