Spray-Drying Encapsulation of the Live Biotherapeutic Candidate Akkermansia muciniphila DSM 22959 to Survive Aerobic Storage
Abstract
:1. Introduction
2. Results and Discussion
2.1. Spray-Drying Process Yields and Cell Viability
2.2. Water Activity of Spray-Dried Microcapsules
2.3. Viability of Spray-Dried A. Muciniphila upon Aerobic Storage
2.4. Selection of the Best Spray-Drying Conditions and Characterization of A. Muciniphila Microcapsules
2.5. Viability Assessment of Microencapsulated A. Muciniphila upon Simulated GIT Conditions
3. Materials and Methods
3.1. Bacterial Strains and Growth Conditions
3.2. Spray-Drying of A. Muciniphila in Different Matrices and Drying Conditions
3.3. Water Activity
3.4. Viability Determination of Free and Spray-Dried A. Muciniphila Cells
3.5. Microcapsules Morphology
3.6. Viability Determination of A. Muciniphila Cells throughout Simulated GIT Conditions
3.7. Statistical Analyses of Experimental Data
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Almeida, D.; Machado, D.; Andrade, J.C.; Mendo, S.; Gomes, A.M.; Freitas, A.C. Evolving Trends in Next-Generation Probiotics: A 5W1H Perspective. Crit. Rev. Food Sci. Nutr. 2020, 60, 1783–1796. [Google Scholar] [CrossRef] [PubMed]
- O’Toole, P.W.; Marchesi, J.R.; Hill, C. Next-Generation Probiotics: The Spectrum from Probiotics to Live Biotherapeutics. Nat. Microbiol. 2017, 2, 17057. [Google Scholar] [CrossRef] [PubMed]
- Andrade, J.C.; Almeida, D.; Domingos, M.; Seabra, C.L.; Machado, D.; Freitas, A.C.; Gomes, A.M. Commensal Obligate Anaerobic Bacteria and Health: Production, Storage, and Delivery Strategies. Front. Bioeng. Biotechnol. 2020, 8, 550. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Bose, S.; Lim, S.; Seo, J.; Shin, J.; Lee, D.; Chung, W.-H.; Song, E.-J.; Nam, Y.-D.; Kim, H. Beneficial Effects of Newly Isolated Akkermansia muciniphila Strains from the Human Gut on Obesity and Metabolic Dysregulation. Microorganisms 2020, 8, 1413. [Google Scholar] [CrossRef]
- Derrien, M.; Vaughan, E.E.; Plugge, C.M.; de Vos, W.M. Akkermansia Municiphila Gen. Nov., Sp. Nov., a Human Intestinal Mucin-Degrading Bacterium. Int. J. Syst. Evol. Microbiol. 2004, 54, 1469–1476. [Google Scholar] [CrossRef] [Green Version]
- Derrien, M.; Collado, M.C.; Ben-Amor, K.; Salminen, S.; De Vos, W.M. The Mucin Degrader Akkermansia muciniphila Is an Abundant Resident of the Human Intestinal Tract. Appl. Environ. Microbiol. 2008, 74, 1646–1648. [Google Scholar] [CrossRef] [Green Version]
- Chelakkot, C.; Choi, Y.; Kim, D.-K.; Park, H.T.; Ghim, J.; Kwon, Y.; Jeon, J.; Kim, M.-S.; Jee, Y.-K.; Gho, Y.S.; et al. Akkermansia muciniphila-Derived Extracellular Vesicles Influence Gut Permeability through the Regulation of Tight Junctions. Exp. Mol. Med. 2018, 50, e450. [Google Scholar] [CrossRef]
- Wu, W.; Lv, L.; Shi, D.; Ye, J.; Fang, D.; Guo, F.; Li, Y.; He, X.; Li, L. Protective Effect of Akkermansia muciniphila against Immune-Mediated Liver Injury in a Mouse Model. Front. Microbiol. 2017, 8, 1804. [Google Scholar] [CrossRef]
