Protective and Therapeutic Efficacy of Hesperidin versus Cisplatin against Ehrlich Ascites Carcinoma-Induced Renal Damage in Mice
Abstract
:1. Introduction
2. Results
2.1. Hesperidin and/or Cisplatin Improved the General Health Condition of EAC-Bearing Mice
2.2. Hesperidin and/or Cisplatin Increased MST and ILS% in EAC-Bearing Mice
2.3. Hesperidin and/or Cisplatin Alleviated Tumor Growth Responses in EAC-Bearing Mice
2.4. Hesperidin and/or Cisplatin Decreased Serum CEA Level in EAC-Bearing Mice
2.5. Hesperidin and/or Cisplatin Modulated the Hematological Changes in EAC-Bearing Mice
2.6. Hesperidin and/or Cisplatin Decreased Serum Urea and Creatinine Levels of EAC-Bearing Mice
2.7. Hesperidin and/or Cisplatin Improved the Renal Oxidant/Antioxidant Status in EAC-Bearing Mice
2.8. Hesperidin and/or Cisplatin Improved the Renal Histoarchitecture in EAC-Bearing Mice
2.9. Hesperidin and/or Cisplatin Upregulated Ki-67 and Downregulated Caspase-3 Proteins Expressions of the Neoplastic Cells in Renal Capsule of EAC-Bearing Mice
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Experimental Animals
4.3. Ehrlich Ascites Carcinoma (EAC) Cells and Tumor Inoculation
4.4. Experimental Design
4.5. Samples Collection and Preparation
4.6. Investigation of Survival Time
4.7. Investigation of Tumor Growth
4.8. Assessment of Serum Carcinoembryonic Antigen Level
4.9. Investigation of Hematological Indices
4.10. Assessment of Serum Renal Function
4.11. Assessment of Renal Oxidant/Antioxidant Biomarkers
4.12. Histopathological Examination of Renal Tissue
4.13. Immunohistochemical Examination of Renal Tissue
4.14. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mishra, S.; Tamta, A.K.; Sarikhani, M.; Desingu, P.A.; Kizkekra, S.M.; Pandit, A.S.; Kumar, S.; Khan, D.; Raghavan, S.C.; Sundaresan, N.R. Subcutaneous Ehrlich Ascites Carcinoma mice model for studying cancer-induced cardiomyopathy. Sci. Rep. 2018, 8, 5599. [Google Scholar] [CrossRef]
- Ozaslan, M.; Karagoz, I.D.; Kilic, I.H.; Guldur, M.E. Ehrlich ascites carcinoma. Afr. J. Biotechnol. 2011, 10, 2375–2378. [Google Scholar]
- Kainsa, S.; Kumar, P.; Rani, P. Medicinal plants of Asian origin having anticancer potential: Short review. Asian J. Biomed. Pharm. Sci. 2012, 2, 1–7. [Google Scholar]
- Aldossary, S.A. Review on pharmacology of cisplatin: Clinical use, toxicity and mechanism of resistance of cisplatin. Biomed. Pharmacol. J. 2019, 12, 7–15. [Google Scholar] [CrossRef]
- Barabas, K.; Milner, R.; Lurie, D.; Adin, C. Cisplatin: A review of toxicities and therapeutic applications. Vet. Comp. Oncol. 2008, 6, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Steward, W.P.; Brown, K. Cancer chemoprevention: A rapidly evolving field. Br. J. Cancer 2013, 109, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Greenlee, H.; Neugut, A.I.; Falci, L.; Hillyer, G.C.; Buono, D. Association between complementary and alternative medicine use and breast cancer chemotherapy initiation: The Breast Cancer Quality of Care (BQUAL) study. JAMA Oncol. 2016, 2, 1170–1176. [Google Scholar] [CrossRef]
