The Use of Endo-Cellulase and Endo-Xylanase for the Extraction of Apple Pectins as Factors Modifying Their Anticancer Properties and Affecting Their Synergy with the Active Form of Irinotecan
Abstract
:1. Introduction
2. Results
2.1. Cytotoxicity Assay
2.1.1. Cytotoxicity of Pectins in Colon Cancer Cells
2.1.2. Cytotoxic Effect of Pectins Combined with SN-38
2.2. Cell Cycle Analysis
2.3. Apoptosis Detection
2.4. Oxidative Stress Detection
2.5. Modulation of Inflammation by Pectins
2.6. Galectin-3 Detection
2.7. E. coli Adherence to Cancer Cells
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Pectin Isolation
4.3. Cell Culture
4.4. Cell Viability Assay
4.5. Isobolographic Analysis
4.6. Flow Cytometry
4.7. Caspase-3 Activity
4.8. MDA Content
4.9. Enzyme-Linked Immunosorbent Assay (ELISA)
4.10. Adherence Assay
4.11. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Willats, W.G.; Knox, J.P.; Mikkelsen, J.D. Pectin: New insights into an old polymer are starting to gel. Trends Food Sci. Technol. 2006, 17, 97–104. [Google Scholar] [CrossRef]
- Willats, W.G.; McCartney, L.; Mackie, W.; Knox, J.P. Pectin: Cell biology and prospects for functional analysis. Plant Mol. Biol. 2001, 47, 9–27. [Google Scholar] [CrossRef] [PubMed]
- Eliaz, I.; Raz, A. Pleiotropic effects of modified citrus pectin. Nutrients 2019, 11, 2619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beukema, M.; Faas, M.M.; de Vos, P. The Effects of different dietary fiber pectin structures on the gastrointestinal immune barrier: Impact via gut microbiota and direct effects on immune cells. Exp. Mol. Med. 2020, 52, 1364–1376. [Google Scholar] [CrossRef] [PubMed]
- Moslemi, M. Reviewing the recent advances in application of pectin for technical and health promotion purposes: From laboratory to market. Carbohydr. Polym. 2021, 254, 117324. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, S.A.; El-Sakhawy, M.; El-Sakhawy, M.A. Polysaccharides, protein and lipid -based natural edible films in food packaging: A review. Carbohydr. Polym. 2020, 238, 116178. [Google Scholar] [CrossRef]
- Rehman, A.; Jafari, S.M.; Tong, Q.; Riaz, T.; Assadpour, E.; Aadil, R.M.; Niazi, S.; Khan, I.M.; Shehzad, Q.; Ali, A.; et al. Drug nanodelivery systems based on natural polysaccharides against different diseases. Adv. Colloid Interface Sci. 2020, 284, 102251. [Google Scholar] [CrossRef]
- Yadav, N.; Francis, A.P.; Priya, V.V.; Patil, S.; Mustaq, S.; Khan, S.S.; Alzahrani, K.J.; Banjer, H.J.; Mohan, S.K.; Mony, U.; et al. Polysaccharide-drug conjugates: A tool for enhanced cancer therapy. Polymers 2022, 14, 950. [Google Scholar] [CrossRef]
- Lara-Espinoza, C.; Carvajal-Millan, E.; Balandran-Quintana, R.; Lopez-Franco, Y.; Rascon-Chu, A. Pectin and pectin-based composite materials: Beyond food texture. Molecules 2018, 23, 942. [Google Scholar] [CrossRef] [Green Version]
- Tan, H.; Chen, W.; Liu, Q.; Yang, G.; Li, K. Pectin oligosaccharides ameliorate colon cancer by regulating oxidative stress- and inflammation-activated signaling pathways. Front. Immunol. 2018, 9, 1504. [Google Scholar] [CrossRef] [Green Version]
