A New Chalcone and Antimicrobial Chemical Constituents of Dracaena stedneuri
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Plant Material
3.3. Extraction and Isolation
3.4. Antimicrobial Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Vaou, N.; Stavropoulou, E.; Voidarou, C.; Tsigalou, C.; Bezirtzoglou, E. Towards advances in medicinal plant antimicrobial activity: A review study on challenges and future perspectives. Microorganisms 2021, 9, 2041. [Google Scholar] [CrossRef] [PubMed]
- Lu, P.-L.; Morden, C. Phylogenetics of the plant genera Dracaena and Pleomele (Asparagaceae). Bot. Orient. J. Plant Sci. 2010, 7, 64–72. [Google Scholar] [CrossRef] [Green Version]
- Thu, Z.M.; Myo, K.K.; Aung, H.T.; Armijos, C.; Vidari, G. Flavonoids and stilbenoids of the genera Dracaena and Sansevieria: Structures and bioactivities. Molecules 2020, 25, 2608. [Google Scholar] [CrossRef] [PubMed]
- Kale, R.D.; Taye, M.; Chaudhary, B. Extraction and characterization of cellulose single fiber from native Ethiopian Serte (Dracaena steudneri Egler) plant leaf. J. Macromol. Sci. Part A 2019, 56, 837–844. [Google Scholar] [CrossRef]
- Damen, T.H.; Van der Burg, W.; Wiland-Szymańska, J.; Sosef, M. Taxonomic novelties in African Dracaena (Dracaenaceae). Blumea 2018, 63, 31–53. [Google Scholar] [CrossRef]
- Moshi, M.J.; Otieno, D.F.; Weisheit, A. Ethnomedicine of the Kagera Region, north western Tanzania. Part 3: Plants used in traditional medicine in Kikuku village, Muleba District. J. Ethnobiol. Ethnomed. 2012, 8, 14. [Google Scholar] [CrossRef] [Green Version]
- Mukazayire, M.-J.; Minani, V.; Ruffo, C.K.; Bizuru, E.; Stévigny, C.; Duez, P. Traditional phytotherapy remedies used in Southern Rwanda for the treatment of liver diseases. J. Ethnopharm. 2011, 138, 415–431. [Google Scholar] [CrossRef]
- Kokwaro, J.O. Medicinal Plants of East. Africa, 3rd ed.; University of Nairobi Press: Nairobi, Kenya, 2009; p. 534. [Google Scholar]
- Nchiozem-Ngnintedem, V.-A.; Omosa, L.K.; Bedane, K.G.; Derese, S.; Spiteller, M. Inhibition of proinflammatory cytokine release by flavones and flavanones from the leaves of Dracaena steudneri Engl. Planta Med. 2020, 87, 209–217. [Google Scholar] [CrossRef]
- Tapondjou, L.A.; Ponou, K.B.; Teponno, R.B.; Mbiantcha, M.; Djoukeng, J.D.; Nguelefack, T.B.; Watcho, P.; Cadenas, A.G.; Park, H.-J. In vivo anti-inflammatory effect of a new steroidal saponin, mannioside A, and its derivatives isolated from Dracaena mannii. Arch. Pharm. Res. 2008, 31, 653–658. [Google Scholar] [CrossRef] [Green Version]
- Teponno, R.B.; Tanaka, C.; Jie, B.; Tapondjou, L.A.; Miyamoto, T.; Trifasciatosides, A.-J. Steroidal saponins from Sansevieria trifasciata Prain. Chem. Pharm. Bull. 2016, 64, 1347–1355. [Google Scholar] [CrossRef] [Green Version]
- Teponno, R.B.; Dzoyem, J.P.; Nono, R.N.; Kauhl, U.; Sandjo, L.P.; Tapondjou, L.A.; Bakowsky, U.; Opatz, T. Cytotoxicity of secondary metabolites from Dracaena viridiflora Engl & Krause and their semisynthetic analogues. Rec. Nat. Prod. 2017, 11, 421–430. [Google Scholar]
