Synthesis, Characterization and Biological Activities of New Schiff Base Compound and Its Lanthanide Complexes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Spectral Investigations of the Ligand (L) Using 1H-NMR and 13C-NMR
2.3. FTIR Spectral Investigations of Schiff Base L and Related LnIII Complexes (La–Lc)
2.4. UV-Vis Absorption Spectra
2.5. Mass Spectra
2.6. Thermogravimetric Analysis (TGA)
2.7. Antioxidant Activity
2.7.1. Total Antioxidant Activity
2.7.2. DPPH Radical Scavenging Activity
2.8. Biological Activities
2.8.1. Antimicrobial and Antifungal Activity
2.8.2. Cytotoxic Activity
3. Materials and Methods
3.1. Material and Measurements
3.2. Synthesis of Schiff Base I, C16H14N2O2S
3.3. Synthesis of Lanthanide Schiff Base Complexes La, Lb and Lc; Ln: Gd, Sm and Nd Respectively
3.4. Antioxidant Activities
3.4.1. Total Antioxidant Capacity Assay
3.4.2. DPPH Radical Scavenging Activity Assay
3.5. Biological Activities Assessment
3.5.1. Antimicrobial and Antifungal Activity Assessment
3.5.2. Antitumor Activity Assessment
Cell Culture and Treatment
In Vitro Cytotoxicity Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Istitutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xavier, A.; Srividhya, N. Synthesis and study of Schiff base ligands. IOSR J. Appl. Chem. 2014, 7, 6–15. [Google Scholar] [CrossRef]
- Badihian, S.; Shaygannejad, V.; Soleimani, P.; Mirmosayyeb, O.; Samee, Z.; Manouchehri, N.; Esmaeil, N. Decreased serum levels of interleukin-35 among multiple sclerosis patients may be related to disease progression. J. Biol. Regul. Homeost. Agents 2018, 32, 1249–1253. [Google Scholar] [PubMed]
- Buldurun, K.; Turan, N.; Savcı, A.; Çolak, N. Synthesis, structural characterization and biological activities of metal (II) complexes with Schiff bases derived from 5-bromosalicylaldehyde: Ru (II) complexes transfer hydrogenation. J. Saudi Chem. Soc. 2019, 23, 205–214. [Google Scholar] [CrossRef]
- Shaygan, S.; Pasdar, H.; Foroughifar, N.; Davallo, M.; Motiee, F. Cobalt (II) complexes with Schiff base ligands derived from terephthalaldehyde and ortho-substituted anilines: Synthesis, characterization and antibacterial activity. Appl. Sci. 2018, 8, 385. [Google Scholar] [CrossRef] [Green Version]
- Cotton, S.A. Establishing coordination numbers for the lanthanides in simple complexes. Comptes Rendus Chim. 2005, 8, 129–145. [Google Scholar] [CrossRef]
- Al Momani, W.M.; Taha, Z.A.; Ajlouni, A.M.; Shaqra, Q.M.A.; Al Zouby, M. A study of in vitro antibacterial activity of lanthanides complexes with a tetradentate Schiff base ligand. Asian Pac. J. Trop. Biomed. 2013, 3, 367–370. [Google Scholar] [CrossRef] [Green Version]
- Sagar Babu, S.V.; Krishna Rao, K.; Ill Lee, Y. Synthesis, characterization, luminescence and DNA binding properties of Ln (III)-Schiff base family. J. Chil. Chem. Soc. 2017, 62, 3447–3453. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Yang, Y.-L.; Wang, P.; Li, L.; Fan, R.-Q.; Cao, W.-W.; Yang, B.; Wang, H.; Liu, J.-Y. High efficiency co-sensitized solar cell based on luminescent lanthanide complexes with pyridine-2,6-dicarboxylic acid ligands. Dalton Trans. 2012, 41, 10619–10625. [Google Scholar] [CrossRef]