- Leclere, L.; van Cutsem, P.; Michiels, C. Anti-pancer activities of pH- or heat-modified pectin. Front. Pharmacol. 2013, 4, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maxwell, E.G.; Colquhoun, I.J.; Chau, H.K.; Hotchkiss, A.T.; Waldron, K.W.; Morris, V.J.; Belshaw, N.J. Modified sugar beet pectin induces apoptosis of colon cancer cells via an interaction with the neutral sugar side-chains. Carbohydr. Polym. 2016, 136, 923–929. [Google Scholar] [CrossRef] [PubMed]
- Ishisono, K.; Yabe, T.; Kitaguchi, K. Citrus pectin attenuates endotoxin shock via suppression of Toll-like receptor signaling in Peyer’s patch myeloid cells. J. Nutr. Biochem. 2017, 50, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Thakur, B.R.; Singh, R.K.; Handa, A.K. Chemistry and uses of pectin—A review. Crit. Rev. Food Sci. Nutr. 1997, 37, 47–73. [Google Scholar] [CrossRef]
- Morris, G.A.; Binhamad, H.A. Isolation and characterisation of pectin. In Pectin: Technological and Physiological Properties, 5th ed.; Springer Nature: Cham, Switzerland, 2020; pp. 61–82. [Google Scholar] [CrossRef]
- Masmoudi, M.; Besbes, S.; Abbes, F.; Robert, C.; Paquot, M.; Blecker, C.; Attia, H. Pectin extraction from lemon by-product with acidified date juice: Effect of extraction conditions on chemical composition of pectins. Food Bioprocess Technol. 2012, 2, 687–695. [Google Scholar] [CrossRef]
- Bonnin, E.; Garnier, C.; Ralet, M.C. Pectin-modifying enzymes and pectin-derived materials: Applications and impacts. Appl. Microbiol. Biotechnol. 2013, 98, 519–532. [Google Scholar] [CrossRef]
- Wikiera, A.; Mika, M.; Starzyńska-Janiszewska, A.; Stodolak, B. Endo-xylanase and endo-cellulase-assisted extraction of pectin from apple pomace. Carbohydr. Polym. 2016, 142, 199–205. [Google Scholar] [CrossRef]
- Wikiera, A.; Grabacka, M.; Byczyński, Ł.; Stodolak, B.; Mika, M. Enzymatically extracted apple pectin possesses antioxidant and antitumor activity. Molecules 2021, 26, 1434. [Google Scholar] [CrossRef]
- Palko-Łabuz, A.; Maksymowicz, J.; Sobieszczańska, B.; Wikiera, A.; Skonieczna, M.; Wesołowska, O.; Środa-Pomianek, K. Newly obtained apple pectin as an adjunct to irinotecan therapy of colorectal cancer reducing E. coli adherence and β-glucuronidase activity. Cancers 2021, 13, 2952. [Google Scholar] [CrossRef]
- Berg, K.C.G.; Eide, P.W.; Eilertsen, I.A.; Johannessen, B.; Bruun, J.; Danielsen, S.A.; Bjornslett, M.; Meza-Zepeda, L.A.; Eknas, M.; Lind, G.E.; et al. Multi-omics of 34 colorectal cancer cell lines-a resource for biomedical studies. Mol. Cancer 2017, 16, 116. [Google Scholar] [CrossRef]
- van Erk, M.J.; Krul, C.A.; Caldenhoven, E.; Stierum, R.H.; Peters, W.H.; Woutersen, R.A.; van Ommen, B. Expression profiling of colon cancer cell lines and colon biopsies: Towards a screening system for potential cancer-preventive compounds. Eur. J. Cancer Prev. 2005, 14, 439–457. [Google Scholar] [CrossRef] [PubMed]
- Chou, T.C.; Martin, N. CompuSyn for Drug Combinations: PC Software and User’s Guide: A Computer Program for Quantitation of Synergism and Antagonism in Drug Combinations, and the Determination of IC50 and ED50 and LD50 Values; ComboSyn Inc.: Paramus, NJ, USA, 2005. [Google Scholar]
