Pharmacometabolomics Applied to Personalized Medicine in Urological Cancers
Abstract
:1. Introduction
2. Current Status and Limitations of Therapies for Urological Cancers
2.1. Prostate Cancer
2.2. Bladder Cancer
2.3. Renal Cell Carcinoma
3. Pharmacometabolomics
3.1. The Concept
3.2. Workflow
4. Pharmacometabolomic Studies in Urological Cancers
4.1. Pharmacometabolomic Studies in Prostate Cancer
Cancer Therapy under Study | Samples | Instrumental and Statistical Analysis | Treatment Response | Metabolic Interpretation | Ref. |
---|---|---|---|---|---|
In vitro and animal models | |||||
Targeted therapy: PI3K inhibitor LY294002 (10–25 μM) and HSP90 inhibitor 17AAG (0.25–1 μM) 48 h of treatment exposure | Intracellular (polar) metabolome of PCa cell lines: PC3 untreated (DMSO solvent control), n = 8 treated with LY294002, n = 8 treated with 17AAG, n = 8 LNCaP untreated (DMSO solvent control), n = 8 treated with LY294002, n = 8 treated with 17AAG, n = 8 | 1H NMR PCA Mann–Whitney U test | LY294002 treatment effects in both cell lines (PC3 and LNCaP): ↑ valine; leucine; isoleucine; glutamine ↓ alanine; lactate; fumarate;glutathione; phosphocholine 17AAG treatment effects in both cell lines (PC3 and LNCaP): ↑ valine; leucine; isoleucine; phosphocholine; myo-inositol; taurine; citrate ↓ lactate; alanine; fumarate; glutamine | LY294002 and 17AAG exposure activated glycolysis by PI3K/Akt signaling and influenced the glutaminolysis | [78] |
Hormone therapy: androgen receptor (AR) antagonists proxalutamide, bicalutamide, and enzalutamide (1–10 μM) 48 h of treatment exposure | Intracellular (polar) metabolome of PCa cell lines: AR-positive cells (22RV1 and LNCaP): untreated, n = 6 treated with each AR antagonist, n = 6 per drug AR-negative cells (PC3, DU145): untreated, n = 6 treated with AR antagonist, n = 6 per drug | LC-Q/TOF-MS PCA, PLS-DA, OPLS-DA Two-tailed student’s t-test One-way analysis of variance | Proxalutamide treatment effects in both AR-positive cell lines: ↓ glutamine; glutamate; GSH; GSSG; GSH/GSSG; glycine; aspartate; uridine, cytidine; thymidine Bicalutamide treatment effects in AR-positive cell lines: ↓ thymidine Enzalutamide treatment effects in AR-positive cell lines: ↓ GSH ↑ aspartate No significant changes were found for proxalutamide, bicalutamide, and enzalutamide in AR-negative cell lines | Proxalutamide exposure inhibited glutamine metabolism, glutathione metabolism and pyrimidine metabolism | [79] |
Hormone therapy | Intracellular (polar) metabolome of cell lines: AR-positive cells: LNCaP, n = 4 Castration resistant cells: PC3, n = 4 Tissue extract (polar phase): TRAMP, n = 3 castrate resistant TRAMP, n = 3 | 1H NMR Student’s t-test | Castration resistant condition effects in cell lines: ↑ aspartate; glutamate; lactate; myo-inositol; phosphocholine; glycerophosphocholine; total choline; alanine; glutathione ↓ citrate; glucose; creatine; creatine phosphate Castration resistant condition effects in TRAMP: ↑lactate; aspartate; glutamate; glutathione ↓citrate; creatine | Castration resistant condition was associated with an upregulation of glycolysis; TCA cycle; glutaminolysis and glutathione synthesis | [80] |
Human models | |||||
Hormone therapy: leuprolide (22.5 mg IM 3-month depot) and bicalutamide (50 mg per day) 4 weeks of treatment exposure | Lipophilic and hydrophilic plasma extracts: PCa untreated group, n = 36 PCa treated group, n = 36 | LC-MS/MS GC-MS Student’s t-test | Hormone therapy effects in PCa treated group: ↑cholate ↓dehydroisoandrosterone sulfate; epiandrosterone sulfate; androsterone sulfate; cortisol; 4-androsten-3β, 17β-diol disulfates 1 & 2; 5α-androstan-3β,17β-diol disulfate; pregnendiol disulfate; pregn steroid monosulfate; andro steroid monosulfates 1; deoxycarnitine; acetylcarnitine; hexanoylcarnitine; octanoylcarnitine; decanoylcarnitine; laurylcarnitine; palmitoylcarnitine; stearoylcarnitine; oleoylcarnitine; 3-hydroxybutyrate; acetoacetate; dodecanedioate; octadecanedioate; 2-hydroxybutyrate; α-hydroxyisovalerate; 2- methylbutyroylcarnitine | Hormone therapy exposure inhibited steroids synthesis, fatty acid oxidation, bile acid synthesis and BCAAs synthesis | [84] |
Hormone therapy: bicalutamide and goserelin up to 2 years of treatment exposure | Lipophilic serum extract: PCa untreated group, n = 18 treated group, n = 36 (poor response n = 18 and good response n = 18) Healthy group, n = 18 | LC-MS PLS-DA OPLS Duncan pairwise post hoc tests | Hormone therapy effects in PCa poor response group: ↑ deoxycholic acid; glycochenodeoxycholate; L-tryptophan; arachidonic acid; deoxycytidine triphosphate; pyridinoline ↓ docosapentaenoic acid Hormone therapy effects in PCa good response group: ↑ L-tryptophan; arachidonic acid; deoxycholic acid; glycochenodeoxycholate ↓ docosapentaenoic acid; pyridinoline; deoxycytidine triphosphate | Hormone therapy exposure altered cholesterol metabolic pathway | [85] |
