The Role of Non-Coding RNAs in the Pathogenesis of Parkinson’s Disease: Recent Advancement
Abstract
:1. Introduction
2. ncRNAs
2.1. Introduction
2.2. ncRNAs in PD
3. LncRNA
3.1. Introductionn
3.2. lncRNAs in the Pathogenesis of PD
3.3. lncRNAs in the Neuroinflammation of PD
3.4. Circulating lncRNA in the Pathogenesis and Neuroinflammation of PD
4. microRNA (miRNA)
4.1. Introduction
4.2. microRNA in the Pathogenesis of PD
4.3. microRNA in Neuroinflammation of PD
4.4. ceRNA in the Pathogenesis and Neuroinflammation of PD
4.5. Circulating miRNA in the Pathogenesis Neuroinflammation of PD
Sample Source | Species | miRNAs Status in PD | Method | Pilot Study | References |
---|---|---|---|---|---|
serum | human | ↑/hsa-miR-7-5p, has-miR-22-3p, hsa-miR-136-3p, hsa-miR-139-5p, hsa-miR-330-5p, hsa-miR-433-3p, hsa-miR-495-3p | qRT-PCR | 99 iPD vs. 101 HC | [218] |
human | ↓/miR-96-5p | qRT-PCR | 51 PD vs. 52 HC | [219] | |
human | ↓//hsa-miR-144-3p | NGS qRT-PCR | 61 PD vs. 58 HC | [220] | |
human | ↓//hsa-miR-24-3p and hsa-miR-30c-5p | qRT-PCR | 38 PD vs. 20 HC | [221] | |
human | ↑/miR-151a-5p, miR-24, mir-485-5p, mir-331-5p, and mir-214 | qRT-PCR | 209 PD vs. 60 HC | [222] | |
human | ↓//miR-214, miR-221, and miR-141 | qRT-PCR | 20 PD vs. 15 HC | [223] | |
human | ↓//miR-23b-3p | NGS qRT-PCR | 22 PD vs. 9 HC | [224] | |
human | ↓//hsa-mir-4745-5p | qRT-PCR | 12 PD vs. 12 HC | [225] | |
human | ↓//miR-374a-5p | qRT-PCR | 68 PD vs. 50 HC | [226] | |
human | ↓//miR-21-3p, miR-22-3p and miR-223-5p | qRT-PCR | 40 PD vs. 33 HC | [227] | |
human | ↑/miR-34a-5p | qRT-PCR | 15 PD vs. 14 HC | [79] | |
human | ↑/miR-133b and miR-221-3p | qRT-PCR | 151 PD vs. 138 HC | [214] | |
human | ↓//miR-124 | qRT-PCR | 25pPD vs. 21 HC | [228] | |
human | ↑/hsa-miR-374a-5p, hsa-miR-374b-5p | qRT-PCR | 72 PD vs. 31 HC | [229] | |
human | ↑/miR-106a-5p, miR-103a-3p, miR-29a-3p | qRT-PCR | 8PD (after exercise) vs. 8PD (before exercise) | [215] | |
human | ↓//miR-132-3p, miR-146-5p | qRT-PCR | 82 PD vs. 44 HC | [73] | |
human | ↑/miR-27a-3p, miR-584-5p | NGS | 7 PD vs. 24 HC | [230] | |
human | ↓//miR-146a, miR-335-3p, miR-335-5p | qRT-PCR | 20 iPD vs. 20 HC | [220] | |
human | ↓//miR-150 | qRT-PCR | 80 PD vs. 80 HC | [134] | |
human | ↑/miR-330-5p, miR-433-3p, miR-495-3p | qRT-PCR | 108 PD vs. 92 HC | [231] | |
human | ↓//miR-29 | qRT-PCR | 37 PD vs. 40 HC | [74] | |
human | ↓//miR-218, miR-124, miR-144 | qRT-PCR | 15 PD vs. 10 HC | [126] | |
human | ↑/miR-132 | qRT-PCR | 269 PD vs. 222 HC | [75] | |
human | ↑/miR-105-5p | qRT-PCR | 319 PD vs. 273 HC | [77] | |
CSF | human | ↑/miR-151a-5p, miR-24, mir-485-5p, mir-331-5p, and mir-214 | qRT-PCR | 209 PD vs. 60 HC | [222] |
human | ↑/miR-7-5p, miR-331-5p, miR-145-5p | qRT-PCR | 10 PD vs. 10 HC | [103] | |
human | ↓//hsa-miR-626 | qRT-PCR | 15 PD vs. 16 HC 20 PD vs. 27 PD HC | [100,232] | |
saliva | human | ↓//miR-29a-3p, miR-29c-3p | qRT-PCR | 5 PD vs. 5 HC | [233] |
human | ↓//miR-153, miR-223 | qRT-PCR | 83 PD vs. 77 HC | [72] |
5. circRNA
5.1. Introduction
5.2. circRNA in the Pathogenesis of PD
5.3. circRNA in Neuroinflammation of PD
5.4. ceRNA in the Pathogenesis and Neuroinflammation of PD
6. ncRNAs in Treatment of Parkinson’s Disease
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morris, K.V.; Mattick, J.S. The rise of regulatory RNA. Nat. Rev. Genet. 2014, 15, 423–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, R.A.; Shah, N.; Wang, K.C.; Kim, J.; Horlings, H.M.; Wong, D.J.; Tsai, M.C.; Hung, T.; Argani, P.; Rinn, J.L.; et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 2010, 464, 1071–1076. [Google Scholar] [CrossRef] [PubMed]