- Wittig, G.; Schöllkopf, U. Über Triphenyl-phosphin-methylene als olefinbildende Reagenzien I. Mitteil. Chem. Ber. 1954, 87, 1318–1330. [Google Scholar] [CrossRef]
- Heck, R.F.; Nolley, J.P., Jr. Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides. J. Org. Chem. 1972, 37, 2320–2322. [Google Scholar]
- Milstein, D.; Stille, J. Palladium-catalyzed coupling of tetraorganotin compounds with aryl and benzyl halides. Synthetic utility and mechanism. J. Am. Chem. Soc. 1979, 101, 4992–4998. [Google Scholar] [CrossRef]
- Anzini, M.; Chelini, A.; Mancini, A.; Cappelli, A.; Frosini, M.; Ricci, L.; Valoti, M.; Magistretti, J.; Castelli, L.; Giordani, A. Synthesis and biological evaluation of amidine, guanidine, and thiourea derivatives of 2-amino (6-trifluoromethoxy) benzothiazole as neuroprotective agents potentially useful in brain diseases. J. Med. Chem. 2010, 53, 734–744. [Google Scholar] [CrossRef]
- Kathiresan, S.; Annaraj, J.; Bhuvanesh, N.S. Cu (II) and Ni (II) Complexes of Anthracene-Affixed Schiff Base: A Conflict between Covalent and Stacking Interactions with DNA Bases. ChemistrySelect 2017, 2, 5475–5484. [Google Scholar] [CrossRef]
- Song, X.-Q.; Wang, Z.-G.; Wang, Y.; Huang, Y.-Y.; Sun, Y.-X.; Ouyang, Y.; Xie, C.-Z.; Xu, J.-Y. Syntheses, characterization, DNA/HSA binding ability and antitumor activities of a family of isostructural binuclear lanthanide complexes containing hydrazine Schiff base. J. Biomol. Struct. Dyn. 2020, 38, 733–743. [Google Scholar] [CrossRef]
- Kafi-Ahmadi, L.; Marjani, A.P. Mononuclear Schiff base complexes derived from 5-azophenylsalicylaldehyde with Co (ii), Ni (ii) ions: Synthesis, characterization, electrochemical study and antibacterial properties. S. Afr. J. Chem. 2019, 72, 101–107. [Google Scholar] [CrossRef]
- Kaczmarek, M.T.; Zabiszak, M.; Nowak, M.; Jastrzab, R. Lanthanides: Schiff base complexes, applications in cancer diagnosis, therapy, and antibacterial activity. Coord. Chem. Rev. 2018, 370, 42–54. [Google Scholar] [CrossRef]
- El-Gammal, O.A.; Mohamed, F.S.; Rezk, G.N.; El-Bindary, A.A. Structural characterization and biological activity of a new metal complexes based of Schiff base. J. Mol. Liq. 2021, 330, 115522. [Google Scholar] [CrossRef]
- Ejidike, I.P.; Ajibade, P.A. Synthesis, characterization, antioxidant, and antibacterial studies of some metal (II) complexes of tetradentate schiff base ligand:(4E)-4-[(2-(E)-[1-(2, 4-dihydroxyphenyl) ethylidene] aminoethyl) imino] pentan-2-one. Bioinorg. Chem. Appl. 2015, 2015, 890734. [Google Scholar] [CrossRef] [Green Version]
- Keshavayya, J.; Pandurangappa, M.; Ravi, B. Synthesis, characterization and electrochemical investigations of azo dyes derived from 2-Amino-6-ethoxybenzothiazole. Chem. Data Collect. 2018, 17, 13–29. [Google Scholar]