- Mouzié, M.C.; Ponou, K.B.; Fouedjou, T.R.; Teponno, B.R.; Tapondjou, L.A. Steroidal saponins from Dracaena humilis (Dracaenaceae) and their chemotaxonomic significance. Nat. Prod. Sci. 2021, 27, 122–127. [Google Scholar]
- Harborne, J.B.; Greenham, J.; Williams, C.A.; Eagle, J.; Markham, K.R. Ten isoprenylated and C-methylated flavonoids from the leaves of three Vellozia species. Phytochemistry 2013, 34, 219–226. [Google Scholar] [CrossRef]
- Koley, K.T.; Khan, Z.; Oulkar, D.; Singh, B.; Bhatt, P.B.; Banerjee, K. Profiling of polyphenols in phalsa (Grewia asiatica L) fruits based on liquid chromatography high resolution mass spectrometry. J. Food Sci. Tech. 2019, 57, 606–616. [Google Scholar] [CrossRef]
- Petrus, A.J.A.; Hemalatha, S.S.; Suguna, G. Isolation and Characterisation of the antioxidant phenolic metabolites of Boerhaavia erecta L. leaves. J. Pharm. Sci. Res. 2012, 4, 1856–1861. [Google Scholar]
- Xiao, Z.P.; Wu, H.K.; Wu, T.; Shi, H.; Hang, B.; Aisa, H.A. Kaempferol and quercetin flavonoids from Rosa rugosa. Chem. Nat. Comp. 2006, 42, 736–737. [Google Scholar] [CrossRef]
- Basnet, P.; Kadota, S.; Hase, K.; Namba, T. Five new C-methyl flavonoids, the potent aldose reductase inhibitors from Matteuccia orientalis Trev. Chem. Pharm. Bull. 1995, 43, 1558–1564. [Google Scholar] [CrossRef] [Green Version]
- Matsuda, H.; Morikawa, T.; Toguchida, I.; Yoshikawa, M. Structural requirements of flavonoids and related compounds for aldose reductase inhibitory activity. Chem. Pharm. Bull. 2002, 50, 788–795. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.-C.; Lin, M.-K.; Hwang, S.-Y.; Hwang, T.-L.; Kuo, Y.-H.; Chang, C.-I.; Ou, C.-Y.; Kuo, Y.-H. Two anti-inflammatory steroidal saponins from Dracaena angustifolia Roxb. Molecules 2013, 18, 8752–8763. [Google Scholar] [CrossRef]
- Kianfé, Y.B.; Kühlborn, J.; Tchuenguem, T.R.; Tchegnitegni, T.B.; Ponou, K.B.; Groß, J.; Teponno, R.B.; Dzoyem, J.P.; Opatz, T.; Tapondjou, L.A. Antimicrobial secondary metabolites from the medicinal plant Crinum glaucum A. Chev. (Amaryllidaceae). S. Afr. J. Bot. 2020, 133, 161–166. [Google Scholar] [CrossRef]
- Zou, Y.; Li, Y.; Kim, M.M.; Lee, S.H.; Kim, S.K. Ishigoside, a new glyceroglycolipid isolated from the brown alga Ishige okamurae. Biotechnol. Bioprocess. Eng. 2009, 14, 20–26. [Google Scholar] [CrossRef]
- Egbubine, C.O.; Adeyemi, M.M.; Habila, J.D. Isolation and characterization of betulinic acid from the stem bark of Feretia canthioides Hiern and its antimalarial potential. Bull. Nat. Res. Cent. 2020, 44, 49–55. [Google Scholar] [CrossRef]
- Kianfé, Y.B.; Teponno, R.B.; Kühlborn, J.; Tchuenguem, T.R.; Ponou, B.K.; Helaly, S.E.; Dzoyem, J.P.; Opatz, T.; Tapondjou, L.A. Flavans and other chemical constituents of Crinum biflorum (Amaryllidaceae). Biochem. Syst. Ecol. 2019, 87, 103953. [Google Scholar] [CrossRef]
