Quality by Design Assisted Optimization of a Chiral Capillary Electrokinetic Chromatographic Method for the Separation of Amlodipine Enantiomers Using Maltodextrin as Chiral Selector
Abstract
:1. Introduction
2. Results
2.1. Effect of Separation Factors on Resolution
2.2. Enantioseparation Profiles
2.3. The Most Affecting Factors and Predicted Responses
3. Discussion
3.1. Rationals of the Factor Selection and Definition of the Design Space
3.2. Evaluation of the Factor Effects on the Resolution
3.3. Prediction of Resolution and Optimal Experimental Conditions
3.4. Method Robustness
3.5. Method Application
3.5.1. Enantiomers Identification
3.5.2. Enantiomeric Ratio
3.5.3. Enantiomers Determination
4. Materials and Methods
4.1. Materials
4.2. CE Instrumentation
4.3. D-Optimal Design
4.4. Experimental and Statistical Data Evaluation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, B.; Haynie, D.T. Chiral Drug Separation. Encycl. Chem. Proc. 2006, 1, 449–458. [Google Scholar] [CrossRef]
- Tsioupi, D.A.; Stefan-Vanstaden, R.-I.; Kapnissi-Christodoulou, C.P. Chiral selectors in CE: Recent developments and applications. Electrophoresis 2013, 34, 178–204. [Google Scholar] [CrossRef] [PubMed]
- Scriba, G.K.E. Chiral Separations in Capillary Electrophoresis. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2015; Volume 230, pp. 1–9. [Google Scholar]
- Hancu, G.; Orlandini, S.; Papp, L.A.; Modroiu, A.; Gotti, R.; Furlanetto, S. Application of experimental design methodologies in the enantioseparation of pharmaceuticals by capillary electrophoresis: A review. Molecules 2021, 26, 4681. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Jia, Z.-P.; Fan, J.-J.; Chen, L.-R.; Xie, H.; Ma, J.; Ge, X.; Zhang, Q.; Ao, Y.; Wang, J. CE, with Hydroxypropyl-β-Cyclodextrin as Chiral Selector, for separation and determination of the enantiomers of amlodipine in the serum of hypertension patients. Chromatographia 2007, 65, 575–579. [Google Scholar] [CrossRef]
- Mikuš, P.; Maráková, K.; Valášková, I.; Havránek, E. Determination of amlodipine enantiomers in pharmaceuticals using capillary electrophoresis separation and diode array detection. Pharmazie 2009, 64, 76–79. [Google Scholar]
- Small, T.S.; Fell, A.F.; Coleman, M.W.; Berridge, J.C. Central composite design for the rapid optimisation of ruggedness and chiral separation of amlodipine in capillary electrophoresis. Chirality 1995, 7, 226–234. [Google Scholar] [CrossRef]
- Kanchi, S.; Sagrado, S.; Sabela, M.I.; Bisetty, K. (Eds.) Capillary Electrophoresis: Trends and Developments in Pharmaceutical Research; Pan Stanford Publishing: Singapore, 2017. [Google Scholar]
- Nishi, H.; Kuwahara, Y. Enantiomer separation by capillary electrophoresis utilizing noncyclic mono-, oligo- and polysaccharides as chiral selectors. J. Biochem. Biophys. Methods 2001, 48, 89–102. [Google Scholar] [CrossRef]