- Ashashi, N.A.; Kumar, M.; Ul Nisa, Z.; Frontera, A.; Sahoo, S.C.; Sheikh, H.N. Solvothermal self-assembly of three lanthanide (III)-succinates: Crystal structure, topological analysis and DFT calculations on water channel. J. Mol. Struct. 2021, 1245, 131094. [Google Scholar] [CrossRef]
- Abou-Melha, K.; Faruk, H. Bimetallic complexes of Schiff base bis-[4-hydroxycuomarin-3-yl]-1N,5N-thiocarbohydrazone as a potentially dibasic pentadentate ligand. Synthesis, spectral, and antimicrobial properties. J. Iran. Chem. Soc. 2008, 5, 122–134. [Google Scholar] [CrossRef]
- Pilichos, E.; Font-Bardia, M.; Escuer, A.; Mayans, J. Structural and magnetic studies of mononuclear lanthanide complexes derived from N-rich chiral Schiff bases. Dalton Trans. 2021, 50, 1746–1753. [Google Scholar] [CrossRef] [PubMed]
- Capan, A.; Uruş, S.; Sönmez, M. Ru (III), Cr (III), Fe (III) complexes of Schiff base ligands bearing phenoxy Groups: Application as catalysts in the synthesis of vitamin K3. J. Saudi Chem. Soc. 2018, 22, 757–766. [Google Scholar] [CrossRef]
- Kaya, İ.; Demir, H.Ö.; Vilayetoğlu, A.R. The synthesis and characterisation of planar oligophenol with Schiff base substitute. Synth. Met. 2002, 126, 183–191. [Google Scholar] [CrossRef]
- Etaiw, S.E.H.; Abd El-Aziz, D.M.; Abd El-Zaher, E.H.; Ali, E.A. Synthesis, spectral, antimicrobial and antitumor assessment of Schiff base derived from 2-aminobenzothiazole and its transition metal complexes. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011, 79, 1331–1337. [Google Scholar] [CrossRef]
- Mabkhot, Y.N.; Al-Showiman, S.S.; Barakat, A.; Soliman, S.; Kheder, N.A.; Alharbi, M.M.; Asayari, A.; Muhsinah, A.B.; Ullah, A.; Badshah, S.L. Computational studies of 2-(4-oxo-3-phenylthiazolidin-2-ylidene) malononitrile. BMC Chem. 2019, 13, 25. [Google Scholar] [CrossRef]
- Dehouche, Z.; Klassen, T.; Oelerich, W.; Goyette, J.; Bose, T.; Schulz, R. Cycling and thermal stability of nanostructured MgH2–Cr2O3 composite for hydrogen storage. J. Alloy. Compd. 2002, 347, 319–323. [Google Scholar] [CrossRef]
- Dubey, R.; Dubey, U.; Mishra, C. Synthesis and physicochemical characterization of some Schiff base complexes of chromium (III). Indian J. Chem. Sect. A 2008, 47, 1208–1212. [Google Scholar]
- Bhowon, M.G.; Li Kam Wah, H.; Dosieah, A.; Ridana, M.; Ramalingum, O.; Lacour, D. Synthesis, characterization, and catalytic activity of metal Schiff base complexes derived from pyrrole-2-carboxaldehyde. Synth. React. Inorg. Met.-Org. Chem. 2004, 34, 1–16. [Google Scholar] [CrossRef]
- Abdul-Ghani, A.J.; Khaleel, A. Synthesis and characterization of new schiff bases derived from N (1)-substituted isatin with dithiooxamide and their co (II), Ni (II), Cu (II), Pd (II), and Pt (IV) complexes. Bioinorg. Chem. Appl. 2009, 2009, 413175. [Google Scholar] [CrossRef] [Green Version]