- Di Veroli, G.Y.; Fornari, C.; Wang, D.; Mollard, S.; Bramhall, J.L.; Richards, F.M.; Jodrell, D.I. Combenefit: An interactive platform for the analysis and visualization of drug combinations. Bioinformatics 2016, 32, 2866–2868. [Google Scholar] [CrossRef] [PubMed]
- Berenbaum, M.C. What is synergy? Pharmacol. Rev. 1989, 41, 93–141. [Google Scholar] [PubMed]
- Cheng, H.; Zhang, Z.; Leng, J.; Liu, D.; Hao, M.; Gao, X.; Tai, G.; Zhou, Y. The inhibitory effects and mechanisms of rhamnogalacturonan I pectin from potato on HT-29 colon cancer cell proliferation and cell cycle progression. Int. J. Food. Sci. Nutr. 2013, 64, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Li, S.; Fan, Y.; Gao, X.; Hao, M.; Wang, J.; Zhang, X.; Tai, G.; Zhou, Y. Comparative studies of the antiproliferative effects of ginseng polysaccharides on HT-29 human colon cancer cells. Med. Oncol. 2011, 28, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Do Nascimento, R.S.; de Freitas Pedrosa, L.; Diethelm, L.T.; Souza, T.; Shiga, T.M.; Fabi, J.P. The purification of pectin from commercial fruit flours results in a jaboticaba fraction that inhibits galectin-3 and colon cancer cell growth. Food Res. Int. 2020, 137, 109747. [Google Scholar] [CrossRef] [PubMed]
- Pedrosa, L.F.; Lopes, R.G.; Fabi, J.P. The acid and neutral fractions of pectins isolated from ripe and overripe papayas differentially affect galectin-3 inhibition and colon cancer cell growth. Int. J. Biol. Macromol. 2020, 164, 2681–2690. [Google Scholar] [CrossRef]
- Hossein, G.; Keshavarz, M.; Ahmadi, S.; Naderi, N. Synergistic effects of PectaSol-C modified citrus pectin an inhibitor of galectin-3 and paclitaxel on apoptosis of human SKOV-3 ovarian cancer cells. Asian. Pac. J. Cancer. Prev. 2013, 14, 7561–7568. [Google Scholar] [CrossRef] [Green Version]
- Tehranian, N.; Sepehri, H.; Mehdipour, P.; Biramijamal, F.; Hossein-Nezhad, A.; Sarrafnejad, A.; Hajizadeh, E. Combination effect of PectaSol and doxorubicin on viability, cell cycle arrest and apoptosis in DU-145 and LNCaP prostate cancer cell lines. Cell Biol. Int. 2012, 36, 601–610. [Google Scholar] [CrossRef]
- Ogutu, F.O.; Mu, T.H.; Sun, H.; Zhang, M. Ultrasonic modified sweet potato pectin induces apoptosis like cell death in colon cancer (HT-29) cell line. Nutr. Cancer 2018, 70, 136–145. [Google Scholar] [CrossRef]
- Wu, X.Q.; Fu, J.Y.; Mei, R.Y.; Dai, X.J.; Li, J.H.; Zhao, X.F.; Liu, M.Q. Inhibition of liver cancer HepG2 cell proliferation by enzymatically prepared low-molecular citrus pectin. Curr. Pharm. Biotechnol. 2022, 23, 861–872. [Google Scholar] [CrossRef] [PubMed]
- Vanamala, J.; Glagolenko, A.; Yang, P.; Carroll, R.J.; Murphy, M.E.; Newman, R.A.; Ford, J.R.; Braby, L.A.; Chapkin, R.S.; Turner, N.D.; et al. Dietary fish oil and pectin enhance colonocyte apoptosis in part through suppression of PPARδ/PGE 2 and elevation of PGE 3. Carcinogenesis 2008, 29, 790–796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minzanova, S.T.; Mironov, V.F.; Arkhipova, D.M.; Khabibullina, A.v.; Mironova, L.G.; Zakirova, Y.M.; Milyukov, V.A. Biological activity and pharmacological application of pectic polysaccharides: A review. Polymers 2018, 10, 1407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conti, S.; Vexler, A.; Hagoel, L.; Kalich-Philosoph, L.; Corn, B.W.; Honig, N.; Shtraus, N.; Meir, Y.; Ron, I.; Eliaz, I.; et al. Modified citrus pectin as a potential sensitizer for radiotherapy in prostate cancer. Integr. Cancer Ther. 2018, 17, 1225–1234. [Google Scholar] [CrossRef] [Green Version]