Hormone therapy: degarelix (240 mg) 7 days of treatment exposure | Tissue extract (polar phase): PCa untreated group, n = 6 treated group, n = 7 Control group, n = 10 | 1H-NMR PCAOPLS-DA | Degarelix effects in PCa treated group: ↓lactate; total choline | Hormone therapy exposure reduced glycolysis and membrane phospholipid metabolism | [86] |
Hormone therapy: LHRH agonist, LHRH-antagonist, or orchiectomy 3 and 6 months of treatment exposure | Lipophilic and hydrophilic serum extracts: PCa untreated group, n = 20 treated group (3 months), n = 20 treated group (6 months), n = 20 | GC-TOF-MS LC-HILIC-MS/MS Volcano plot ANOVA Pearson correlation | Hormone therapy effects in PCa treated group (3 months): ↑ dihydroxycholestanoyl taurine; dodecanedioic acid; eicosatetraenoic acid ↓ hydroxymyristoyl-carnitine; malonyl-carnitine; hexanoyl-carnitine; dodecenoyl-carnitine; octanoyl-carnitine; oleoyl-carnitine; decanoyl-carnitines; 3-hydroxyburtirc acid; indoleacetic acid; andosterone sulfate Hormone therapy effects in PCa treated group (6 months): ↑ dihydroxycholestanoyl taurine; AMP; N-acetyl-glucosamine-1-phosphate; mevalonate-5-phosphate; 2-hydro-D-gluconate ↓ malonylcarnitine; oleoylcarnitine; hexanoylcarnitine; tetradecendoycarnitine; heptanoylcarnitine palmitoylcarnitine; decanoyl-carnitines; myristolylcarnitine; 3-hydroxyburtic acid; oxalic acid; glycolic acid; nonanoic acid; androsterone sulfate | Hormone therapy exposure reduced steroid biosynthesis; fatty acid β-oxidation and ketogenesis and alters microbiome metabolism | [87] |
Hormone therapy | Tissue extract (polar phase): BPH group, n = 39 HSPCa group, n = 39 CRPCa group, n = 25 | 1H NMR PCA, OPLS-DA 10-Fold cross validation CV-ANOVA Student t-test Bonferroni correction AUC | Hormone therapy resistance effects in CRPCa (compared with BPH): ↑ alanine; lactate; glutamate; taurine ↓ myo-inositol; citrate Hormone therapy resistance effects in CRPCa (compared with HSPV): ↑ creatine ↓ choline; lactate; alanine; glutamate; glycine | Castration resistant condition was associated with down-regulation of amino acid metabolism; membrane metabolism (choline metabolism) and altered energy metabolism (possibility of inverse Warburg effect) | [88] |
Chemotherapy: docetaxel (75 mg/m2) 3 weeks of treatment exposure | Lipophilic plasma extract: Discovery set: PCa untreated group, n = 96 treated group, n = 89 Validation set: PCa untreated group, n = 63 treated group, n = 47 | LC-MS/MS Latent class analysis Univariable and multivariable cox regression Logistic regression Student’s t-test | Docetaxel effects in PCa treated group: no significant changes were found | - | [89] |
Chemotherapy (docetaxel) and hormone therapy (LHRH analog) 18–24 weeks of treatment exposure | Tissue extract (polar phase): PCa treated group, n = 12 untreated group, n = 10 | HPLC PCA OPLS-DA Two-tailed student’s t test One-way analysis of variance | Docetaxel and hormone therapy effects in PCa treated group: ↑ GSSG; glycerol-3-phosphate; shikimate; 14.0 Lyso PA; d-glucarate; dodecylbenzenesulfonic acid; guanosine ↓ phospholipids (PC, PE, PS, LPE); 27-hydrocycholesterol 3 sulfate; 2-hydroxy-4-methylpentanoate | Docetaxel and hormone therapy exposure inhibited pathways involved in biosynthesis and energy metabolism: amino acid metabolism; purine and pyrimidine metabolism; TCA cycle; lipid synthesis; glutathione metabolism | [90] |
4.2. Pharmacometabolomic Studies in Bladder Cancer
4.3. Pharmacometabolomic Studies in Renal Cell Carcinoma
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferlay, J.; Wild, C.P.; Bray, F. The burden of cancer worldwide: Current and future perspectives. Holland-Frei Cancer Med. 2016, 1–15. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef]
- Cheville, J.C.; Lohse, C.M.; Zincke, H.; Weaver, A.L.; Blute, M.L. Comparisons of outcome and prognostic features among histologic subtypes of renal cell carcinoma. Am. J. Surg. Pathol. 2003, 27, 612–624. [Google Scholar] [CrossRef] [PubMed]
- Muglia, V.F.; Prando, A. Renal cell carcinoma: Histological classification and correlation with imaging findings. Radiol. Bras. 2015, 48, 166–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escudier, B.; Porta, C.; Schmidinger, M.; Rioux-Leclercq, N.; Bex, A.; Khoo, V.; Grunwald, V.; Gillessen, S.; Horwich, A. Renal cell carcinoma: ESMO Clinical practice guidelines for diagnosis, treatment and follow-updagger. Ann. Oncol. 2019, 30, 706–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khatami, F.; Hassanzad, M.; Nikfar, S.; Guitynavard, F.; Karimaee, S.; Tamehri Zadeh, S.S.; Gholami, K.; Rezaeian, A.; Feiz-Abadi, S.A.; Jahanshahi, F. The importance of personalized medicine in urological cancers. J. Diabetes Metab. Disord. 2021, 1–12. [Google Scholar] [CrossRef]