- Yao, L.; Su, C.; Qi, L.; Liu, C.; Hu, Y.; Zhao, H. The substituent structures and characteristic infrared spectra of alpha-furan esters. Guang Pu Xue Yu Guang Pu Fen Xi = Guang Pu 1999, 19, 32–34. [Google Scholar]
- Eltayeb, M.; Li, S.; Okoye, P.U.; Wang, S. Carbodiimide-Assisted Synthesis of High Purity Bis (cyclic carbonate) Under Atmospheric Conditions for Preparation of Non-Isocyanate Polyurethane. J. Polym. Environ. 2021, 29, 1880–1893. [Google Scholar] [CrossRef]
- Marotta, A.; Ambrogi, V.; Cerruti, P.; Mija, A. Green approaches in the synthesis of furan-based diepoxy monomers. RSC Adv. 2018, 8, 16330–16335. [Google Scholar] [CrossRef] [Green Version]
- Naeimi, H.; Salimi, F.; Rabiei, K. Mild and convenient one pot synthesis of Schiff bases in the presence of P2O5/Al2O3 as new catalyst under solvent-free conditions. J. Mol. Catal. A Chem. 2006, 260, 100–104. [Google Scholar] [CrossRef]
- Arora, K.; Chaubey, A.; Singhal, R.; Singh, R.P.; Pandey, M.; Samanta, S.; Malhotra, B.; Chand, S. Application of electrochemically prepared polypyrrole–polyvinyl sulphonate films to DNA biosensor. Biosens. Bioelectron. 2006, 21, 1777–1783. [Google Scholar] [CrossRef]
- Zheng, W.; Hu, J.; Han, Z.; Wang, Z.; Zheng, Z.; Langer, J.; Economy, J. Synthesis of porous carbon fibers with strong anion exchange functional groups. Chem. Commun. 2015, 51, 9853–9856. [Google Scholar] [CrossRef]
- Manna, S.; Mistri, S.; Bhunia, A.; Paul, A.; Zangrando, E.; Manna, S.C. Manganese (IV) complex with a polydentate Schiff base ligand: Synthesis, crystal structure, TDDFT calculation, electronic absorption and EPR spectral study. J. Coord. Chem. 2017, 70, 296–313. [Google Scholar] [CrossRef]
- Sinha, A.; Bala, M. Coordination behavior of herbicidal Schiff bases derived from 2-Amino-6-ethoxybenzothiazole towards copper (II). Asian J. Chem. 1991, 3, 45–51. [Google Scholar]
- Tsantis, S.T.; Zagoraiou, E.; Savvidou, A.; Raptopoulou, C.P.; Psycharis, V.; Szyrwiel, L.; Hołyńska, M.; Perlepes, S.P. Binding of oxime group to uranyl ion. Dalton Trans. 2016, 45, 9307–9319. [Google Scholar] [CrossRef]
- Sarıoğlu, A.O.; Yalçın, Ş.P.; Ceylan, Ü.; Aygün, M.; Kırpık, H.; Sönmez, M. Photoluminescence properties of samarium (III)-based complexes: Synthesis, characterization and single crystal X-ray. J. Lumin. 2020, 227, 117537. [Google Scholar] [CrossRef]
- Godlewska, P.; Hanuza, J.; Kucharska, E.; Solarz, P.; Roszak, S.; Kaczmarek, S.M.; Leniec, G.; Ptak, M.; Kopacz, M.; Hermanowicz, K. Optical and magnetic properties of lanthanide (III) complexes with quercetin-5′-sulfonic acid in the solid state and silica glass. J. Mol. Struct. 2020, 1219, 128504. [Google Scholar] [CrossRef]
- Huidrom, B.; Devi, N.R.; Singh, T.D.; Singh, N.R. Studies on the complexation of neodymium (III) ion with 1,2,4-1H-triazole and 1,2,3-benzotriazole in absence and presence of calcium (II) ion in aqueous and some selected different aquated organic solvents by an absorption spectroscopy involving 4f–4f transitions. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 85, 127–133. [Google Scholar]