- Salehi, F.; Behboudi, H.; Kavoosi, G.; Ardestani, S.K. Oxidative DNA damage induced by ROS-modulating agents with the ability to target DNA: A comparison of the biological characteristics of citrus pectin and apple pectin. Sci. Rep. 2018, 8, 1–16. [Google Scholar] [CrossRef]
- Amaral, S.C.; Barbieri, S.F.; Ruthes, A.C.; Bark, J.M.; Brochado Winnischofer, S.M.; Silveira, J.L. Cytotoxic effect of crude and purified pectins from Campomanesia xanthocarpa Berg on human glioblastoma cells. Carbohydr. Polym. 2019, 224, 115140. [Google Scholar] [CrossRef]
- Fulton, D.J.; Li, X.; Bordan, Z.; Wang, Y.; Mahboubi, K.; Rudic, D.R.; Haigh, S.; Chen, F.; Barman, S.A. Galectin-3: A harbinger of reactive oxygen species, fibrosis, and inflammation in pulmonary arterial hypertension. Antioxid. Redox Signal 2019, 31, 1053–1069. [Google Scholar] [CrossRef]
- Zhang, S.; Waterhouse, G.I.; Xu, F.; He, Z.; Du, Y.; Lian, Y.; Wu, P.; Sun-Waterhouse, D. Recent advances in utilization of pectins in biomedical applications: A review focusing on molecular structure-directing health-promoting properties. Crit. Rev. Food Sci. Nutr. 2021. accepted. [Google Scholar] [CrossRef]
- Chen, C.H.; Sheu, M.T.; Chen, T.F.; Wang, Y.C.; Hou, W.C.; Liu, D.Z.; Chung, T.C.; Liang, Y.C. Suppression of endotoxin-induced proinflammatory responses by citrus pectin through blocking LPS signaling pathways. Biochem. Pharmacol. 2006, 72, 1001–1009. [Google Scholar] [CrossRef]
- Wu, D.; Chen, S.; Ye, X.; Zheng, X.; Ahmadi, S.; Hu, W.; Yu, C.; Cheng, H.; Linhardt, R.J.; Chen, J. Enzyme-extracted raspberry pectin exhibits a high-branched structure and enhanced anti-inflammatory properties than hot acid-extracted pectin. Food Chem. 2022, 383, 132387. [Google Scholar] [CrossRef]
- Shen, L.; Chu, X.; Zhang, Z.; Wu, T. Structural characterization and in vitro anti-inflammatory estimation of an unusual pectin linked by rhamnogalacturonan I and xylogalacturonan from lotus plumule. Int. J. Biol. Macromol. 2022, 194, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Fan, L.; Sun, Y.; Zhang, D.; Yue, Z.; Niu, Y.; Meng, J.; Yang, T.; Liu, W.; Mei, Q. An apple oligogalactan suppresses endotoxin-induced cyclooxygenase-2 expression by inhibition of LPS pathways. Int. J. Biol. Macromol. 2013, 61, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Li, Y.H.; Mi, M.; Jiang, F.L.; Yue, Z.G.; Sun, Y.; Fan, L.; Meng, J.; Zhang, X.; Liu, L.; et al. Modified apple polysaccharides suppress the migration and invasion of colorectal cancer cells induced by lipopolysaccharide. Nutr. Res. 2013, 33, 839–848. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Huo, X.; Qi, Y.; Ren, D.; Li, Z.; Qu, D.; Sun, Y. The protective effects of ginseng polysaccharides and their effective subfraction against dextran sodium sulfate-induced colitis. Foods 2022, 11, 890. [Google Scholar] [CrossRef]