- Abbas, Z.; Rehman, S. An overview of cancer treatment modalities. In Neoplasm; IntechOpen: London, UK, 2018; Volume 1, pp. 139–157. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.H. Practical issues of biomarker-assisted targeted therapy in precision medicine and immuno-oncology era. ESMO Open 2018, 3, 370. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekar, T.; Yang, J.C.; Gao, A.C.; Evans, C.P. Mechanisms of resistance in castration-resistant prostate cancer (CRPC). Transl. Androl. Urol. 2015, 4, 365–380. [Google Scholar] [CrossRef]
- Morais, C. Sunitinib resistance in renal cell carcinoma. J. Kidney Cancer VHL 2014, 1, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.Y.; Yeon, A.; Shahid, M.; Cho, E.; Sairam, V.; Figlin, R.; Kim, K.H.; Kim, J. Reprogrammed lipid metabolism in bladder cancer with cisplatin resistance. Oncotarget 2018, 9, 13231–13243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinay, D.S.; Ryan, E.P.; Pawelec, G.; Talib, W.H.; Stagg, J.; Elkord, E.; Lichtor, T.; Decker, W.K.; Whelan, R.L.; Kumara, H.; et al. Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin. Cancer Biol. 2015, 35, 185–198. [Google Scholar] [CrossRef] [PubMed]
- Mellman, I.; Coukos, G.; Dranoff, G. Cancer immunotherapy comes of age. Nature 2011, 480, 480–489. [Google Scholar] [CrossRef]
- Popova, A.A.; Levkin, P.A. Precision medicine in oncology: In vitro drug sensitivity and resistance test (DSRT) for selection of personalized anticancer therapy. Adv. Ther. 2020, 3, 1900100. [Google Scholar] [CrossRef] [Green Version]
- Marson, F.A.L.; Bertuzzo, C.S.; Ribeiro, J.D. Personalized or precision medicine? the example of cystic fibrosis. Front. Pharmacol. 2017, 8, 390. [Google Scholar] [CrossRef] [PubMed]
- Unger, F.T.; Witte, I.; David, K.A. Prediction of individual response to anticancer therapy: Historical and future perspectives. Cell. Mol. Life. Sci. 2015, 72, 729–757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gardner, S.; Das, S.; Taylor, K. AI enabled precision medicine: Patient stratification, drug repurposing and combination therapies. In Artificial Intelligence in Oncology Drug Discovery and Development; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Kohler, S. Precision medicine—Moving away from one-size-fits-all. Quest 2018, 14, 12–15. [Google Scholar]
- Ventola, C.L. Role of pharmacogenomic biomarkers in predicting and improving drug response: Part 1: The clinical significance of pharmacogenetic variants. Pharm. Ther. 2013, 38, 545. [Google Scholar]
- Beger, R.D.; Schmidt, M.A.; Kaddurah-Daouk, R. Current concepts in pharmacometabolomics, biomarker discovery, and precision medicine. Metabolites 2020, 10, 129. [Google Scholar] [CrossRef] [Green Version]
- Emwas, A.; Szczepski, K.; McKay, R.T.; Asfour, H.; Chang, C.; Lachowicz, J.; Jaremko, M. Pharmacometabolomics: A new horizon in personalized medicine. In Metabolomics; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Terris, M.K. Metastatic and Advanced Prostate Cancer. Available online: https://emedicine.medscape.com/article/454114-overview#a1 (accessed on 1 December 2021).
- Parker, C.; Castro, E.; Fizazi, K.; Heidenreich, A.; Ost, P.; Procopio, G.; Tombal, B.; Gillessen, S. Prostate cancer: ESMO Clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2020, 31, 1119–1134. [Google Scholar] [CrossRef] [PubMed]
- Crawford, E.D.; Petrylak, D.P.; Shore, N.; Saad, F.; Slovin, S.F.; Vogelzang, N.J.; Keane, T.E.; Koo, P.J.; Gomella, L.G.; O’Sullivan, J.M.; et al. The role of therapeutic layering in optimizing treatment for patients with castration-resistant prostate cancer (prostate cancer radiographic assessments for detection of advanced recurrence II). Urology 2017, 104, 150–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nuhn, P.; De Bono, J.S.; Fizazi, K.; Freedland, S.J.; Grilli, M.; Kantoff, P.W.; Sonpavde, G.; Sternberg, C.N.; Yegnasubramanian, S.; Antonarakis, E.S. Update on systemic prostate cancer therapies: Management of metastatic castration-resistant prostate cancer in the era of precision oncology. Eur. Urol. 2019, 75, 88–99. [Google Scholar] [CrossRef] [PubMed]
- American Cancer Society. Survival Rates for Prostate Cancer. Available online: https://www.cancer.org/cancer/prostate-cancer/detection-diagnosisstaging/survival-rates.html (accessed on 1 December 2021).