- Irfanullah, M.; Iftikhar, K. New dinuclear lanthanide (III) complexes based on 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedione and 2,2′-bipyrimidine. Inorg. Chem. Commun. 2009, 12, 296–299. [Google Scholar] [CrossRef]
- Abu-Yamin, A.-A. Synthesis, characterization, and crystal structure of LnIII–(1E, 2E)-3-(furan-2-yl)-N-(4H-1,2,4-triazol-4-yl) prop-2-en-1-imine. J. Coord. Chem. 2022, 1–12. [Google Scholar] [CrossRef]
- Prabhumirashi, L.; Khoje, J. TGA and DTA studies on en and tmn complexes of Cu (II) chloride, nitrate, sulphate, acetate and oxalate. Thermochim. Acta 2002, 383, 109–118. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Rao, N.S.; Mishra, D.; Maurya, R.; Rao, N.N. Synthesis and Characterisation of Some Novel CIS-Dioxo-Molybdenum (VI) Complexes of Schiff Bases Derived from Salicylaldehyde. Synth. React. Inorg. Met.-Org. Chem. 1995, 25, 437–449. [Google Scholar] [CrossRef]
- Alkreathy, H.M.; Esmat, A. Lycorine Ameliorates Thioacetamide-Induced Hepatic Fibrosis in Rats: Emphasis on Antioxidant, Anti-Inflammatory, and STAT3 Inhibition Effects. Pharmaceuticals 2022, 15, 369. [Google Scholar] [CrossRef]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef]
- Yen, G.C.; Duh, P.D. Scavenging effect of methanolic extracts of peanut hulls on free-radical and active-oxygen species. J. Agric. Food Chem. 1994, 42, 629–632. [Google Scholar] [CrossRef]
- Saghir, S.A.M.; Sadikun, A.; Al-Suede, F.S.; MSA Majid, A.; Murugaiyah, V. Antihyperlipidemic, antioxidant and cytotoxic activities of methanolic and aqueous extracts of different parts of star fruit. Curr. Pharm. Biotechnol. 2016, 17, 915–925. [Google Scholar] [CrossRef] [PubMed]
- Abo-Ashour, M.F.; Eldehna, W.M.; George, R.F.; Abdel-Aziz, M.M.; Elaasser, M.M.; Gawad, N.M.A.; Gupta, A.; Bhakta, S.; Abou-Seri, S.M. Novel indole-thiazolidinone conjugates: Design, synthesis and whole-cell phenotypic evaluation as a novel class of antimicrobial agents. Eur. J. Med. Chem. 2018, 160, 49–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, P.; Chow, K.; Tse, H.; Cheng, V. Effect of applying the new clinical and laboratory standards. Int. J. Antimicrob. Agents 2012, 40, 280–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibrahim, H.S.; Eldehna, W.M.; Abdel-Aziz, H.A.; Elaasser, M.M.; Abdel-Aziz, M.M. Improvement of antibacterial activity of some sulfa drugs through linkage to certain phthalazin-1(2H)-one scaffolds. Eur. J. Med. Chem. 2014, 85, 480–486. [Google Scholar] [CrossRef]
- Kumaravel, G.; Utthra, P.P.; Raman, N. Exploiting the biological efficacy of benzimidazole based Schiff base complexes with l-Histidine as a co-ligand: Combined molecular docking, DNA interaction, antimicrobial and cytotoxic studies. Bioorg. Chem. 2018, 77, 269–279. [Google Scholar] [CrossRef]
- Fetoh, A.; Asla, K.A.; El-Sherif, A.A.; El-Didamony, H.; El-Reash, G.M.A. Synthesis, structural characterization, thermogravimetric, molecular modelling and biological studies of Co (II) and Ni (II) Schiff bases complexes. J. Mol. Struct. 2019, 1178, 524–537. [Google Scholar] [CrossRef]