- Singh, S.; Pandey, M.; Singh, A.; Singh, U.; Pandey, V. A new chalcone glycoside from Rhamnus nipalensis. Nat. Prod. Res. 2008, 22, 1657–1659. [Google Scholar] [CrossRef] [PubMed]
- Adesanwo, J.K.; Shode, F.O.; Aiyelaagbe, O.; Oyede, R.T.; Baijnath, H. Isolation and characterization of a new chalcone from the leaves of Heteropyxis natalensis. Int. J. Med. Sci. 2009, 1, 28–32. [Google Scholar]
- Pelter, A.; Ward, R.S.; Gray, I.T. The carbon-13 nuclear magnetic resonance spectra of flavonoids and related compounds. J. Chem. Soc. Perk. Trans. I 1976, 223, 2475–2483. [Google Scholar] [CrossRef]
- Wong, S.-M.; Konno, C.; Oshima, Y.; Pezzuto, J.M.; Fong, H.H.S.; Worth, N.R.F. Irisones A and B: Two new isoflavones from Iris missouriensis. J. Nat. Prod. 1987, 50, 178–180. [Google Scholar] [CrossRef] [PubMed]
- Kuete, V. Potential of Cameroonian plants and derived-products against microbial infections: A review. Planta Med. 2010, 76, 1479–1491. [Google Scholar] [CrossRef] [Green Version]
- Jesus, J.A.; Lago, J.H.G.; Laurenti, M.D.; Yamamoto, E.S.; Passero, L.F.D. Antimicrobial activity of oleanolic and ursolic acids: An update. Evid. Based Complement. Altern. Med. 2015, 2015, 620472. [Google Scholar] [CrossRef]
- Demgne, F.O.M.; Damen, F.; Fankam, A.G.; Guefack, F.M.-G.; Wamba, N.E.B.; Nayim, P.; Mbaveng, T.A.; Bitchagno, G.T.M.; Tapondjou, A.L.; Penlap, B.V.; et al. Botanicals and phytochemicals from the bark of Hypericum roeperianum (Hypericaceae) had strong antibacterial activity and showed synergistic effects with antibiotics against multidrug-resistant bacteria expressing active efflux pumps. J. Ethnopharmacol. 2021, 277, 114257. [Google Scholar] [CrossRef]
- Zgurskaya, H.I.; Nikaido, H. Multidrug resistance mechanisms: Drug efflux across two membranes. Mol. Microbiol. 2000, 37, 219–225. [Google Scholar] [CrossRef]
- Pool, K. Efflux-mediated antimicrobial resistance. J. Antimicrob. Chemother. 2005, 56, 20–51. [Google Scholar] [CrossRef] [Green Version]
- Epand, R.M.; Walker, C.; Epand, R.F.; Magarvey, N.A. Molecular mechanisms of membrane targeting antibiotics. Biochim. Biophys Acta Biomembr. 2016, 1858, 980–987. [Google Scholar] [CrossRef]
- Tsakem, B.; Eckhardt, P.; Tchuenguem, R.T.; Ponou, K.B.; Dzoyem, J.P.; Teponno, R.B.; Opatz, T.; Barboni, L.; Tapondjou, A.L. Muellerilactone and other bioactive constituents of Phyllanthus muellerianus (kuntze) exell. Biochem. Systemat. Ecol. 2022, 101, 104397. [Google Scholar] [CrossRef]
- Ahamed, B.K.M.; Krishna, V.; Gowdru, H.B.; Rajanaika, H.; Kumaraswamy, H.M.; Rajshekarappa, S.; Dandin, C.J.; Mahadevan, K.M. Isolation of bactericidal constituents from the stem bark extract of Grewia tiliaefolia Vahl. Res. J. Med. Plant 2007, 1, 72–82. [Google Scholar]
- Eloff, J.N. A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med. 1998, 64, 711–713. [Google Scholar] [CrossRef] [Green Version]