- Siddiqui, Z.A.; Krauss, D.J. Adjuvant androgen deprivation therapy for prostate cancer treated with radiation therapy. Transl. Androl. Urol. 2018, 7, 378–389. [Google Scholar] [CrossRef]
- Connolly, R.M.; Carducci, M.A.; Antonarakis, E.S. Use of androgen deprivation therapy in prostate cancer: Indications and prevalence. Asian J. Androl. 2012, 14, 177–186. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, H.; Daneshmand, S. Androgen deprivation therapy: Evidence-based management of side effects. BJU Int. 2013, 111, 543–548. [Google Scholar] [CrossRef]
- Adamaki, M.; Zoumpourlis, V. Immunotherapy as a precision medicine tool for the treatment of prostate cancer. Cancers 2021, 13, 173. [Google Scholar] [CrossRef]
- Teyssonneau, D.; Margot, H.; Cabart, M.; Anonnay, M.; Sargos, P.; Vuong, N.S.; Soubeyran, I.; Sevenet, N.; Roubaud, G. Prostate cancer and PARP inhibitors: Progress and challenges. J. Hematol. Oncol. 2021, 14, 51. [Google Scholar] [CrossRef]
- Wu, J.; Lu, L.Y.; Yu, X. The role of BRCA1 in DNA damage response. Protein Cell 2010, 1, 117–123. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Li, Z.; Feng, X.; Yang, D.; Lin, M. Advances in PSMA-targeted therapy for prostate cancer. Prostate Cancer Prostatic Dis. 2021, 1–16. [Google Scholar] [CrossRef]
- Vanneman, M.; Dranoff, G. Combining immunotherapy and targeted therapies in cancer treatment. Nat. Rev. Cancer 2012, 12, 237–251. [Google Scholar] [CrossRef] [Green Version]
- Chalasani, V.; Chin, J.L.; Izawa, J.I. Histologic variants of urothelial bladder cancer and nonurothelial histology in bladder cancer. Can. Urol. Assoc. J. 2009, 3, 193–198. [Google Scholar] [CrossRef] [Green Version]
- Bellmunt, J.; Orsola, A.; Leow, J.J.; Wiegel, T.; De Santis, M.; Horwich, A.; Group, E.G.W. Bladder cancer: ESMO practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2014, 25 (Suppl. 3), 40–48. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.G.; Oh, W.K.; Galsky, M.D. Treatment of muscle-invasive and advanced bladder cancer in 2020. CA Cancer J. Clin. 2020, 70, 404–423. [Google Scholar] [CrossRef]
- De George, K.C.; Holt, H.R.; Hodges, S.C. Bladder cancer: Diagnosis and treatment. Am. Fam. Physician 2017, 96, 507–514. [Google Scholar]
- Kacew, A.; Sweis, R.F. FGFR3 Alterations in the era of immunotherapy for urothelial bladder cancer. Front. Immunol. 2020, 11, 575258. [Google Scholar] [CrossRef] [PubMed]
- Tural, D.; Selcukbiricik, F.; Olmez, O.F.; Sumbul, A.T.; Erman, M.; Coskun, H.S.; Artac, M.; Kilickap, S. Response to first-line chemotherapy regimen is associated with efficacy of immune checkpoint blockade therapies in patients with metastatic urothelial carcinoma. Int. J. Clin. Oncol. 2021, 27, 585–591. [Google Scholar] [CrossRef] [PubMed]
- Bankhead, C. Two FDA wins for Immunotherapy in Bladder Cancer. Available online: https://www.medpagetoday.com/hematologyoncology/othercancers/92337 (accessed on 6 December 2021).
- Montazeri, K.; Bellmunt, J. Erdafitinib for the treatment of metastatic bladder cancer. Expert Rev. Clin. Pharmacol. 2020, 13, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Ross, J.S.; Wang, K.; Al-Rohil, R.N.; Nazeer, T.; Sheehan, C.E.; Otto, G.A.; He, J.; Palmer, G.; Yelensky, R.; Lipson, D.; et al. Advanced urothelial carcinoma: Next-generation sequencing reveals diverse genomic alterations and targets of therapy. Mod. Pathol. 2014, 27, 271–280. [Google Scholar] [CrossRef] [Green Version]
- Weiss, R.H. Metabolomics and metabolic reprogramming in kidney cancer. Semin. Nephrol. 2018, 38, 175–182. [Google Scholar] [CrossRef]
- Ciccarese, C.; Brunelli, M.; Montironi, R.; Fiorentino, M.; Iacovelli, R.; Heng, D.; Tortora, G.; Massari, F. The prospect of precision therapy for renal cell carcinoma. Cancer Treat. Rev. 2016, 49, 37–44. [Google Scholar] [CrossRef]
- Manley, B.J.; Hakimi, A.A. Molecular profiling of renal cell carcinoma: Building a bridge toward clinical impact. Curr. Opin. Urol. 2016, 26, 383–387. [Google Scholar] [CrossRef]
- Padala, S.A.; Barsouk, A.; Thandra, K.C.; Saginala, K.; Mohammed, A.; Vakiti, A.; Rawla, P.; Barsouk, A. Epidemiology of renal cell carcinoma. World J. Oncol. 2020, 11, 79–87. [Google Scholar] [CrossRef] [PubMed]
- American Society of Clinical Oncology. Kidney Cancer: Statistics. Available online: https://www.cancer.net/cancer-types/kidney-cancer/statistics (accessed on 6 December 2021).
- American Cancer Society. Kidney Cancer Treatment. Available online: https://www.cancer.org/cancer/kidney-cancer/treating.html (accessed on 6 December 2021).