- Tabani, H.; Fakhari, A.R.; Nojavan, S. Maltodextrins as chiral selectors in CE: Molecular structure effect of basic chiral compounds on the enantioseparation. Chirality 2014, 26, 620–628. [Google Scholar] [CrossRef]
- Soini, H.; Stefansson, M.; Riekkola, M.-L.; Novotny, M.V. Maltooligosaccharides as chiral selectors for the separation of pharmaceuticals by capillary electrophoresis. Anal. Chem. 1994, 66, 3477–3484. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, H.; Sun, Z.; Ling, X.; Tu, P. Enantiomer Separation of the Four Diastereomers of Guaiacyl Glycerol from Hydnocarpus annamensis Enantiomer Separation of the Four Diastereomers of Guaiacyl Glycerol from Hydnocarpus annamensis by Capillary Electrophoresis with HP-β-CD as a Chiral Selector. J. Chromatgr. Sci. 2007, 45, 605–609. [Google Scholar] [CrossRef] [Green Version]
- Escuder-Gilabert, L.; Martín-Biosca, Y.; Medina-Hernández, M.J.; Sagrado, S. Cyclodextrins in capillary electrophoresis: Recent developments and new trends. J. Chromatogr. A 2014, 1357, 2–23. [Google Scholar] [CrossRef] [PubMed]
- Jankovic, A.; Chaudhary, G.; Goia, F. Designing the design of experiments (DOE)—An investigation on the influence of different factorial designs on the characterization of complex systems. Energy Build. 2021, 250, 111298. [Google Scholar] [CrossRef]
- Thorsteinsdóttir, U.A.; Thorsteinsdóttir, M. Design of experiments for development and optimization of a liquid chromatography coupled to tandem mass spectrometry bioanalytical assay. J. Mass Spectrom. JMS 2021, 56, e4727. [Google Scholar] [CrossRef] [PubMed]
- Dalal, J.; Mohan, J.C.; Iyengar, S.S.; Hiremath, J.; Sathyamurthy, I.; Bansal, S.; Kahali, D.; Dasbiswas, A. S-Amlodipine: An isomer with difference-time to shift from racemic amlodipine. Int. J. Hypertens. 2018, 2018, 8681792. [Google Scholar] [CrossRef]
- Luksa, J.; Josic, D.; Kremser, M.; Kopitar, Z.; Milutinovic, S. Pharmacokinetic behaviour of R-(1)- and S-(2)-amlodipine after 1single enantiomer administration. J. Chromatogr. B 1997, 703, 185–193. [Google Scholar] [CrossRef]
- Valcárcel, Y.; Jiménez, R.; Hernández, V.; Arístegui, R.; Gil, A. Efficacy and safety of amlodipine: A comparative study of hypertensive patients treated at primary- and specialised-care centres. Clin. Drug Investig. 2006, 26, 125–133. [Google Scholar] [CrossRef]
- Ermakov, D.; Pashanova, O. Comparative assessment of the clinical efficacy of various amlodipine isomers in 1st and 2nd degree arterial hypertension patients. Bangladesh J. Med. Sci. 2021, 20, 439–448. [Google Scholar] [CrossRef]
- Kannappan, V.; Mannemala, S.S. Simultaneous enantioseparation and purity determination of chiral switches of amlodipine and atenolol by liquid chromatography. J. Pharm. Biomed. Anal. 2016, 120, 221–227. [Google Scholar] [CrossRef]