- Gomha, S.M.; Riyadh, S.M.; Mahmmoud, E.A. Synthesis and anticancer activities of thiazoles,1,3-thiazines, and thiazolidine using chitosan-grafted-poly (vinylpyridine) as basic catalyst. Heterocycles Int. J. Rev. Commun. Heterocycl. Chem. 2015, 91, 1227–1243. [Google Scholar]
- Ejidike, I.P.; Ajibade, P.A. Synthesis, characterization, anticancer, and antioxidant studies of Ru (III) complexes of monobasic tridentate Schiff bases. Bioinorg. Chem. Appl. 2016, 2016, 9672451. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.; Padmini, T.; Ponnuvel, K. Synthesis, characterization and antioxidant activities of Schiff bases are of cholesterol. J. Saudi Chem. Soc. 2017, 21, S322–S328. [Google Scholar] [CrossRef] [Green Version]
- Jarrahpour, A.; Motamedifar, M.; Pakshir, K.; Hadi, N.; Zarei, M. Synthesis of novel azo Schiff bases and their antibacterial and antifungal activities. Molecules 2004, 9, 815–824. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, H.; Mahmoud, W.H.; Al-Akraa Dr, I.M.; Mohamed, G.G. Preparation, Characterization and Biological Activity of Novel Schiff Base Complexes based on La, Er and Yb Metal Ions. ARPN J. Eng. Appl. Sci. 2020, 15, 295–303. [Google Scholar]
- Elsonbati, A.; Diab, M.A.; Mohamed, G.; Morgan, S. Preparation, Characterization and Biological Activity Screening on Some Metal Complexes Based of Schiff Base Ligand. Egypt. J. Chem. 2021, 64, 4125–4136. [Google Scholar] [CrossRef]
- Uddin, N.; Rashid, F.; Ali, S.; Tirmizi, S.A.; Ahmad, I.; Zaib, S.; Zubair, M.; Diaconescu, P.L.; Tahir, M.N.; Iqbal, J. Synthesis, characterization, and anticancer activity of Schiff bases. J. Biomol. Struct. Dyn. 2020, 38, 3246–3259. [Google Scholar] [CrossRef]
- Poonia, K.; Siddiqui, S.; Arshad, M.; Kumar, D. In Vitro anticancer activities of Schiff base and its lanthanum complex. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016, 155, 146–154. [Google Scholar]
Compounds | υ(HC=N) Imine | γ(HC=N) Imine | υ(C=N) Thiazole | C-S-C Thiazole | C-O Furane | υH2O Lattice | υ(Ln-S) | υ(Ln-N) |
---|---|---|---|---|---|---|---|---|
L | 1660 | 1016 | 1603 | 758 | 1057 | - | - | - |
La | 1642 | 1045 | 1601 | 804 | 1060 | 3450 | 416 | 547 |
Lb | 1646 | 1044 | 1601 | 805 | 1060 | 3477 | 428 | 563 |
Lc | 1645 | 1034 | 1599 | 815 | 1060 | 3465 | 421 | 558 |
Compound | Molecular Formula Molar Mass g Mol−1 (m/z) | Yield g (%) | m. p. (°C) Color | μeff | Λm: Molar Conductance S.L/mol | Elemental Analysis: Calculated (Found) | |||
---|---|---|---|---|---|---|---|---|---|
C (%) | H (%) | N (%) | S (%) | ||||||
L | C16H14N2O2S 298.360 (298.80) | 0.92 g 78.13% | 145–146 (Orange Yellow) | - | - | 64.41 (64.63) | 4.73 (4.79) | 9.39 (9.52) | 10.75 (10.81) |
La | C32H30N7O14S2Gd 957.997 (958.77) | 0.70 g 87.20% | 195–196 (Deep orange) | 7.90 | 23 | 40.12 (40.29) | 3.16 (3.20) | 10.23 (10.51) | 6.69 (6.80) |