- Li, J.; Lin, S.; Vanhoutte, P.M.; Woo, C.W.; Xu, A. Akkermansia muciniphila Protects Against Atherosclerosis by Preventing Metabolic Endotoxemia-Induced Inflammation in Apoe −/− Mice. Circulation 2016, 133, 2434–2446. [Google Scholar] [CrossRef] [Green Version]
- Depommier, C.; Everard, A.; Druart, C.; Plovier, H.; Van Hul, M.; Vieira-Silva, S.; Falony, G.; Raes, J.; Maiter, D.; Delzenne, N.M.; et al. Supplementation with Akkermansia muciniphila in Overweight and Obese Human Volunteers: A Proof-of-Concept Exploratory Study. Nat. Med. 2019, 25, 1096–1103. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert Consensus Document: The International Scientific Association for Probiotics and Prebiotics Consensus Statement on the Scope and Appropriate Use of the Term Probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmer, C.; Bik, E.M.; DiGiulio, D.B.; Relman, D.A.; Brown, P.O. Development of the Human Infant Intestinal Microbiota. PLoS Biol. 2007, 5, 1556–1573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Šipailienė, A.; Petraitytė, S. Encapsulation of Probiotics: Proper Selection of the Probiotic Strain and the Influence of Encapsulation Technology and Materials on the Viability of Encapsulated Microorganisms. Probiotics Antimicrob. Proteins 2018, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Chávez, B.E.; Ledeboer, A.M. Drying of Probiotics: Optimization of Formulation and Process to Enhance Storage Survival. Dry. Technol. 2007, 25, 1193–1201. [Google Scholar] [CrossRef]
- Huang, S.; Vignolles, M.L.; Chen, X.D.; le Loir, Y.; Jan, G.; Schuck, P.; Jeantet, R. Spray Drying of Probiotics and Other Food-Grade Bacteria: A Review. Trends Food Sci. Technol. 2017, 63, 1–17. [Google Scholar] [CrossRef]
- Cassani, L.; Gomez-Zavaglia, A.; Simal-Gandara, J. Technological Strategies Ensuring the Safe Arrival of Beneficial Microorganisms to the Gut: From Food Processing and Storage to Their Passage through the Gastrointestinal Tract. Food Res. Int. 2020, 129, 108852. [Google Scholar] [CrossRef]
- Broeckx, G.; Vandenheuvel, D.; Claes, I.J.J.; Lebeer, S.; Kiekens, F. Drying Techniques of Probiotic Bacteria as an Important Step towards the Development of Novel Pharmabiotics. Int. J. Pharm. 2016, 505, 303–318. [Google Scholar] [CrossRef]
- Reunanen, J.; Kainulainen, V.; Huuskonen, L.; Ottman, N.; Belzer, C.; Huhtinen, H.; de Vos, W.M.; Satokaria, R. Akkermansia muciniphila Adheres to Enterocytes and Strengthens the Integrity of the Epithelial Cell Layer. Appl. Environ. Microbiol. 2015, 81, 3655–3662. [Google Scholar] [CrossRef] [Green Version]
- Machado, D.; Almeida, D.; Seabra, C.L.; Andrade, J.C.; Gomes, A.M.; Freitas, A.C. Uncovering Akkermansia muciniphila Resilience or Susceptibility to Different Temperatures, Atmospheres and Gastrointestinal Conditions. Anaerobe 2020, 61, 2–5. [Google Scholar] [CrossRef]