- Addi, M.; Elbouzidi, A.; Abid, M.; Tungmunnithum, D.; Elamrani, A.; Hano, C. An Overview of Bioactive Flavonoids from Citrus Fruits. Appl. Sci. 2022, 12, 29. [Google Scholar] [CrossRef]
- Pari, L.; Karthikeyan, A.; Karthika, P.; Rathinam, A. Protective effects of hesperidin on oxidative stress, dyslipidaemia and histological changes in iron-induced hepatic and renal toxicity in rats. Toxicol. Rep. 2015, 2, 46–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barreca, D.; Gattuso, G.; Bellocco, E.; Calderaro, A.; Trombetta, D.; Smeriglio, A.; Lagana, G.; Daglia, M.; Meneghini, S.; Nabavi, S.M. Flavanones: Citrus phytochemical with health-promoting properties. Biofactors 2017, 43, 495–506. [Google Scholar] [CrossRef]
- Li, C.; Schluesener, H. Health-promoting effects of the citrus flavanone hesperidin. Crit. Rev. Food Sci. Nutr. 2017, 57, 613–631. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, V.; Tuli, H.S.; Thakral, F.; Singhal, P.; Aggarwal, D.; Srivastava, S.; Pandey, A.; Sak, K.; Varol, M.; Khan, M.A.; et al. Molecular mechanisms of action of hesperidin in cancer: Recent trends and advancements. Exp. Biol. Med. 2020, 245, 486–497. [Google Scholar] [CrossRef] [Green Version]
- Nagai, H.; Kim, Y.H. Cancer prevention from the perspective of global cancer burden patterns. J. Thorac. Dis. 2017, 9, 448–451. [Google Scholar] [CrossRef] [PubMed]
- Nurgalieva, Z.; Liu, C.C.; Du, X.L. Chemotherapy use and risk of bone marrow suppression in a large population-based cohort of older women with breast and ovarian cancer. Med. Oncol. 2011, 28, 716–725. [Google Scholar] [CrossRef] [PubMed]
- Cragg, G.M.; Pezzuto, J.M. Natural Products as a Vital Source for the Discovery of Cancer Chemotherapeutic and Chemopreventive Agents. Med. Princ. Pract. 2016, 25, 41–59. [Google Scholar] [CrossRef] [PubMed]
- Donia, T.I.K.; Gerges, M.N.; Mohamed, T.M. Amelioration effect of Egyptian sweet orange hesperidin on Ehrlich ascites carcinoma (EAC) bearing mice. Chem. Biol. Interact. 2018, 285, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Hashem, M.A.; Shoeeb, S.B.A.; Abd-Elhakim, Y.M.; Mohamed, W.A.M. The antitumor activity of Arthrospira platensis and/or cisplatin in a murine model of Ehrlich ascites carcinoma with hematinic and hepato-renal protective action. J. Funct. Foods 2020, 66, 103831. [Google Scholar] [CrossRef]
- Bramswig, K.H.; Poettler, M.; Unseld, M.; Wrba, F.; Uhrin, P.; Zimmermann, W.; Zielinski, C.C.; Prager, G.W. Soluble carcinoembryonic antigen activates endothelial cells and tumor angiogenesis. Cancer Res. 2013, 73, 6584–6596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abd Eldaim, M.A.; Tousson, E.; El Sayed, I.E.T.; Abd Elmaksoud, A.Z.; Ahmed, A.A.S. Ameliorative effects of 9-diaminoacridine derivative against Ehrlich ascites carcinoma-induced hepatorenal injury in mice. Environ. Sci. Pollut. Res. Int. 2021, 28, 21835–21850. [Google Scholar] [CrossRef] [PubMed]