- Pan, H.Y.; Zhang, C.Q.; Zhang, X.Q.; Zeng, H.; Dong, C.H.; Chen, X.; Ding, K. A Galacturonan from Dioscorea opposita Thunb. regulates fecal and impairs IL-1 and IL-6 expression in diarrhea mice. Glycoconj. J. 2022, 39, 131–141. [Google Scholar] [CrossRef]
- Brown, J.; Wang, H.; Hajishengallis, G.N.; Martin, M. TLR-signaling networks: An integration of adaptor molecules, kinases, and cross-talk. J. Dent. Res. 2011, 90, 417–427. [Google Scholar] [CrossRef]
- Suzuki, M.; Hisamatsu, T.; Podolsky, D.K. Gamma interferon augments the intracellular pathway for lipopolysaccharide (LPS) recognition in human intestinal epithelial cells through coordinated up-regulation of LPS uptake and expression of the intracellular Toll-like receptor 4-MD-2 complex. Infect. Immun. 2003, 71, 3503–3511. [Google Scholar] [CrossRef] [Green Version]
- Nemati, M.; Larussa, T.; Khorramdelazad, H.; Mahmoodi, M.; Jafarzadeh, A. Toll-like receptor 2: An important immunomodulatory molecule during Helicobacter pylori infection. Life Sci. 2017, 178, 17–29. [Google Scholar] [CrossRef]
- Xu, G.R.; Zhang, C.; Yang, H.X.; Sun, J.H.; Zhang, Y.; Yao, T.T.; Li, Y.; Ruan, L.; An, R.; Li, A.Y. Modified citrus pectin ameliorates myocardial fibrosis and inflammation via suppressing galectin-3 and TLR4/MyD88/NF-κB signaling pathway. Biomed. Pharmacother. 2020, 126, 110071. [Google Scholar] [CrossRef]
- Liu, L.; Li, Y.H.; Niu, Y.B.; Sun, Y.; Guo, Z.J.; Li, Q.; Li, C.; Feng, J.; Cao, S.S.; Mei, Q.B. An apple oligogalactan prevents against inflammation and carcinogenesis by targeting LPS/TLR4/NF-κB pathway in a mouse model of colitis-associated colon cancer. Carcinogenesis 2010, 31, 1822–1832. [Google Scholar] [CrossRef]
- Park, H.R.; Lee, S.J.; Im, S.B.; Shin, M.S.; Choi, H.J.; Park, H.Y.; Shin, K.S. Signaling pathway and structural features of macrophage-activating pectic polysaccharide from korean citrus, cheongkyool peels. Int. J. Biol. Macromol. 2019, 137, 657–665. [Google Scholar] [CrossRef] [PubMed]
- Park, S.N.; Noh, K.T.; Jeong, Y.I.; Jung, I.D.; Kang, H.K.; Cha, G.S.; Lee, S.J.; Seo, J.K.; Kang, D.H.; Hwang, T.H.; et al. Rhamnogalacturonan II Is a Toll-like receptor 4 agonist that inhibits tumor growth by activating dendritic cell-mediated CD8+ T cells. Exp. Mol. Med. 2013, 45, e8. [Google Scholar] [CrossRef] [PubMed]
- Newlaczyl, A.U.; Yu, L.G. Galectin-3–a jack-of-all-trades in cancer. Cancer Lett. 2011, 313, 123–128. [Google Scholar] [CrossRef]
- Nangia-Makker, P.; Hogan, V.; Honjo, Y.; Baccarini, S.; Tait, L.; Bresalier, R.; Raz, A. Inhibition of human cancer cell growth and metastasis in nude mice by oral intake of modified citrus pectin. J. Natl. Cancer Inst. 2002, 94, 1854–1862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, M.C.; Zheng, Y.; Yan, J.; Zhou, Y.; Tai, G.; Mayo, K.H. Novel Polysaccharide binding to the N-terminal tail of galectin-3 is likely modulated by proline isomerization. Glycobiology 2017, 27, 1038–1051. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Su, J.; Miller, M.C.; Geng, J.; Xu, X.; Zhang, T.; Mayzel, M.; Zhou, Y.; Mayo, K.H.; Tai, G. Topsy-turvy binding of negatively charged homogalacturonan oligosaccharides to galectin-3. Glycobiology 2021, 31, 341–350. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, F.; Liu, X.; Ange, K.S.; Zhang, A.; Li, Q.; Linhardt, R.J. Isolation of a lectin binding rhamnogalacturonan-I containing pectic polysaccharide from pumpkin. Carbohydr. Polym. 2017, 163, 330–336. [Google Scholar] [CrossRef]