- Chang, Y.; Yang, Y.; Xu, N.; Mu, H.; Zhang, H.; Duan, J. Improved Viability of Akkermansia muciniphila by Encapsulation in Spray Dried Succinate-Grafted Alginate Doped with Epigallocatechin-3-Gallate. Int. J. Biol. Macromol. 2020, 159, 373–382. [Google Scholar] [CrossRef]
- Broeckx, G.; Kiekens, S.; Jokicevic, K.; Byl, E.; Henkens, T.; Vandenheuvel, D.; Lebeer, S.; Kiekens, F. Effects of Initial Cell Concentration, Growth Phase, and Process Parameters on the Viability of Lactobacillus rhamnosus GG after Spray Drying. Dry. Technol. 2020, 38, 1474–1492. [Google Scholar] [CrossRef]
- Ghandi, A.; Powell, I.B.; Chen, X.D.; Adhikari, B. The Effect of Dryer Inlet and Outlet Air Temperatures and Protectant Solids on the Survival of Lactococcus lactis during Spray Drying. Dry. Technol. 2012, 30, 1649–1657. [Google Scholar] [CrossRef]
- Behboudi-Jobbehdar, S.; Soukoulis, C.; Yonekura, L.; Fisk, I. Optimization of Spray-Drying Process Conditions for the Production of Maximally Viable Microencapsulated L. acidophilus NCIMB 701748. Dry. Technol. 2013, 31, 1274–1283. [Google Scholar] [CrossRef] [Green Version]
- Gong, P.; Zhang, L.; Han, X.; Shigwedha, N.; Song, W.; Yi, H.; Du, M.; Cao, C. Injury Mechanisms of Lactic Acid Bacteria Starter Cultures During Spray Drying: A Review. Dry. Technol. 2014, 32, 793–800. [Google Scholar] [CrossRef]
- Vesterlund, S.; Salminen, K.; Salminen, S. Water Activity in Dry Foods Containing Live Probiotic Bacteria Should Be Carefully Considered: A Case Study with Lactobacillus rhamnosus GG in Flaxseed. Int. J. Food Microbiol. 2012, 157, 319–321. [Google Scholar] [CrossRef] [PubMed]
- Greenspan, L. Humidity Fixed Points of Binary Saturated Aqueous Solutions. J. Res. Natl. Bur. Stand. Sect. A Phys. Chem. 1977, 81, 89–96. [Google Scholar] [CrossRef]
- Kong, F.; Singh, R.P. Chemical Deterioration and Physical Instability of Foods and Beverages; Woodhead Publishing Limited: Sawston, UK, 2011. [Google Scholar]
- Abe, F.; Miyauchi, H.; Uchijima, A.; Yaeshima, T.; Iwatsuki, K. Effects of Storage Temperature and Water Activity on the Survival of Bifidobacteria in Powder Form. Int. J. Dairy Technol. 2009, 62, 234–239. [Google Scholar] [CrossRef]
- Crowe, J.H.; Crowe, L.M.; Carpenter, J.F.; Rudolph, A.S.; Wistrom, C.A.; Spargo, B.J.; Anchordoguy, T.J. Interactions of Sugars with Membranes. Biochim. Biophys. Acta (BBA)-Rev. Biomembr. 1988, 947, 367–384. [Google Scholar] [CrossRef]
- Abd El-Salam, M.H.; El-Shibiny, S. Preparation and Properties of Milk Proteins-Based Encapsulated Probiotics: A Review. Dairy Sci. Technol. 2015, 95, 393–412. [Google Scholar] [CrossRef] [Green Version]
- van der Ark, K.C.H.; Nugroho, A.D.W.; Berton-Carabin, C.; Wang, C.; Belzer, C.; de Vos, W.M.; Schroen, K. Encapsulation of the Therapeutic Microbe Akkermansia muciniphila in a Double Emulsion Enhances Survival in Simulated Gastric Conditions. Food Res. Int. 2017, 102, 372–379. [Google Scholar] [CrossRef] [Green Version]