- Cavazzoni, E.; Bugiantella, W.; Graziosi, L.; Franceschini, M.S.; Donini, A. Malignant ascites: Pathophysiology and treatment. Int. J. Clin. Oncol. 2013, 18, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Hashem, M.A.; Mahmoud, E.A.; Abd-Allah, N.A. Alterations in hematological and biochemical parameters and DNA status in mice bearing Ehrlich ascites carcinoma cells and treated with cisplatin and cyclophosphamide. Comp. Clin. Pathol. 2020, 29, 517–524. [Google Scholar] [CrossRef]
- DeGowin, R.L.; Gibson, D.P. Suppressive effects of an extramedullary tumor on bone marrow erythropoiesis and stroma. Exp. Hematol. 1978, 6, 568–575. [Google Scholar]
- Trebukhina, R.V.; Petushok, V.G.; Tumanov, V.N.; Mikhal’tsevich, G.N. Level of thiamine diphosphate in the liver of tumor-bearing animals kept on a diet including an excessive amount of vitamin B 1. Vopr. Pitan. 1986, 1, 63–65. [Google Scholar]
- Carol, B.B.; Gaile, M.; Donna, B.; Jacqueline, B. Wardlaw’s Perspectives in Nutrition, 9th ed.; McGraw-Hill Education: New York, NY, USA, 2012. [Google Scholar]
- Kamen, B. Folate and antifolate pharmacology. Semin. Oncol. 1997, 24, S18-30–S18-39. [Google Scholar]
- Badr, M.O.; Edrees, N.M.; Abdallah, A.A.; El-Deen, N.A.; Neamat-Allah, A.N.; Ismail, H.T. Anti-tumour effects of Egyptian propolis on Ehrlich ascites carcinoma. Vet. Ital. 2011, 47, 341–350. [Google Scholar] [PubMed]
- Adedara, I.A.; Teberen, R.; Ebokaiwe, A.P.; Ehwerhemuepha, T.; Farombi, E.O. Induction of Oxidative Stress in Liver and Kidney of Rats Exposed to Nigerian Bonny Light Crude Oil. Environ. Toxicol. 2012, 27, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Ozbek, E. Induction of oxidative stress in kidney. Int. J. Nephrol. 2012, 2012, 465897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medhat, D.; Hussein, J.; El-Naggar, M.E.; Attia, M.F.; Anwar, M.; Latif, Y.A.; Booles, H.F.; Morsy, S.; Farrag, A.R.; Khalil, W.K.J.B. Effect of Audextran NPs as anti-tumor agent against EAC and solid tumor in mice by biochemical evaluations and histopathological investigations. Biomed. Pharmacother. 2017, 91, 1006–1016. [Google Scholar] [CrossRef]
- Sun, X.; Kaufman, P.D. Ki-67: More than a proliferation marker. Chromosoma 2018, 127, 175–186. [Google Scholar] [CrossRef] [PubMed]
- McIlwain, D.R.; Berger, T.; Mak, T.W. Caspase functions in cell death and disease. Cold Spring Harb. Perspect. Biol. 2013, 5, a008656. [Google Scholar] [CrossRef]
- El-Naa, M.M.; Othman, M.; Younes, S. Sildenafil potentiates the antitumor activity of cisplatin by induction of apoptosis and inhibition of proliferation and angiogenesis. Drug Des. Devel. Ther. 2016, 10, 3661–3672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coffey, C.; Thompson, B.G. Sensitization of Chemotherapeutic Agent Resistant Neoplastic Cells with a Virus. U.S. Patent 7264798B2, 4 September 2009. [Google Scholar]