- Auditore, R.; Santagati, N.A.; Aturki, Z.; Fanali, S. Enantiomeric separation of amlodipine and its two chiral impurities by nano-liquid chromatography and capillary electrochromatography using a chiral stationary phase based on cellulose tris(4-chloro-3-methylphenylcarbamate). Electrophoresis 2013, 34, 2593–2600. [Google Scholar] [CrossRef]
- Xie, J.; Tan, Q.; Yang, L.; Lai, S.; Tang, S.; Cai, C.; Chen, X. A simple and rapid method for chiral separation of amlodipine using dual chiral mobile phase additives. Anal. Methods 2014, 6, 4408–4413. [Google Scholar] [CrossRef]
- Cârcu-Dobrin, M.; Sabău, A.G.; Hancu, G.; Árpád, G.; Rusu, A.; Kelemen, H.; Papp, L.A.; Cârje, A. Chiral discrimination of amlodipine from pharmaceutical products using capillary electrophoresis. Braz. J. Pharm. Sci. 2020, 56, 127. [Google Scholar] [CrossRef] [Green Version]
- Nojavan, S.; Pourmoslemi, S.; Behdad, H.; Fakhari, A.R.; Mohammadi, A. Application of maltodextrin as chiral selector in capillary electrophoresis for quantification of amlodipine enantiomers in commercial tablets. Chirality 2014, 26, 394–399. [Google Scholar] [CrossRef] [PubMed]
Factor Combinations | Voltage | MD | pH | Rs | SD | t2 | SD |
---|---|---|---|---|---|---|---|
kV | % w/v | Min | |||||
1 | 20 | 10 | 2.0 | 1.73 | 0.03 | 12.15 | 0.47 |
2 | 15 | 8.75 | 2.0 | 1.80 | 0.02 | 16.42 | 0.39 |
3 | 15 | 10 | 4.0 | 1.61 | 0.05 | 11.37 | 0.55 |
4 | 15 | 10 | 2.0 | 2.10 | 0.06 | 17.83 | 0.64 |
5 | 15 | 10 | 3.0 | 1.96 | 0.08 | 16.06 | 0.58 |
6 | 17.5 | 10 | 2.0 | 1.93 | 0.02 | 14.73 | 0.32 |
7 | 17.5 | 7.5 | 3.0 | 1.40 | 0.03 | 10.46 | 0.37 |
8 | 15 | 7.5 | 2.0 | 1.59 | 0.04 | 15.58 | 0.80 |
9 | 20 | 7.5 | 2.0 | 1.31 | 0.02 | 10.28 | 0.36 |
10 | 20 | 10 | 4.0 | 1.47 | 0.03 | 7.80 | 0.42 |
11 | 20 | 8.75 | 3.0 | 1.50 | 0.02 | 10.19 | 0.02 |
12 | 17.5 | 8.75 | 4.0 | 1.49 | 0.08 | 8.88 | 0.77 |
13 | 20 | 8.75 | 2.0 | 1.46 | 0.01 | 10.27 | 0.17 |
14 | 15 | 7.5 | 4.0 | 1.19 | 0.04 | 8.62 | 0.37 |
15 | 20 | 7.5 | 4.0 | 1.07 | 0.04 | 6.04 | 0.31 |
Term | Resolution | Analysis Time | ||||
---|---|---|---|---|---|---|
Coefficient | SE | Sig. | Coefficient | SE | Sig. | |
Constant | 1.67 | 0.0338 | 3.07·10−11 | 12.2 | 0.256 | 3.88·10−12 |
Voltage (U) | −0.115 | 0.0137 | 3.10·10−5 | −2.22 | 0.131 | 3.85·10−8 |
Concentration (MD) | 0.224 | 0.0142 | 2.65·10−7 | 1.18 | 0.135 | 1.08·10−5 |
pH | −0.156 | 0.0137 | 3.26·10−6 | −2.59 | 0.1303 | 9.57·10−9 |
pH × U | 0.0499 | 0.0150 | 0.0104 | 0.654 | 0.143 | 0.00132 |
U2 | −0.0720 | 0.0306 | 0.0464 | --- | --- | --- |
pH2 | −0.0954 | 0.0306 | 0.0143 | −1.11 | 0.288 | 0.00390 |
Adj. R2 | 0.974 | 0.984 | ||||
RMSE | 0.0466 | 0.444 |
Separation Condition | Instrument (Year) | Lt/Leff (cm) | E (V/cm) | U (kV) | MD (% w/v) | pH | Experiment * | Predicted | ||
---|---|---|---|---|---|---|---|---|---|---|
Rs ± SD | ± SD | ± SD | ± SD | |||||||