- Marcial-Coba, M.S.; Cieplak, T.; Cahú, T.B.; Blennow, A.; Knøchel, S.; Nielsen, D.S. Viability of Microencapsulated Akkermansia muciniphila and Lactobacillus plantarum during Freeze-Drying, Storage and in Vitro Simulated Upper Gastrointestinal Tract Passage. Food Funct. 2018, 9, 5868–5879. [Google Scholar] [CrossRef] [PubMed]
- Gomes, A.M.; Andrade, J.C.; Freitas, A.C. The Use of Probiotics in the Food Industry. In Strategies for Obtaining Healthier Foods; Rodriguez, J.M.L., García, F.J.C., Eds.; Nova Science Publishers, Inc.: New York, NY, USA, 2017; ISBN 9781536121599. [Google Scholar]
- Reyes, V.; Chotiko, A.; Chouljenko, A.; Campbell, V.; Liu, C.; Theegala, C.; Sathivel, S. Influence of Wall Material on Production of Spray Dried Lactobacillus plantarum NRRL B-4496 and Its Viability at Different Storage Conditions. Dry. Technol. 2018, 36, 1738–1748. [Google Scholar] [CrossRef]
- Everard, A.; Belzer, C.; Geurts, L.; Ouwerkerk, J.P.; Druart, C.; Bindels, L.B.; Guiot, Y.; Derrien, M.; Muccioli, G.G.; Delzenne, N.M.; et al. Cross-Talk between Akkermansia muciniphila and Intestinal Epithelium Controls Diet-Induced Obesity. Proc. Natl. Acad. Sci. USA 2013, 110, 9066–9071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marinova, V.Y.; Rasheva, I.K.; Kizheva, Y.K.; Dermenzhieva, Y.D.; Hristova, P.K. Microbiological Quality of Probiotic Dietary Supplements. Biotechnol. Biotechnol. Equip. 2019, 33, 834–841. [Google Scholar] [CrossRef] [Green Version]
- DSMZ Akkermansia muciniphila DSM 22959. Available online: https://www.dsmz.de/collection/catalogue/details/culture/DSM-22959 (accessed on 15 January 2021).
- de Alencar, D.D.O.; de Souza, E.L.; da Almeida, E.T.C.; da Silva, A.L.; Oliveira, H.M.L.; Cavalcanti, M.T. Microencapsulation of Cymbopogon citratus D.C. Stapf Essential Oil with Spray Drying: Development, Characterization, and Antioxidant and Antibacterial Activities. Foods 2022, 11, 1111. [Google Scholar] [CrossRef]
- Ogunjimi, A.T.; Fiegel, J.; Brogden, N.K. Design and Characterization of Spray-Dried Chitosan-Naltrexone Microspheres for Microneedle-Assisted Transdermal Delivery. Pharmaceutics 2020, 12, 496. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A Standardised Static in Vitro Digestion Method Suitable for Food—An International Consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [Green Version]
Conditions 1 | SM (10%) | WPC (10%) | WPI (10%) | ||||||
---|---|---|---|---|---|---|---|---|---|
Recovery Yield (%) | Total CFU ± SD | CFU/g | Recovery Yield (%) | Total CFU ± SD | CFU/g | Recovery Yield (%) | Total CFU ± SD | CFU/g | |
Initial | - | 1.35 ± 0.25 × 1010 | - | - | 1.16 ± 0.11 × 1011 | - | - | 5.57 ± 0.50 × 1010 | - |
#1 | 66.5 | 2.15 ± 0.23 × 108 | 3.23 ± 0.34 × 107 | 69.0 | 1.38 ± 0.21 × 108 | 2.00 ± 0.30 × 107 | 74.4 | 3.05 ± 0.53 × 107 | 4.10 ± 0.71 × 106 |