- Longchar, A.; Prasad, S.B. Biochemical changes associated with ascorbic acid-cisplatin combination therapeutic efficacy and protective effect on cisplatin-induced toxicity in tumor-bearing mice. Toxicol. Rep. 2015, 7, 489–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reedijk, J.; Lohman, P.H.M. Cisplatin: Synthesis, antitumour activity and mechanism of action. Pharm. Weekbl. Sci. 1985, 7, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.H.; Fu, R.; Shao, Z.H. An exceptional case of myelodysplastic syndrome with myelofibrosis following combination chemotherapy for squamous cell lung cancer. Cancer Biol. Med. 2013, 10, 117–120. [Google Scholar] [CrossRef]
- Kuter, D.J. Managing thrombocytopenia associated with cancer chemotherapy. Oncology 2015, 29, 282–294. [Google Scholar] [PubMed]
- Norrgren, K.; Sjölin, M.; Björkman, S.; Areberg, J.; Johnsson, A.; Johansson, L.; Mattsson, S. Comparative renal, hepatic, and bone marrow toxicity of cisplatin and radioactive cisplatin (191Pt) in Wistar rats. Cancer Biother. Radiopharm. 2006, 21, 528–534. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.P.; Tadagavadi, R.K.; Ramesh, G.; Reeves, W.B. Mechanisms of cisplatin nephrotoxicity. Toxins 2010, 2, 2490–2518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, G.; Liu, P.; Dong, H.; Gu, S.; Yang, H.; Xue, Y. Therapeutic potential of docetaxel plus cisplatin chemotherapy for Myasthenia Gravis patients with metastatic thymoma. Tohoku J. Exp. Med. 2017, 241, 281–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeuner, A.; Signore, M.; Martinetti, D.; Bartucci, M.; Peschle, C.; De Maria, R. Chemotherapy-induced thrombocytopenia derives from the selective death of megakaryocyte progenitors and can be rescued by stem cell factor. Cancer Res. 2007, 67, 4767–4773. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Lin, A.; Sun, Y.; Deng, Y. Chemo-and radio-protective effects of polysaccharide of Spirulina platensis on hemopoietic system of mice and dogs. Acta. Pharmacol. Sin. 2001, 22, 1121–1124. [Google Scholar] [PubMed]
- Kuter, D.J. Biology and chemistry of thrombopoietic agents. Semin. Hematol. 2010, 47, 243–248. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, F.Z.; Gurigis, A.A.; Gamal, A. Assessment of antiproliferative activity of Capparis spinosa L extract against Ehrlich ascites carcinoma in Swiss albino mice. Biochem. Lett. 2018, 14, 54–78. [Google Scholar] [CrossRef]
- Arita, M.; Watanabe, S.; Aoki, N.; Kuwahara, S.; Suzuki, R.; Goto, S.; Abe, Y.; Takahashi, M.; Sato, M.; Hokari, S.; et al. Combination therapy of cisplatin with cilastatin enables an increased dose of cisplatin, enhancing its antitumor effect by suppression of nephrotoxicity. Sci. Rep. 2021, 11, 750. [Google Scholar] [CrossRef] [PubMed]
- Azu, O.O.; Francis, I.; Abraham, A.; Crescie, C.; Stephen, O.; Abayomi, O. Protective agent, Kigelia Africana fruit extract, against cisplatin-induced kidney oxidant injury in Sprague-Dawley rats. Asian J. Pharm. Clin. Res. (AJPCR) 2010, 3, 84–88. [Google Scholar]