Lb | C32H30N7O14S2Sm 951.107 (952.63) | 0.72 g 89.70% | 210–211 (Pale orange) | 1.88 | 25 | 40.41 (40.32) | 3.18 (3.19) | 10.31 (10.54) | 6.74 (6.82) |
Lc | C32H30N7O14S2Nd 944.989 (947.69) | 0.65 g 80.97% | 224–225 (Deep orange) | 3.24 | 28 | 40.67 (40.91) | 3.20 (3.26) | 10.38 (10.59) | 6.79 (6.72) |
Sample Code | TAC (mg GAE/g) | DPPH IC50 (µg/mL) |
---|---|---|
L | 25.97 ± 2.38 | 478.52 ± 13.84 |
La | 18.71 ± 3.41 | 570.16 ± 14.08 |
Lb | 17.04 ± 1.91 | 505.82 ± 11.76 |
Lc | 28.85 ± 3.32 | 410.18 ± 15.34 |
Ascorbic acid | 66.08 ± 1.18 | 10.56 ± 0.78 |
BHT | 71.82 ± 1.76 | 5.78 ± 0.27 |
Sample | Diameter of Inhibition Zones (mm) | ||||
---|---|---|---|---|---|
L | La | Lb | Lc | Control | |
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |
Fungi | Ketoconazole | ||||
Aspergillus fumigatus | 22.20 ± 0.56 | 17.01 ± 0.02 | 19.00 ± 0.30 | 23.13 ± 0.31 | 17.01 ± 0.02 |
Candida albicans | 20.10 ± 0.40 | 20.03 ± 0.04 | 17.97 ± 0.35 | 18.78 ± 0.36 | 20.03 ± 0.04 |
Gram-Positive Bacteria | Gentamycin | ||||
Staphylococcus aureus | 15.17 ± 0.55 | 24.01 ± 0.01 | 14.20 ± 0.36 | 18.07 ± 0.35 | 24.01 ± 0.01 |
Bacillus subtilis | 20.10 ± 0.36 | 26.02 ± 0.03 | 18.10 ± 0.30 | 20.80 ± 0.52 | 26.02 ± 0.03 |
Gram-Negative Bacteria | Gentamycin | ||||
Escherichia coli | 18.17 ± 0.40 | 29.90 ± 0.01 | 17.10 ± 0.36 | 22.60 ± 0.40 | 29.90 ± 0.01 |
Proteus vulgaris | 16.97 ± 0.42 | 25.00 ± 0.01 | 14.00 ± 0.26 | 18.60 ± 0.26 | 25.00 ± 0.01 |
Compound L µg/mL | Compound La µg/mL | Compound Lb µg/mL | Compound Lc µg/mL | ||||
---|---|---|---|---|---|---|---|
HepG-2 | 41.19 ± 6.70 | Huh-7 | 164.72 ± 9.66 | HCT-116 | 50.21 ± 5.03 | HepG-2 | 42.18 ± 5.56 |
MCF-7 | 84.90 ± 6.98 | MDA-MB-231 | 106.31 ± 5.97 | CACO2 | 40.15 ± 0.31 | MCF-7 | 55.42 ± 3.60 |
PC-3 | 58.81 ± 2.53 | A-549 | 83.28 ± 2.36 | RD | 82.52 ± 10.16 | HEP-2 | 105.23 ± 11.49 |
WISH | >500 | MRC-5 | >500 | WI-38 | >500 | HFB4 | >500 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu-Yamin, A.-A.; Abduh, M.S.; Saghir, S.A.M.; Al-Gabri, N. Synthesis, Characterization and Biological Activities of New Schiff Base Compound and Its Lanthanide Complexes. Pharmaceuticals 2022, 15, 454. https://doi.org/10.3390/ph15040454
Abu-Yamin A-A, Abduh MS, Saghir SAM, Al-Gabri N. Synthesis, Characterization and Biological Activities of New Schiff Base Compound and Its Lanthanide Complexes. Pharmaceuticals. 2022; 15(4):454. https://doi.org/10.3390/ph15040454
Chicago/Turabian StyleAbu-Yamin, Abdel-Aziz, Maisa Siddiq Abduh, Sultan Ayesh Mohammed Saghir, and Naif Al-Gabri. 2022. "Synthesis, Characterization and Biological Activities of New Schiff Base Compound and Its Lanthanide Complexes" Pharmaceuticals 15, no. 4: 454. https://doi.org/10.3390/ph15040454
APA StyleAbu-Yamin, A. -A., Abduh, M. S., Saghir, S. A. M., & Al-Gabri, N. (2022). Synthesis, Characterization and Biological Activities of New Schiff Base Compound and Its Lanthanide Complexes. Pharmaceuticals, 15(4), 454. https://doi.org/10.3390/ph15040454