- Guefack, M.G.F.; Tankeo, S.B.; Ngaffo, C.M.N.; Nayim, P.; Wamba, B.E.N.; Bonsou, I.N.; Kuete, V.; Mbaveng, A.T. Antibiotic-potentiation activities of three animal species extracts, Bitis arietans, Helix aspersa, and Aristaeomorpha foliacea and mode of action against MDR Gram-negative bacteria phenotypes. Investig. Med. Chem. Pharmacol. 2021, 4, 48–62. [Google Scholar] [CrossRef]
- Nono, E.C.; Mkounga, P.; Kuete, V.; Marat, K.; Hultin, P.G.; Nkengfack, A.E. Pycnanthulignenes A-D, antimicrobial cyclolignene derivatives from the roots of Pycnanthus angolensis. J. Nat. Prod. 2010, 73, 213–216. [Google Scholar] [CrossRef]
- Nguemeving, J.R.; Azebaze, A.G.; Kuete, V.; Nono, N.E.C.; Beng, V.P.; Meyer, M.; Blond, A.; Bodo, B.; Nkengfack, A.E. Laurentixanthones A and B, antimicrobial xanthones from Vismia laurentii. Phytochemistry 2006, 67, 1341–1346. [Google Scholar] [CrossRef]
- Fankam, A.G.; Kuiate, J.R.; Kuete, V. Antibacterial activities of Beilschmiedia obscura and six other Cameroonian medicinal plants against multi-drug resistant Gram-negative phenotypes. BMC Complement. Altern. Med. 2014, 14, 241–249. [Google Scholar] [CrossRef] [Green Version]
- Chevalier, J.; Pages, J.M.; Eyraud, A.; Mallea, M. Membrane permeability modifications are involved in antibiotic resistance in Klebsiella pneumoniae. Biochem. Biophys. Res. Commun. 2000, 274, 496–499. [Google Scholar]
- Dzoyem, J.P.; Hamamoto, H.; Ngameni, B.; Ngadjui, B.T.; Sekimizu, K. Antimicrobial action mechanism of flavonoids from Dorstenia species. Drug Discov. Ther. 2013, 7, 66–72. [Google Scholar]
- Kuete, V.; Ngameni, B.; Tangmouo, G.J.; Bola, J.M.; Alibert-Franco, S.; Ngadjui, T.B.; Pages, J.M. Efflux pumps are involved in the defence of gram-negative bacteria against the natural products isobavachalcone and diospyrone. Antimicrob. Agents Chemother. 2010, 54, 1749–1752. [Google Scholar]
- Lorenzi, V.; Muselli, A.; Bernardini, A.F.; Berti, L.; Pages, J.M.; Amaral, L.; Bolla, J.M. Geraniol restores antibiotic activities against multidrug-resistant isolates from gram-negative species. Antimicrob. Agents Chemother. 2009, 53, 2209–2211. [Google Scholar]
- Paudel, A.; Hamamoto, H.; Kobayashi, Y.; Yokoshima, S.; Fukuyama, T.; Sekimizu, K. Identification of novel deoxyribofuranosyl indole antimicrobial agents. J. Antibiot. 2012, 65, 53–57. [Google Scholar]
Position | δC, Type | δH (J in Hertz) |
---|---|---|
C=O | 193.2, C | / |
α | 120.9, CH | 7.62, d (15.6) |
β | 140.3, CH | 8.12, d (15.6) |
1 | 123.7, C | / |
2 | 159.0, C | / |
3 | 111.3, CH | 6.88, dd (8.4, 1.0) |
4 | 132.0, CH | 7.32, ddd (8.8, 7.5, 1.7) |
5 | 120.8, CH | 6.93, td (7.6, 1.0) |
6 | 129.6, CH | 7.55, brd (8.8) |
1′ | 115.2, C | / |
2′ | 157.7, C | / |
3′ | 134.3, C | / |
4′ | 155.0, C | / |
5′ | 106.3, CH | 6.48, d (8.9) |
6′ | 126.3, CH | 7.55, d (8.8) |
2-OMe | 55.6, CH3 | 3.86, s |
3′-OMe | 60.8, CH3 | 3.95, s |