- Camano, S.; Lazaro, A.; Moreno-Gordaliza, E.; Torres, A.M.; de Lucas, C.; Humanes, B.; Lazaro, J.A.; Milagros Gomez-Gomez, M.; Bosca, L.; Tejedor, A. Cilastatin attenuates cisplatin-induced proximal tubular cell damage. J. Pharmacol. Exp. Ther. 2010, 334, 419–429. [Google Scholar] [CrossRef] [PubMed]
- Hori, Y.; Aoki, N.; Kuwahara, S.; Hosojima, M.; Kaseda, R.; Goto, S.; Iida, T.; De, S.; Kabasawa, H.; Kaneko, R.; et al. Megalin Blockade with Cilastatin Suppresses Drug-Induced Nephrotoxicity. J. Am. Soc. Nephrol. 2017, 28, 1783–1791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, M.; Mruthunjaya, K.; Nandini, C.; Nabeel, M.; Anjali, R.; Manjula, S.N. Evaluation of beneficial effects of Morinda Citrifolia L. in presence of cisplatin on Ehrlich’s ascites carcinoma bearing mice. Int. J. Pharm. Sci. Res. 2018, 9, 305–312. [Google Scholar] [CrossRef]
- Khedr, N.F.; Khalil, R.M. Effect of hesperidin on mice bearing Ehrlich solid carcinoma maintained on doxorubicin. Tumor Biol. 2015, 36, 9267–9275. [Google Scholar] [CrossRef] [PubMed]
- Roohbakhsh, A.; Parhiz, H.; Soltani, F.; Rezaee, R.; Iranshahi, M. Molecular mechanisms behind the biological effects of hesperidin and hesperetin for the prevention of cancer and cardiovascular diseases. Life Sci. 2015, 124, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, A.M. Hematological alterations in diabetic rats—Role of adipocytokines and effect of citrus flavonoids. Excli J. 2013, 12, 647–657. [Google Scholar] [PubMed]
- Abdel Ghaffar, F.R.; Hassouna, I.A.; Ibrahim, H.M.; Elelaimy, I.A.; Abd El Latif, H.M. The protective effect of hesperidin or garlic oil against the hemotoxicity of diazinon in male albino rats. J. Biosci. Appl. Res. 2017, 3, 23–36. [Google Scholar]
- Afolabi, O.K.; Oyewo, E.B.; Adeleke, G.E.; Badmus, J.A.; Wusu, A.D. Mitigation of aluminium phosphide-induced hematotoxicity and ovarian oxidative damage in Wistar Rats by Hesperidin. Am. J. Biochem. 2019, 9, 7–16. [Google Scholar] [CrossRef]
- Ohlsson, A.; Aher, S.M. Early erythropoietin for preventing red blood cell transfusion in preterm and/or low birth weight infants. Cochrane Database Syst. Rev. 2012, 9, CD004863. [Google Scholar] [CrossRef]
- Sahu, B.D.; Kuncha, M.; Sindhura, G.J.; Sistla, R. Hesperidin attenuates cisplatin-induced acute renal injury by decreasing oxidative stress, inflammation and DNA damage. Phytomedicine 2013, 20, 453–460. [Google Scholar] [CrossRef]
- Tousson, E.; Hafez, E.; Gazia, M.M.A.; Salem, S.B.; Mutar, T.F. Hepatic ameliorative role of vitamin B17 against Ehrlich ascites carcinoma—Induced liver toxicity. Environ. Sci. Pollut. Res. Int. 2020, 27, 9236–9246. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.R.; Gouda, T.S.; Sreelakshmi, S.; Rajasekar, R.; Munawar, M.S. Protective potential of hesperidin against diethylnitrosamine induced hepatocarcinogenesis in rats. J. Drug Discov. Therapeut. 2014, 2, 12–16. [Google Scholar]