I | Instrument A (2018) | 45.5/37 | 440 | 20 | 10 | 4 | 1.50 ± 0.03 | 7.802 ± 0.422 | 1.50 ± 0.17 | 8.159 ± 1.464 |
Instrument B (2022) | 45.5/37 | 440 | 20 | 10 | 4 | 1.61 ± 0.11 | 9.213 ± 0.653 | |||
Instrument C (2022) | 47/37 | 440 | 20.7 | 10 | 4 | 1.22 ± 0.04 | 9.583 ± 0.329 | |||
II | Instrument A (2018) | 45.5/37 | 385 | 17.5 | 8.75 | 3 | -- ** | -- ** | 1.67 ± 0.17 | 12.236 ± 1.153 |
Instrument B (2022) | 45.5/37 | 385 | 17.5 | 8.75 | 3 | 1.69 ± 0.07 | 12.763 ± 0.790 | |||
Instrument C (2022) | 47/37 | 385 | 18.1 | 8.75 | 3 | 1.39 ± 0.04 | 12.335 ± 0.150 | |||
III | Instrument A (2018) | 45.5/37 | 330 | 15 | 10 | 2 | 2.10 ± 0.06 | 17.829 ± 0.641 | 2.05 ± 0.14 | 17.783 ± 1.191 |
Instrument B (2022) | 45.5/37 | 330 | 15 | 10 | 2 | 2.14 ± 0.07 | 20.606 ± 0.092 | |||
Instrument C (2022) | 47/37 | 330 | 15.5 | 10 | 2 | 1.94 ± 0.03 | 18.113 ± 0.085 |
Analyte | Ratio (%) | |
---|---|---|
S | R | |
(S)-amlodipine | 91.8 ± 0.9 | 8.2 ± 0.9 * |
(RS)-amlodipine | 50.1 ± 0.1 | 49.9 ± 0.1 |
Standard addition ** | 65.2 ± 0.4 | 34.8 ± 0.4 |
Parameter | S | R |
---|---|---|
Range (µg/mL) | 180–600 | 180–600 |
Linearity | 0.9970 | 0.9842 |
LOD * (µg/mL) | 30 | 69 |
LOQ ** (µg/mL) | 91 | 209 |
Accuracy (%) | 90–96 | 104–111 |
Precision *** (% RSD) | 0.9 | 1.8 |
A | B | |
---|---|---|
Content (mg/tablet) * | 5.32 ± 0.02 | 10.18 ± 0.13 |
Recovery (%) ** | 106.4 ± 0.4 | 101.8 ± 1.3 |
Factors | Code | Levels | ||
---|---|---|---|---|
−1 (Low) | 0 (Mid) | +1 (High) | ||
Voltage (kV) | U | 15 | 17.5 | 20 |
MD conc. (% w/v) | MD | 7.5 | 8.75 | 10 |
pH | pH | 2.0 | 3.0 | 4.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ratih, R.; Wätzig, H.; Stein, M.O.; El Deeb, S. Quality by Design Assisted Optimization of a Chiral Capillary Electrokinetic Chromatographic Method for the Separation of Amlodipine Enantiomers Using Maltodextrin as Chiral Selector. Pharmaceuticals 2022, 15, 319. https://doi.org/10.3390/ph15030319
Ratih R, Wätzig H, Stein MO, El Deeb S. Quality by Design Assisted Optimization of a Chiral Capillary Electrokinetic Chromatographic Method for the Separation of Amlodipine Enantiomers Using Maltodextrin as Chiral Selector. Pharmaceuticals. 2022; 15(3):319. https://doi.org/10.3390/ph15030319
Chicago/Turabian StyleRatih, Ratih, Hermann Wätzig, Matthias Oliver Stein, and Sami El Deeb. 2022. "Quality by Design Assisted Optimization of a Chiral Capillary Electrokinetic Chromatographic Method for the Separation of Amlodipine Enantiomers Using Maltodextrin as Chiral Selector" Pharmaceuticals 15, no. 3: 319. https://doi.org/10.3390/ph15030319
APA StyleRatih, R., Wätzig, H., Stein, M. O., & El Deeb, S. (2022). Quality by Design Assisted Optimization of a Chiral Capillary Electrokinetic Chromatographic Method for the Separation of Amlodipine Enantiomers Using Maltodextrin as Chiral Selector. Pharmaceuticals, 15(3), 319. https://doi.org/10.3390/ph15030319