#2 | 68.1 | 8.17 ± 1.47 × 108 | 1.20 ± 0.22 × 108 | 65.9 | 1.58 ± 0.67 × 108 | 2.40 ± 1.02 × 107 | 79.9 | 1.17 ± 0.26 × 108 | 1.47 ± 0.33 × 107 |
#3 | 61.1 | 6.72 ± 1.22 × 108 | 1.10 ± 0.20 × 108 | 71.5 | 2.74 ± 0.74 × 108 | 3.83 ± 1.03 × 107 | 77.7 | 1.04 ± 0.37 × 108 | 1.33 ± 0.47 × 107 |
#4 | 49.4 | 1.90 ± 0.16 × 108 | 3.83 ± 0.33 × 107 | 65.8 | 6.38 ± 0.10 × 107 | 9.70 ± 0.01 × 106 | 77.4 | 2.94 ± 0.46 × 107 | 3.80 ± 0.59 × 106 |
Conditions 1 | SM (10%) | WPC (10%) | WPI (10%) | ||||||
---|---|---|---|---|---|---|---|---|---|
Day 0 | Day 28 | Day 0 | Day 28 | Day 0 | Day 28 | ||||
4 °C | 22 °C | 4 °C | 22 °C | 4 °C | 22 °C | ||||
#1 | 0.261 ± 0.003 | 0.272 ± 0.025 | 0.236 ± 0.018 | 0.234 ± 0.015 | 0.277 ± 0.016 | 0.323 ± 0.035 | 0.268 ± 0.005 | 0.309 ± 0.018 | 0.330 ± 0.015 |
#2 | 0.286 ± 0.003 | 0.304 ± 0.008 | 0.279 ± 0.000 | 0.276 ± 0.009 | 0.310 ± 0.004 | 0.338 ± 0.001 | 0.330 ± 0.006 | 0.384 ± 0.024 | 0.355 ± 0.008 |
#3 | 0.246 ± 0.002 | 0.265 ± 0.002 | 0.260 ± 0.018 | 0.307 ± 0.007 | 0.335 ± 0.017 | 0.346 ± 0.003 | 0.331 ± 0.007 | 0.360 ± 0.005 | 0.355 ± 0.009 |
#4 | 0.257 ± 0.005 | 0.308 ± 0.005 | 0.265 ± 0.012 | 0.261 ± 0.010 | 0.306 ± 0.002 | 0.333 ± 0.013 | 0.296 ± 0.001 | 0.362 ± 0.011 | 0.340 ± 0.010 |
Conditions | Inlet (°C) | Outlet (°C) | Pump Speed (%) | Flow Rate (mL/min) |
---|---|---|---|---|
SM (10%) | ||||
#1 | 150 | 75–77 | 20 | 6 |
#2 | 150 | 65 | 35 | 10.5 |
#3 | 170 | 65–66 | 45 | 13.5 |
#4 | 170 | 75 | 30 | 9 |
WPC (10%) | ||||
#1 | 150 | 75 | 20 | 6 |
#2 | 150 | 65 | 25 | 7.5 |
#3 | 170 | 65–67 | 35 | 10.5 |
#4 | 170 | 75–76 | 25 | 7.5 |
WPI (10%) | ||||
#1 | 150 | 75–76 | 20 | 6 |
#2 | 150 | 66 | 30 | 9 |
#3 | 170 | 65–67 | 35 | 10.5 |
#4 | 170 | 74–75 | 25 | 7.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbosa, J.C.; Almeida, D.; Machado, D.; Sousa, S.; Freitas, A.C.; Andrade, J.C.; Gomes, A.M. Spray-Drying Encapsulation of the Live Biotherapeutic Candidate Akkermansia muciniphila DSM 22959 to Survive Aerobic Storage. Pharmaceuticals 2022, 15, 628. https://doi.org/10.3390/ph15050628
Barbosa JC, Almeida D, Machado D, Sousa S, Freitas AC, Andrade JC, Gomes AM. Spray-Drying Encapsulation of the Live Biotherapeutic Candidate Akkermansia muciniphila DSM 22959 to Survive Aerobic Storage. Pharmaceuticals. 2022; 15(5):628. https://doi.org/10.3390/ph15050628
Chicago/Turabian StyleBarbosa, Joana Cristina, Diana Almeida, Daniela Machado, Sérgio Sousa, Ana Cristina Freitas, José Carlos Andrade, and Ana Maria Gomes. 2022. "Spray-Drying Encapsulation of the Live Biotherapeutic Candidate Akkermansia muciniphila DSM 22959 to Survive Aerobic Storage" Pharmaceuticals 15, no. 5: 628. https://doi.org/10.3390/ph15050628
APA StyleBarbosa, J. C., Almeida, D., Machado, D., Sousa, S., Freitas, A. C., Andrade, J. C., & Gomes, A. M. (2022). Spray-Drying Encapsulation of the Live Biotherapeutic Candidate Akkermansia muciniphila DSM 22959 to Survive Aerobic Storage. Pharmaceuticals, 15(5), 628. https://doi.org/10.3390/ph15050628