- Teicher, B.A. Anticancer Drug Development Guide: Preclinical Screening, Clinical Trials, and Approval; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Pandya, N.B.; Tigari, P.; Dupadahalli, K.; Kamurthy, H.; Nadendla, R.R. Antitumor and antioxidant status of Terminalia catappa against Ehrlich ascites carcinoma in Swiss albino mice. Indian J. Pharmacol. 2013, 45, 464–469. [Google Scholar] [CrossRef] [Green Version]
- Gupta, M.; Mazumder, U.K.; Kumar, R.S.; Sivakumar, T.; Vamsi, M.L. Antitumor activity and antioxidant status of Caesalpinia bonducella against Ehrlich ascites carcinoma in Swiss albino mice. J. Pharmacol. Sci. 2004, 94, 177–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolai, N.; Islam, A.; Haldar, P.K. Antiproliferative Activity and Apoptosis Inducing Mechanism of Anthocephalus cadamba on Dalton’s Lymphoma Ascites Cells. Iran. J. Pharm. Res. 2016, 15, 505–514. [Google Scholar]
- Boyse, E. Cytotoxic test for demonstration of mouse antibody. Methods Med. Res. 1964, 10, 39–47. [Google Scholar] [PubMed]
- Bala, A.; Kar, B.; Haldar, P.K.; Mazumder, U.K.; Bera, S. Evaluation of anticancer activity of Cleome gynandra on Ehrlich’s Ascites Carcinoma treated mice. J. Ethnopharmacol. 2010, 129, 131–134. [Google Scholar] [CrossRef] [PubMed]
- Lewis, S.M.; Bain, B.J.; Bates, I.; Dacie, J.V. Dacie and Lewis Practical Haematology, 10th ed.; Churchill Livingstone Elsevier: Philadelphia, PA, USA, 2006; pp. 26–54. [Google Scholar]
- Grindem, C.B. Schalm’s Veterinary Hematology, Editors: Douglas J. Weiss, K. Jane Wardrop. Vet. Clin. Pathol. 2011, 2, 270. [Google Scholar] [CrossRef]
- Tietz, N.W. Clinical Guide to Laboratory Tests, 2nd ed.; WB Saunders: Philadelphia, PA, USA, 1990; pp. 26–29. [Google Scholar]
- Tietz, N.W. Textbook of Clinical Chemistry; WB Saunders: Philadelphia, PA, USA, 1986; pp. 1271–1281. [Google Scholar] [CrossRef]
- Ohkawa, H.; Ohishi, W.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979, 95, 351. [Google Scholar] [CrossRef]
- Beutler, E.; Duron, O.; Kelly, M.B. Improved method for the determination of blood glutathione. J. Lab. Clin. Med. 1963, 61, 882. [Google Scholar] [PubMed]
- Aebi, H. Catalase in vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Bancroft, J.D.; Gamble, M. Theory and Practice of Histological Techniques, 6th ed.; Churchill Livingstone, Elsevier: Beijing, China, 2008. [Google Scholar]
- Madkour, D.A.; Ahmed, M.M.; Orabi, S.H.; Sayed, S.M.; Korany, R.M.S.; Khalifa, H.K. Nigella sativa oil protects against emamectin benzoate-Induced neurotoxicity in rats. Environ. Toxicol. 2021, 36, 1521–1535. [Google Scholar] [CrossRef] [PubMed]
- El-Maksoud, A.A.A.; Korany, R.M.S.; El-Ghany, I.H.A.; El-Beltagi, H.S.; Ambrósio, F.; de-Gouveia, G.M. Dietary solutions to dyslipidemia: Milk protein-polysaccharide conjugates as liver biochemical enhancers. J. Food Biochem. 2020, 44, e13142. [Google Scholar] [CrossRef] [PubMed]