- Kapoor, A. First-line treatment options in metastatic renal cell cancer. Can. Urol. Assoc. J. 2016, 10, 236–238. [Google Scholar] [CrossRef] [PubMed]
- Aeppli, S.; Schmaus, M.; Eisen, T.; Escudier, B.; Grünwald, V.; Larkin, J.; McDermott, D.; Oldenburg, J.; Porta, C.; Rini, B. First-line treatment of metastatic clear cell renal cell carcinoma: A decision-making analysis among experts. ESMO Open 2021, 6, 100030. [Google Scholar] [CrossRef]
- Rini, B.I.; Plimack, E.R.; Stus, V.; Gafanov, R.; Hawkins, R.; Nosov, D.; Pouliot, F.; Alekseev, B.; Soulieres, D.; Melichar, B.; et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 2019, 380, 1116–1127. [Google Scholar] [CrossRef]
- Sharma, R.; Kadife, E.; Myers, M.; Kannourakis, G.; Prithviraj, P.; Ahmed, N. Determinants of resistance to VEGF-TKI and immune checkpoint inhibitors in metastatic renal cell carcinoma. J. Exp. Clin. Cancer Res. 2021, 40, 186. [Google Scholar] [CrossRef]
- Deleuze, A.; Saout, J.; Dugay, F.; Peyronnet, B.; Mathieu, R.; Verhoest, G.; Bensalah, K.; Crouzet, L.; Laguerre, B.; Belaud-Rotureau, M.A.; et al. Immunotherapy in renal cell carcinoma: The Future Is Now. Int. J. Mol. Sci. 2020, 21, 2532. [Google Scholar] [CrossRef] [Green Version]
- Buti, S.; Bersanelli, M.; Sikokis, A.; Maines, F.; Facchinetti, F.; Bria, E.; Ardizzoni, A.; Tortora, G.; Massari, F. Chemotherapy in metastatic renal cell carcinoma today? A systematic review. Anticancer Drugs 2013, 24, 535–554. [Google Scholar] [CrossRef] [PubMed]
- Pang, H.; Jia, W.; Hu, Z. Emerging applications of metabolomics in clinical pharmacology. Clin. Pharmacol. Ther. 2019, 106, 544–556. [Google Scholar] [CrossRef]
- Clayton, T.A.; Lindon, J.C.; Cloarec, O.; Antti, H.; Charuel, C.; Hanton, G.; Provost, J.P.; Le Net, J.L.; Baker, D.; Walley, R.J.; et al. Pharmaco-metabonomic phenotyping and personalized drug treatment. Nature 2006, 440, 1073–1077. [Google Scholar] [CrossRef]
- Elbadawi-Sidhu, M.; Fiehn, O. Pharmacometabolomics as the key to personalised medicine. Drug Rev. 2016, 3, 22–25. [Google Scholar]
- Katsila, T.; Konstantinou, E.; Lavda, I.; Malakis, H.; Papantoni, I.; Skondra, L.; Patrinos, G.P. Pharmacometabolomics-aided pharmacogenomics in autoimmune disease. EBioMedicine 2016, 5, 40–45. [Google Scholar] [CrossRef] [Green Version]
- Rattner, J.; Bathe, O.F. Monitoring for response to antineoplastic drugs: The potential of a metabolomic approach. Metabolites 2017, 7, 60. [Google Scholar] [CrossRef] [Green Version]
- Zhang, A.; Sun, H.; Wang, X. Serum metabolomics as a novel diagnostic approach for disease: A systematic review. Anal. Bioanal. Chem. 2012, 404, 1239–1245. [Google Scholar] [CrossRef] [PubMed]
- Vorkas, P.A.; Abellona, U.M.; Li, J.V. Tissue multiplatform-based metabolomics/metabonomics for enhanced metabolome coverage. Methods Mol. Biol. 2018, 1738, 239–260. [Google Scholar] [CrossRef] [PubMed]
- Joshi, A.; Roberts, M.J.; Alinezhad, S.; Williams, E.D.; Vela, I. Challenges, applications and future directions of precision medicine in prostate cancer—The role of organoids and patient-derived xenografts. BJU Int. 2020, 126, 65–72. [Google Scholar] [CrossRef]
- Kapalczynska, M.; Kolenda, T.; Przybyla, W.; Zajaczkowska, M.; Teresiak, A.; Filas, V.; Ibbs, M.; Blizniak, R.; Luczewski, L.; Lamperska, K. 2D and 3D cell cultures—A comparison of different types of cancer cell cultures. Arch. Med. Sci. 2018, 14, 910–919. [Google Scholar] [CrossRef]
- Yoshida, G.J. Applications of patient-derived tumor xenograft models and tumor organoids. J. Hematol. Oncol. 2020, 13, 4. [Google Scholar] [CrossRef]
- Ren, J.-L.; Zhang, A.-H.; Kong, L.; Wang, X.-J. Advances in mass spectrometry-based metabolomics for investigation of metabolites. RSC Adv. 2018, 8, 22335–22350. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, M.S.; Carvalho, M.; Bastos, M.L.; Guedes de Pinho, P. Metabolomics analysis for biomarker discovery: Advances and challenges. Curr. Med. Chem. 2013, 20, 257–271. [Google Scholar] [CrossRef]
- Bhinderwala, F.; Wase, N.; DiRusso, C.; Powers, R. Combining mass spectrometry and NMR improves metabolite detection and annotation. J. Proteome Res. 2018, 17, 4017–4022. [Google Scholar] [CrossRef] [PubMed]
- Lima, A.R.; Pinto, J.; Amaro, F.; Bastos, M.L.; Carvalho, M.; Guedes de Pinho, P. Advances and perspectives in prostate cancer biomarker discovery in the last 5 years through tissue and urine metabolomics. Metabolites 2021, 11, 181. [Google Scholar] [CrossRef]
- Mastrangelo, A.; Ferrarini, A.; Rey-Stolle, F.; Garcia, A.; Barbas, C. From sample treatment to biomarker discovery: A tutorial for untargeted metabolomics based on GC-(EI)-Q-MS. Anal. Chim. Acta 2015, 900, 21–35. [Google Scholar] [CrossRef] [PubMed]
- Yi, L.; Dong, N.; Yun, Y.; Deng, B.; Ren, D.; Liu, S.; Liang, Y. Chemometric methods in data processing of mass spectrometry-based metabolomics: A review. Anal. Chim. Acta 2016, 914, 17–34. [Google Scholar] [CrossRef] [PubMed]