Bacterial Strains | E1 | E2 | E3 | 3 | 4 | 5 | CHL | ||||||||
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | ||
E. coli | ATTC10536 | 128 | 512 | 128 | >256 | 128 | >256 | 64 | >256 | 128 | >256 | 128 | >256 | 128 | 16 |
AG102 | 128 | - | 128 | >256 | 256 | >256 | 64 | >256 | 128 | >256 | 64 | >256 | 64 | 64 | |
E. aerogenes | ATCC13048 | 64 | 256 | 128 | >256 | 128 | >256 | 128 | >256 | 128 | >256 | 64 | >256 | 128 | 64 |
K. pneumoniae | ATCC11296 | 128 | - | 256 | >256 | 128 | >256 | 64 | >256 | 64 | 256 | 128 | >256 | 128 | 64 |
KP55 | 128 | - | 256 | >256 | 256 | >256 | 128 | >256 | 128 | >256 | 64 | >256 | 64 | 64 | |
P. stuartii | PS2636 | 128 | - | 256 | >256 | 128 | >256 | 128 | >256 | 128 | >256 | 64 | >256 | 32 | 32 |
P. aeruginosa | PA01 | 128 | - | 128 | >256 | 512 | >256 | 64 | >256 | 64 | >256 | 128 | >256 | 64 | 64 |
Bacterial Strains | 6 | 9 | 11 | 12 | 13 | CHL | |||||||||
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | ||||
E. coli | ATTC10536 | 128 | >256 | 64 | >256 | 128 | >256 | 128 | >256 | 128 | >256 | 16 | 128 | ||
AG102 | 256 | >256 | 64 | >256 | 128 | >256 | 256 | >256 | 128 | >256 | 64 | 64 | |||
E. aerogenes | ATCC13048 | 256 | >256 | 128 | >256 | 128 | >256 | 128 | >256 | 32 | 256 | 64 | 128 | ||
K. pneumoniae | ATCC11296 | 128 | >256 | 64 | >256 | 256 | >256 | 128 | >256 | 128 | >256 | 64 | 128 | ||
KP55 | 64 | >256 | 64 | >256 | 256 | >256 | 256 | >256 | 128 | >256 | 64 | 64 | |||
P. stuartii | PS2636 | 128 | >256 | 128 | >256 | 512 | >256 | 128 | >256 | 128 | >256 | 32 | 32 | ||
P. aeruginosa | PA01 | 128 | >256 | 64 | >256 | 128 | >256 | 512 | >256 | 128 | >256 | 64 | 64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mouzié, C.M.; Guefack, M.-G.F.; Kianfé, B.Y.; Serondo, H.U.; Ponou, B.K.; Siwe-Noundou, X.; Teponno, R.B.; Krause, R.W.M.; Kuete, V.; Tapondjou, L.A. A New Chalcone and Antimicrobial Chemical Constituents of Dracaena stedneuri. Pharmaceuticals 2022, 15, 725. https://doi.org/10.3390/ph15060725
Mouzié CM, Guefack M-GF, Kianfé BY, Serondo HU, Ponou BK, Siwe-Noundou X, Teponno RB, Krause RWM, Kuete V, Tapondjou LA. A New Chalcone and Antimicrobial Chemical Constituents of Dracaena stedneuri. Pharmaceuticals. 2022; 15(6):725. https://doi.org/10.3390/ph15060725
Chicago/Turabian StyleMouzié, Cédric M., Michel-Gael F. Guefack, Boris Y. Kianfé, Héritier U. Serondo, Beaudelaire K. Ponou, Xavier Siwe-Noundou, Rémy B. Teponno, Rui W. M. Krause, Victor Kuete, and Léon A. Tapondjou. 2022. "A New Chalcone and Antimicrobial Chemical Constituents of Dracaena stedneuri" Pharmaceuticals 15, no. 6: 725. https://doi.org/10.3390/ph15060725
APA StyleMouzié, C. M., Guefack, M. -G. F., Kianfé, B. Y., Serondo, H. U., Ponou, B. K., Siwe-Noundou, X., Teponno, R. B., Krause, R. W. M., Kuete, V., & Tapondjou, L. A. (2022). A New Chalcone and Antimicrobial Chemical Constituents of Dracaena stedneuri. Pharmaceuticals, 15(6), 725. https://doi.org/10.3390/ph15060725