- Azouz, R.A.; Korany, R.M. Toxic Impacts of Amorphous Silica Nanoparticles on Liver and Kidney of Male Adult Rats: An In Vivo Study. Biologic. Tr. Elem. Res. 2021, 199, 2653–2662. [Google Scholar] [CrossRef]
Parameters | Experimental Groups | ||||||
---|---|---|---|---|---|---|---|
Control | Hesp | EAC | Hesp-Protected | Hesp-Treated | Cis-Treated | Cis+Hesp-Treated | |
Survival time | |||||||
MST (days) | - | - | 17 | 31 | 19.5 | 24.5 | 30.5 |
ILS (%) | - | - | 0 | 82.35 | 14.7 | 44.12 | 79.41 |
Tumor growth response | |||||||
B.wt. (g) | 31.60 ± 0.34 d | 30.60 ± 0.26 d | 45.50 ± 0.54 a | 31.70 ± 0.36 d | 39.25 ± 0.34 b | 34.90 ± 0.50 c | 31.75 ± 0.43 d |
AC (mm) | 7.85 ± 0.09 d | 8.05 ± 0.08 d | 11.70 ± 0.15 a | 8.18 ± 0.10 d | 11.10 ± 0.18 b | 9.60 ± 0.26 c | 8.30 ± 0.12 d |
AFV (mL) | - | - | 9.87 ± 0.37 a | 1.09 ± 0.04 e | 6.63 ± 0.21 b | 3.90 ± 0.11 c | 2.81 ± 0.09 d |
VCC(×106/mL) | - | - | 21.27 ± 0.75 a | 4.30 ± 0.40 d | 12.39 ± 0.53 b | 6.90 ± 0.57 c | 5.30 ± 0.39 d |
NCC(×106/mL) | - | - | 0.95 ± 0.03 c | 2.40 ± 0.20 a | 1.46 ± 0.15 b | 1.94 ± 0.14 a | 2.23 ± 0.19 a |
Tumor marker | |||||||
CEA (ng/mL) | 0.34 ± 0.03 c | 0.33 ± 0.03 c | 1.18 ± 0.08 a | 0.45 ± 0.04 c | 0.94 ± 0.05 b | 0.81 ± 0.05 b | 0.49 ± 0.04 c |
Parameters | Experimental Groups | ||||||
---|---|---|---|---|---|---|---|
Control | Hesp | EAC | Hesp-Protected | Hesp-Treated | Cis-Treated | Cis+Hesp-Treated | |
RBCs (×106) | 8.84 ± 0.35 a | 8.77 ± 0.29 a | 6.15 ± 0.70 b | 8.58 ± 0.34 a | 6.30 ± 0.56 b | 5.80 ± 0.29 b | 8.23 ± 0.28 a |
Hb (g/dL) | 13.16 ± 0.35 a | 12.82 ± 0.43 a | 10.02 ± 0.66 b | 12.68 ± 0.29 a | 10.32 ± 0.42 b | 9.03 ± 0.45 b | 11.80 ± 0.38 a |
PCV (%) | 41.12 ± 0.65 a | 40.50 ± 0.84 a | 35.40 ± 0.93 b | 39.00 ± 0.71 a | 35.66 ± 0.97 b | 30.80 ±0.92 c | 38.74 ± 0.70 a |
MCV (fl) | 46.76 ± 1.40 b | 46.36 ± 1.54 b | 57.56 ± 1.90 a | 45.64 ± 1.41 b | 56.60 ± 1.78 a | 53.43 ± 1.60 ab | 47.19 ± 1.16 b |
MCH (pg) | 14.95 ± 0.56 a | 14.64 ± 0.37 a | 16.38 ± 0.90 a | 14.87 ± 0.69 a | 16.38 ± 1.20 a | 15.85 ± 1.48 a | 14.34 ± 0.27 a |
MCHC (g/dL) | 32.00 ± 0.37 a | 31.75 ± 1.53 a | 28.38 ± 1.50 a | 32.53 ± 0.68 a | 28.96 ± 1.54 a | 29.51 ± 1.90 a | 30.44 ± 0.65 a |
Parameters(×103/µL) | Experimental Groups | ||||||
---|---|---|---|---|---|---|---|
Control | Hesp | EAC | Hesp-Protected | Hesp-Treated | Cis-Treated | Cis+Hesp-Treated | |
TWBCs | 8.70 ± 0.82 b | 8.81 ± 0.67 b | 12.48 ± 0.40 a | 8.84 ± 0.58 b | 11.41 ± 0.86 a | 6.76 ± 0.60 c | 9.02 ± 0.53 b |
Granulocytes | 0.82 ± 0.07 c | 0.86 ± 0.05 c | 2.62 ± 0.28 a | 0.93 ± 0.06 c | 1.94 ± 0.18 b | 1.12 ± 0.07 c | 0.97 ± 0.05 c |
Lymphocytes | 6.89 ± 0.61 a | 6.79 ± 0.75 a | 6.34 ± 0.34 ab | 6.74 ± 0.62 a | 6.38 ± 0.48 ab | 4.89 ± 0.37 b | 6.68 ± 0.38 a |
Monocytes | 0.99 ± 0.06 b | 1.16 ± 0.10 b | 3.52 ± 0.31 a | 1.17 ± 0.11 b | 3.09 ± 0.45 a | 0.75 ± 0.09 b | 1.37 ± 0.17 b |
Platelets | 688.8 ± 20.0 a | 660.0 ± 22.2 a | 552.2 ± 18.3 b | 656.4 ± 24.8 a | 550.0 ± 22.8 b | 446.8 ± 19.9 c | 630.9 ± 21.1 a |