- Karaman, I. Preprocessing and pretreatment of metabolomics data for statistical analysis. Adv. Exp. Med. Biol. 2017, 965, 145–161. [Google Scholar] [CrossRef]
- Azad, R.K.; Shulaev, V. Metabolomics technology and bioinformatics for precision medicine. Brief. Bioinform. 2019, 20, 1957–1971. [Google Scholar] [CrossRef]
- Xia, J.; Wishart, D.S. Using MetaboAnalyst 3.0 for comprehensive metabolomics data analysis. Curr. Protoc. Bioinform. 2016, 55, 14.10.11–14.10.91. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Lodi, A.; Ronen, S.M. Magnetic resonance spectroscopy detectable metabolomic fingerprint of response to antineoplastic treatment. PLoS ONE 2011, 6, 26155. [Google Scholar] [CrossRef] [Green Version]
- Qu, F.; Gu, Y.; Wang, Q.; He, M.; Zhou, F.; Sun, J.; Wang, G.; Peng, Y. Metabolomic profiling to evaluate the efficacy of proxalutamide, a novel androgen receptor antagonist, in prostate cancer cells. Invest. New Drugs 2020, 38, 1292–1302. [Google Scholar] [CrossRef]
- Sun, J.; Bok, R.A.; DeLos Santos, J.; Upadhyay, D.; DeLos Santos, R.; Agarwal, S.; Van Criekinge, M.; Vigneron, D.B.; Aggarwal, R.; Peehl, D.M.; et al. Resistance to androgen deprivation leads to altered metabolism in human and murine prostate cancer cell and tumor models. Metabolites 2021, 11, 139. [Google Scholar] [CrossRef] [PubMed]
- Kailavasan, M.; Rehman, I.; Reynolds, S.; Bucur, A.; Tozer, G.; Paley, M. NMR-based evaluation of the metabolic profile and response to dichloroacetate of human prostate cancer cells. NMR Biomed. 2014, 27, 610–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ananieva, E.A.; Wilkinson, A.C. Branched-chain amino acid metabolism in cancer. Curr. Opin. Clin. Nutr. Metab. Care 2018, 21, 64–70. [Google Scholar] [CrossRef] [Green Version]
- Hatakeyama, H.; Fujiwara, T.; Sato, H.; Terui, A.; Hisaka, A. Investigation of metabolomic changes in sunitinib-resistant human renal carcinoma 786-O cells by capillary electrophoresis-time of flight mass spectrometry. Biol. Pharm. Bull. 2018, 41, 619–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saylor, P.J.; Karoly, E.D.; Smith, M.R. Prospective study of changes in the metabolomic profiles of men during their first three months of androgen deprivation therapy for prostate cancer. Clin. Cancer Res. 2012, 18, 3677–3685. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.; Liu, X.; Jiao, L.; Xu, C.; Zhang, Z.; Wang, L.; Li, Y.; Yang, C.; Zhang, W.; Sun, Y. Metabolomic evaluation of the response to endocrine therapy in patients with prostate cancer. Eur. J. Pharmacol. 2014, 729, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Madhu, B.; Shaw, G.L.; Warren, A.Y.; Neal, D.E.; Griffiths, J.R. Response of Degarelix treatment in human prostate cancer monitored by HR-MAS (1)H NMR spectroscopy. Metabolomics 2016, 12, 120. [Google Scholar] [CrossRef] [Green Version]
- Chi, J.T.; Lin, P.H.; Tolstikov, V.; Oyekunle, T.; Chen, E.Y.; Bussberg, V.; Greenwood, B.; Sarangarajan, R.; Narain, N.R.; Kiebish, M.A.; et al. Metabolomic effects of androgen deprivation therapy treatment for prostate cancer. Cancer Med. 2020, 9, 3691–3702. [Google Scholar] [CrossRef]
- Zheng, H.; Zhu, Y.; Shao, X.; Cai, A.; Dong, B.; Xue, W.; Gao, H. Distinct metabolic signatures of hormone-sensitive and castration-resistant prostate cancer revealed by a (1)H NMR-based metabolomics of biopsy tissue. J. Proteome Res. 2020, 19, 3741–3749. [Google Scholar] [CrossRef]
- Lin, H.M.; Mahon, K.L.; Weir, J.M.; Mundra, P.A.; Spielman, C.; Briscoe, K.; Gurney, H.; Mallesara, G.; Marx, G.; Stockler, M.R. A distinct plasma lipid signature associated with poor prognosis in castration-resistant prostate cancer. Int. J. Cancer 2017, 141, 2112–2120. [Google Scholar] [CrossRef]
- Qu, F.; Gu, Y.; Xue, M.; He, M.; Zhou, F.; Wang, G.; Peng, Y. Impact of therapy on cancer metabolism in high-risk localized prostate cancer treated with neoadjuvant docetaxel and androgen deprivation therapy. Prostate 2021, 81, 560–571. [Google Scholar] [CrossRef] [PubMed]
- Butler, L.M.; Centenera, M.M.; Swinnen, J.V. Androgen control of lipid metabolism in prostate cancer: Novel insights and future applications. Endocr. Relat. Cancer 2016, 23, 219–227. [Google Scholar] [CrossRef]
- Wen, H.; Lee, S.; Zhu, W.G.; Lee, O.J.; Yun, S.J.; Kim, J.; Park, S. Glucose-derived acetate and ACSS2 as key players in cisplatin resistance in bladder cancer. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2019, 1864, 413–421. [Google Scholar] [CrossRef]
- Yang, C.; Sun, X.; Wang, H.; Lu, T.; Wu, K.; Guan, Y.; Tang, J.; Liang, J.; Sun, R.; Guo, Z.; et al. Metabolomic profiling identifies novel biomarkers and mechanisms in human bladder cancer treated with submucosal injection of gemcitabine. Int. J. Mol. Med. 2019, 44, 1952–1962. [Google Scholar] [CrossRef] [Green Version]