- Pan, X.; Wang, H.; Zheng, Z.; Huang, X.; Yang, L.; Liu, J.; Wang, K.; Zhang, Y. Pectic polysaccharide from Smilax china L. ameliorated ulcerative colitis by inhibiting the galectin-3/NLRP3 inflammasome pathway. Carbohydr. Polym. 2022, 277, 118864. [Google Scholar] [CrossRef]
- Wu, D.; Zheng, J.; Hu, W.; Zheng, X.; He, Q.; Linhardt, R.J.; Ye, X.; Chen, S. Structure-activity relationship of citrus segment membrane RG-I pectin against galectin-3: The galactan is not the only important factor. Carbohydr. Polym. 2020, 245, 116526. [Google Scholar] [CrossRef]
- Gunning, A.P.; Bongaerts, R.J.; Morris, V.J. Recognition of galactan components of pectin by galectin-3. FASEB J. 2009, 23, 415–424. [Google Scholar] [CrossRef]
- Zhang, T.; Sun, G.; Shuai, M.; Ye, J.; Huang, J.; Yao, X.; Sun, C.; Min, X. Purification, chemical analysis and inhibitory effects on galectin-3 of enzymatic pH-modified citrus pectin. Food Chem. X 2021, 12, 100169. [Google Scholar] [CrossRef] [PubMed]
- Naqash, F.; Masoodi, F.A.; Rather, S.A.; Wani, S.M.; Gani, A. Emerging concepts in the nutraceutical and functional properties of pectin—A review. Carbohydr. Polym. 2017, 168, 227–239. [Google Scholar] [CrossRef] [PubMed]
- Prado, S.B.; Santos, G.R.; Mourao, P.A.; Fabi, J.P. Chelate-Soluble pectin fraction from papaya pulp interacts with galectin-3 and inhibits colon cancer cell proliferation. Int. J. Biol. Macromol. 2019, 126, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Prado, S.B.; Ferreira, G.F.; Harazono, Y.; Shiga, T.M.; Raz, A.; Carpita, N.C.; Fabi, J.P. Ripening-induced chemical modifications of papaya pectin inhibit cancer cell proliferation. Sci. Rep. 2017, 7, 1–17. [Google Scholar] [CrossRef]
- Cui, L.; Wang, J.; Huang, R.; Tan, Y.; Zhang, F.; Zhou, Y.; Sun, L. Analysis of pectin from Panax ginseng flower buds and their binding activities to galectin-3. Int. J. Biol. Macromol. 2019, 128, 459–467. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, P.; Zhang, H. Pectin in cancer therapy: A review. Trends Food Sci. Technol. 2015, 44, 258–271. [Google Scholar] [CrossRef]
- Zhang, T.; Miller, M.C.; Zheng, Y.; Zhang, Z.; Xue, H.; Zhao, D.; Su, J.; Mayo, K.H.; Zhou, Y.; Tai, G. Macromolecular assemblies of complex polysaccharides with galectin-3 and their synergistic effects on function. Biochem. J. 2017, 474, 3849–3868. [Google Scholar] [CrossRef]
- Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; Mcmahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst. 1990, 82, 1107–1112. [Google Scholar] [CrossRef]
Cell Line | PX | PCX |
---|---|---|
IC50 (mg/mL) | IC50 (mg/mL) | |
HCT 116 | 0.167 ± 0.011 | 0.116 ± 0.009 |
Caco-2 | 0.208 ± 0.012 | 0.090 ± 0.008 |
HT-29 | 0.190 ± 0.012 | 0.080 ± 0.007 |
Cell Line | Concentration (mg/mL) | Ratio | Combination Index (CI) | ||