Lesions | Experimental Groups | ||||||
---|---|---|---|---|---|---|---|
Control | Hesp | EAC | Hesp-Protected | Hesp-Treated | Cis-Treated | Cis+Hesp-Treated | |
Congestion of glomerular tuft | 0 | 0 | 3 | 1 | 3 | 3 | 1 |
Congestion of interstitial blood vessels | 0 | 0 | 3 | 1 | 3 | 3 | 1 |
Mononuclear inflammatory cells infiltration in interstitial tissue | 0 | 0 | 3 | 1 | 3 | 3 | 2 |
Renal tubular vacuolar degeneration | 0 | 0 | 3 | 1 | 3 | 3 | 1 |
Renal tubular necrosis | 0 | 0 | 3 | 0 | 3 | 3 | 0 |
Tubular casts | 0 | 0 | 2 | 0 | 2 | 3 | 1 |
Neoplastic cells infiltrating capsule and blood vessels | 0 | 0 | 3 | 1 | 3 | 1 | 1 |
Groups | Experimental Design | |||
---|---|---|---|---|
Preinoculation (1st–15th Day) | Inoculation Day 0 (16th Day) | Post-Inoculation | ||
3 Days after Inoculation (19th Day) | 12 Days after Inoculation (28th Days) | |||
Control | Distilled water, orally, day by day | Day of scarification | ||
Hesp | Hesp (100 mg/kg) orally day by day dissolved in distilled water | |||
EAC | - | 0.2 mL containing 2.5 × 106 EAC cells/mouse, i.p | - | |
Hesp-protected (Hesp then EAC) | Hesp (100 mg/kg orally day by) | Hesp (100 mg/kg, orally, day by day) | ||
Hesp-treated (EAC then Hesp) | Distilled water orally day by day | Hesp (100 mg/kg, orally, day by day) | ||
Cis-treated (EAC then Cis) | Distilled water orally day by day | Cis (single dose of 5 mg/kg i.p) | ||
Cis+Hesp-treated (EAC then Cis and Hesp) | Distilled water orally day by day | Cis (Single dose of 5 mg/kg i.p) and Hesp (100 mg/kg, orally, day by day) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saleh, N.; Allam, T.; Korany, R.M.S.; Abdelfattah, A.M.; Omran, A.M.; Abd Eldaim, M.A.; Hassan, A.M.; El-Borai, N.B. Protective and Therapeutic Efficacy of Hesperidin versus Cisplatin against Ehrlich Ascites Carcinoma-Induced Renal Damage in Mice. Pharmaceuticals 2022, 15, 294. https://doi.org/10.3390/ph15030294
Saleh N, Allam T, Korany RMS, Abdelfattah AM, Omran AM, Abd Eldaim MA, Hassan AM, El-Borai NB. Protective and Therapeutic Efficacy of Hesperidin versus Cisplatin against Ehrlich Ascites Carcinoma-Induced Renal Damage in Mice. Pharmaceuticals. 2022; 15(3):294. https://doi.org/10.3390/ph15030294
Chicago/Turabian StyleSaleh, Nahed, Tamer Allam, Reda M. S. Korany, Abdelfattah M. Abdelfattah, Ahmed M. Omran, Mabrouk Attia Abd Eldaim, Aziza M. Hassan, and Nermeen Borai El-Borai. 2022. "Protective and Therapeutic Efficacy of Hesperidin versus Cisplatin against Ehrlich Ascites Carcinoma-Induced Renal Damage in Mice" Pharmaceuticals 15, no. 3: 294. https://doi.org/10.3390/ph15030294
APA StyleSaleh, N., Allam, T., Korany, R. M. S., Abdelfattah, A. M., Omran, A. M., Abd Eldaim, M. A., Hassan, A. M., & El-Borai, N. B. (2022). Protective and Therapeutic Efficacy of Hesperidin versus Cisplatin against Ehrlich Ascites Carcinoma-Induced Renal Damage in Mice. Pharmaceuticals, 15(3), 294. https://doi.org/10.3390/ph15030294