- Sato, T.; Kawasaki, Y.; Maekawa, M.; Takasaki, S.; Morozumi, K.; Sato, M.; Shimada, S.; Kawamorita, N.; Yamashita, S.; Mitsuzuka, K.; et al. Metabolomic analysis to elucidate mechanisms of sunitinib resistance in renal cell carcinoma. Metabolites 2020, 11, 1. [Google Scholar] [CrossRef] [PubMed]
- Mock, A.; Zschabitz, S.; Kirsten, R.; Scheffler, M.; Wolf, B.; Herold-Mende, C.; Kramer, R.; Busch, E.; Jenzer, M.; Jager, D.; et al. Serum very long-chain fatty acid-containing lipids predict response to immune checkpoint inhibitors in urological cancers. Cancer Immunol. Immunother. 2019, 68, 2005–2014. [Google Scholar] [CrossRef]
- Jobard, E.; Blanc, E.; Negrier, S.; Escudier, B.; Gravis, G.; Chevreau, C.; Elena-Herrmann, B.; Tredan, O. A serum metabolomic fingerprint of bevacizumab and temsirolimus combination as first-line treatment of metastatic renal cell carcinoma. Br. J. Cancer 2015, 113, 1148–1157. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Bullock, K.; Gurjao, C.; Braun, D.; Shukla, S.A.; Bossé, D.; Lalani, A.-K.A.; Gopal, S.; Jin, C.; Horak, C. Metabolomic adaptations and correlates of survival to immune checkpoint blockade. Nat. Commun. 2019, 10, 4346. [Google Scholar] [CrossRef] [Green Version]
- Miranda-Goncalves, V.; Lameirinhas, A.; Henrique, R.; Baltazar, F.; Jeronimo, C. The metabolic landscape of urological cancers: New therapeutic perspectives. Cancer Lett. 2020, 477, 76–87. [Google Scholar] [CrossRef]
- Bellmunt, J.; Szczylik, C.; Feingold, J.; Strahs, A.; Berkenblit, A. Temsirolimus safety profile and management of toxic effects in patients with advanced renal cell carcinoma and poor prognostic features. Ann. Oncol. 2008, 19, 1387–1392. [Google Scholar] [CrossRef] [PubMed]
- Wettersten, H.I.; Aboud, O.A.; Lara, P.N., Jr.; Weiss, R.H. Metabolic reprogramming in clear cell renal cell carcinoma. Nat. Rev. Nephrol. 2017, 13, 410–419. [Google Scholar] [CrossRef] [PubMed]
Cancer Therapy under Study | Samples | Instrumental and Statistical Analysis | Treatment Response | Metabolic Interpretation | Ref. |
---|---|---|---|---|---|
In vitro models | |||||
Chemotherapy: cisplatin (10 mM) 2 days of treatment exposure | Intracellular (lipophilic) metabolome of BCa cell lines: Cisplatin-sensitive cells T24S, n = 4 Cisplatin resistant cells T24R, n = 4 | UPLC-MS PCA Student’s t-test p-value | Cisplatin resistance effects: ↑ CE (22:6); TG (49:1); TG (53:1) | Cisplatin-resistant condition altered lipid metabolism (storage of fatty acids and phospholipid biosynthesis) | [13] |
Chemotherapy: cisplatin (10 μM) 12 h of treatment exposure | Intracellular (polar) metabolome of cell lines: Cisplatin-sensitive cells T24S, n ≥ 3 Cisplatin-resistant cells T24R, n ≥ 3 | 2D NMR (1H–13C HSQC) Student’s t test | Cisplatin resistance effects: ↑ acetate; fatty acids ↓ glucose; lactate; alanine: | Cisplatin-resistant condition was associated with an upregulation of glycolysis (Warburg effect) and fatty acid synthesis (cellular proliferation) | [92] |
Human models | |||||
Chemotherapy: gemcitabine (50 mg, dissolved in 20 mL normal saline) 30 min of treatment exposure | Lipophilic tissue extracts: BCa untreated group, n = 12 BCa treated group, n = 12 adjacent normal group, n = 12 adjacent normal treated group, n = 12 | LC-HRMS PCA Paired student t-test | Gemcitabine effects in BCa treated group: ↓ bilirubin; retinal Gemcitabine effects in adjacent normal treated group: ↑ histamine ↓ thiamine | - | [93] |
Cancer Therapy under Study | Samples | Instrumental and Statistical Analysis | Treatment Response | Biological Interpretation | Ref. |
---|---|---|---|---|---|
In vitro and animal models | |||||
Targeted therapy: sunitinib (10 mM) 5 days of treatment exposure | Intracellular (polar) metabolome of RCC cell lines: 786-O Par (parental), n = 3 786-O Res (sunitinib-resistant), n = 3 | CE-TOF MS PCA Fold change Two-tailed student t-test | Sunitinib resistance effects: ↑ dihydroxyacetone phosphate; fructose 1,6-bisphosphate; choline; cysteine; methionine; thymidine; citrate; glycerophosphorate; fumarate; glucose-6-phosphate; tryptophan; ADP; creatine; 6-phosphogluconate; sedoheptulose-7-phosphate; fructose-6-phosphate; glutamate; malic acid; acetyl-CoA ↓ oxidized glutathione; ornithine; creatinine; guanine; succinic acid | Sunitinib resistant condition is associated with up-regulation on lipid biosynthesis (membrane metabolism), energy metabolism (glycolysis and TCA cycle), arginine and proline pathways, urea cycle and nucleic acid biosynthesis | [83] |