---|---|---|---|---|---|
SN-38 | PX | PCX | |||
0.78 × 10−6 | 0.1 | - | 128,200:1 | 0.629 | |
1.96 × 10−6 | 0.2 | - | 102,000:1 | 0.863 | |
HCT 116 | 3.14 × 10−6 | 0.5 | - | 157,730:1 | 1.010 |
0.78 × 10−6 | - | 0.1 | 128,200:1 | 0.543 | |
1.96 × 10−6 | - | 0.2 | 102,000:1 | 0.561 | |
3.14 × 10−6 | - | 0.5 | 157,730:1 | 0.905 | |
0.78 × 10−6 | 0.1 | - | 128,200:1 | 0.895 | |
1.96 × 10−6 | 0.2 | - | 102,000:1 | 0.791 | |
3.14 × 10−6 | 0.5 | - | 157,730:1 | 0.821 | |
Caco-2 | |||||
0.78 × 10−6 | - | 0.1 | 128,200:1 | 0.599 | |
1.96 × 10−6 | - | 0.2 | 102,000:1 | 0.424 | |
3.14 × 10−6 | - | 0.5 | 157,730:1 | 0.489 | |
0.78 × 10−6 | 0.1 | - | 128,200:1 | 0.725 | |
1.96 × 10−6 | 0.2 | - | 102,000:1 | 0.726 | |
3.14 × 10−6 | 0.5 | - | 157,730:1 | 0.735 | |
HT-29 | |||||
0.78 × 10−6 | - | 0.1 | 128,200:1 | 0.822 | |
1.96 × 10−6 | - | 0.2 | 102,000:1 | 0.941 | |
3.14 × 10−6 | - | 0.5 | 157,730:1 | 0.956 |
Cell Line | Pectin (mg/mL) | Relative Caspase-3 Activity | |
---|---|---|---|
+5 nM SN-38 | |||
HCT 116 | 0 | 1.00 ± 0.00 | 1.06 ± 0.06 |
0.2 PX | 1.40 ± 0.06 * | 2.36 ± 0.04 * § | |
0.2 PCX | 1.47 ± 0.03 * | 2.43 ± 0.02 * § | |
Caco-2 | 0 | 1.00 ± 0.00 | 1.08 ± 0.01 |
0.2 PX | 1.59 ± 0.05 * | 2.40 ± 0.00 * § | |
0.2 PCX | 1.69 ± 0.02 * | 2.63 ± 0.02 * § | |
HT-29 | 0 | 1.00 ± 0.00 | 1.18 ± 0.19 |
0.2 PX | 1.59 ± 0.01 * | 2.55 ± 0.08 * § | |
0.2 PCX | 1.67 ± 0.03 * | 2.76 ± 0.25 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maksymowicz, J.; Palko-Łabuz, A.; Sobieszczańska, B.; Chmielarz, M.; Ferens-Sieczkowska, M.; Skonieczna, M.; Wikiera, A.; Wesołowska, O.; Środa-Pomianek, K. The Use of Endo-Cellulase and Endo-Xylanase for the Extraction of Apple Pectins as Factors Modifying Their Anticancer Properties and Affecting Their Synergy with the Active Form of Irinotecan. Pharmaceuticals 2022, 15, 732. https://doi.org/10.3390/ph15060732
Maksymowicz J, Palko-Łabuz A, Sobieszczańska B, Chmielarz M, Ferens-Sieczkowska M, Skonieczna M, Wikiera A, Wesołowska O, Środa-Pomianek K. The Use of Endo-Cellulase and Endo-Xylanase for the Extraction of Apple Pectins as Factors Modifying Their Anticancer Properties and Affecting Their Synergy with the Active Form of Irinotecan. Pharmaceuticals. 2022; 15(6):732. https://doi.org/10.3390/ph15060732
Chicago/Turabian StyleMaksymowicz, Jerzy, Anna Palko-Łabuz, Beata Sobieszczańska, Mateusz Chmielarz, Mirosława Ferens-Sieczkowska, Magdalena Skonieczna, Agnieszka Wikiera, Olga Wesołowska, and Kamila Środa-Pomianek. 2022. "The Use of Endo-Cellulase and Endo-Xylanase for the Extraction of Apple Pectins as Factors Modifying Their Anticancer Properties and Affecting Their Synergy with the Active Form of Irinotecan" Pharmaceuticals 15, no. 6: 732. https://doi.org/10.3390/ph15060732
APA StyleMaksymowicz, J., Palko-Łabuz, A., Sobieszczańska, B., Chmielarz, M., Ferens-Sieczkowska, M., Skonieczna, M., Wikiera, A., Wesołowska, O., & Środa-Pomianek, K. (2022). The Use of Endo-Cellulase and Endo-Xylanase for the Extraction of Apple Pectins as Factors Modifying Their Anticancer Properties and Affecting Their Synergy with the Active Form of Irinotecan. Pharmaceuticals, 15(6), 732. https://doi.org/10.3390/ph15060732