Target therapy: sunitinib (25 mg/kg per day) 4 weeks of treatment exposure | Intracellular (lipophilic) metabolome of primary cell culture of xenograft RCC mouse model: 786-P (parental) untreated, n = 5 treated, n = 5 786-R (sunitinib-resistant) treated, n = 5 | LC-MS/MS Mann–Whitney U test One-way ANOVA Post hoc Tukey’s test | Sunitinib resistance effects in 786-R (compared with 786-P treated): ↑ glutamine; 2-oxoglutaric acid; fructose 6-phosohate; D-sedoheptulose 7-phosphate; glucose 1-phosphate; myo-inositol Sunitinib resistance effects in 786-R (compared with 786-P untreated) 1-phosphate; fructose 6-phosohate; D-sedoheptulose 7-phosphate ↓ glutamate; glutathione; myo-inositol | Sunitinib resistant condition is associated with up-regulation of energy metabolism (glutamine uptake, glycolysis, and TCA cycle) and antioxidant activity | [94] |
Human models | |||||
Targeted therapy: Arm A- bevacizumab (10 mg/kg1 every 2 weeks) and temsirolimus (25 mg per week) combination Arm B—sunitinib (50 mg per day for 4 weeks followed by 2 weeks off) Arm C- interferon- α (9 mIU three times per week) and bevacizumab (10 mg/ kg every 2 weeks) combination 2 and 5–6 weeks of treatment exposure | Hydrophilic serum extracts: Arm A RCC untreated group, n = 56 treated group (2 weeks), n = 55 treated group (5–6 weeks), n = 49 Arm B RCC untreated group, n = 26 treated group (2 weeks), n = 22 treated group (5–6 weeks), n = 20 Arm C RCC untreated group, n = 20 treated group (2 weeks), n = 25 treated group (5–6 weeks), n = 22 | 1H NMR PCA OPLS Cross-validation ANOVA | Bevacizumab and temsirolimus combination effects in RCC treated group (2 weeks): ↑ glycerol backbone of phosphoglycerides; triacylglycerides; fatty acids; very low-density lipoproteins and low-density lipoproteins; glucose; N-acetylglycoproteins Bevacizumab and temsirolimus combination effects in RCC treated group (5–6 weeks): ↑ glycerol backbone of phosphoglycerides; triacylglycerides fatty acids; very low-density lipoproteins; low-density lipoproteins; glucose; N-acetylglycoproteins; BCAAs; alanine; glycine; glutamine; acetoacetate; acetone; glycerol; cholesterol ↓acetate; ethanol Sunitinib effects in RCC treated group (2 and 5–6 weeks): no significant changes were found Interferon-α and bevacizumab combination effects in RCC treated group (5–6 weeks): ↑ lipids and very low-density lipoproteins ↓ low-density lipoproteins | Bevacizumab and temsirolimus combination caused the greatest modification essentially in lipid and lipoprotein metabolisms | [96] |
Immunotherapy: Arm A- nivolumab (phase 1: 0.3/3/10 mg/kg every 3 weeks; phase 3: 3 mg/kg every 2weeks) Arm B- everolimus phase 3 (10 mg per day) 4 and 8 weeks of treatment exposure | Lipophilic serum extracts: Arm A Phase 1 trial RCC untreated group, n = 91 treated group (4 weeks), n = 84 treated group (9 weeks), n = 69 Phase 3 trial RCC untreated group, n = 392 treated group (4 weeks), n = 98 treated group (8 weeks), n = 324 Arm B RCC untreated group, n = 349 treated group (4 weeks), n = 58 treated group (8 weeks), n = 0 | LC-MS Volcano plots Benjamin-Hochberg multiple testing corrections Pearson correlations | Nivolumab effects in RCC treated group (phase 1 and 3): ↑ kynurenine Everolimus effects in RCC treated group: no significant changes were found | Nivolumab exposure upregulated tryptophan catabolism (increased tryptophan to kynurenine conversion) resulting in an adaptive immune suppressive microenvironment | [97] |
Immunotherapy (checkpoint inhibitors): nivolumab and atezolizumab with bevacizumab 2 and 4 weeks of treatment exposure | Lipophilic serum extracts: RCC treated and responder group, n = 10 RCC treated and non-responder group, n = 15 | LC-MS T-distributed stochastic neighbor embedding Linear mixed effects models 10-Fold cross validation | Immunotherapy effects in RCC treated group: PC(38:0), PC(42:0), PC(42:2), PC(40:6), PC(42:3), PC(44:6), SM(OH, 22:1), SM(24:1), SM(26:1), SM(20:2) | Immunotherapy upregulated β- oxidation of lipids rather than glycolysis and altered T cell metabolism to enhance therapeutic response | [95] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amaro, F.; Carvalho, M.; Bastos, M.d.L.; Guedes de Pinho, P.; Pinto, J. Pharmacometabolomics Applied to Personalized Medicine in Urological Cancers. Pharmaceuticals 2022, 15, 295. https://doi.org/10.3390/ph15030295
Amaro F, Carvalho M, Bastos MdL, Guedes de Pinho P, Pinto J. Pharmacometabolomics Applied to Personalized Medicine in Urological Cancers. Pharmaceuticals. 2022; 15(3):295. https://doi.org/10.3390/ph15030295
Chicago/Turabian StyleAmaro, Filipa, Márcia Carvalho, Maria de Lourdes Bastos, Paula Guedes de Pinho, and Joana Pinto. 2022. "Pharmacometabolomics Applied to Personalized Medicine in Urological Cancers" Pharmaceuticals 15, no. 3: 295. https://doi.org/10.3390/ph15030295
APA StyleAmaro, F., Carvalho, M., Bastos, M. d. L., Guedes de Pinho, P., & Pinto, J. (2022). Pharmacometabolomics Applied to Personalized Medicine in Urological Cancers. Pharmaceuticals, 15(3), 295. https://doi.org/10.3390/ph15030295