- Cech, T.R.; Steitz, J.A. The noncoding RNA revolution-trashing old rules to forge new ones. Cell 2014, 157, 77–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, G.; Su, Z.; Song, D.; Mao, Y.; Mao, X. The long noncoding RNA MALAT1 regulates the lipopolysaccharide-induced inflammatory response through its interaction with NF-κB. FEBS Lett. 2016, 590, 2884–2895. [Google Scholar] [CrossRef] [Green Version]
- Niu, M.; Xu, R.; Wang, J.; Hou, B.; Xie, A. MiR-133b ameliorates axon degeneration induced by MPP(+) via targeting RhoA. Neuroscience 2016, 325, 39–49. [Google Scholar] [CrossRef]
- Kim, J.; Fiesel, F.C.; Belmonte, K.C.; Hudec, R.; Wang, W.X.; Kim, C.; Nelson, P.T.; Springer, W.; Kim, J. MiR-27a and miR-27b regulate autophagic clearance of damaged mitochondria by targeting PTEN-induced putative kinase 1 (PINK1). Mol. Neurodegener. 2016, 11, 55. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.Y.; Kuo, H.C. Functional roles and networks of non-coding RNAs in the pathogenesis of neurodegenerative diseases. J. Biomed. Sci. 2020, 27, 49. [Google Scholar] [CrossRef] [Green Version]
- Yao, L.; Ye, Y.; Mao, H.; Lu, F.; He, X.; Lu, G.; Zhang, S. microRNA-124 regulates the expression of MEKK3 in the inflammatory pathogenesis of Parkinson’s disease. J. Neuroinflamm. 2018, 15, 13. [Google Scholar] [CrossRef] [Green Version]
- Sundaram, J.R.; Poore, C.P.; Sulaimee, N.H.B.; Pareek, T.; Cheong, W.F.; Wenk, M.R.; Pant, H.C.; Frautschy, S.A.; Low, C.M.; Kesavapany, S. Curcumin Ameliorates Neuroinflammation, Neurodegeneration, and Memory Deficits in p25 Transgenic Mouse Model that Bears Hallmarks of Alzheimer’s Disease. J. Alzheimer’s Dis. JAD 2017, 60, 1429–1442. [Google Scholar] [CrossRef]
- Amin, F.U.; Shah, S.A.; Kim, M.O. Glycine inhibits ethanol-induced oxidative stress, neuroinflammation and apoptotic neurodegeneration in postnatal rat brain. Neurochem. Int. 2016, 96, 1–12. [Google Scholar] [CrossRef]
- Shah, S.A.; Amin, F.U.; Khan, M.; Abid, M.N.; Rehman, S.U.; Kim, T.H.; Kim, M.W.; Kim, M.O. Anthocyanins abrogate glutamate-induced AMPK activation, oxidative stress, neuroinflammation, and neurodegeneration in postnatal rat brain. J. Neuroinflamm. 2016, 13, 286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ransohoff, R.M. How neuroinflammation contributes to neurodegeneration. Science 2016, 353, 777–783. [Google Scholar] [CrossRef] [PubMed]
- Ikeda-Matsuo, Y.; Miyata, H.; Mizoguchi, T.; Ohama, E.; Naito, Y.; Uematsu, S.; Akira, S.; Sasaki, Y.; Tanabe, M. Microsomal prostaglandin E synthase-1 is a critical factor in dopaminergic neurodegeneration in Parkinson’s disease. Neurobiol. Dis. 2019, 124, 81–92. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, S.; Nie, K.; Li, Y.; Gao, Y.; Gan, R.; Wang, L.; Li, B.; Sun, X.; Wang, L.; et al. TREM2 modulates microglia phenotypes in the neuroinflammation of Parkinson’s disease. Biochem. Biophys. Res. Commun. 2018, 499, 797–802. [Google Scholar] [CrossRef]
- Yu, Q.; Huang, Q.; Du, X.; Xu, S.; Li, M.; Ma, S. Early activation of Egr-1 promotes neuroinflammation and dopaminergic neurodegeneration in an experimental model of Parkinson’s disease. Exp. Neurol. 2018, 302, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Pal, R.; Tiwari, P.C.; Nath, R.; Pant, K.K. Role of neuroinflammation and latent transcription factors in pathogenesis of Parkinson’s disease. Neurol. Res. 2016, 38, 1111–1122. [Google Scholar] [CrossRef] [PubMed]
- McFarland, A.J.; Davey, A.K.; McDermott, C.M.; Grant, G.D.; Lewohl, J.; Anoopkumar-Dukie, S. Differences in statin associated neuroprotection corresponds with either decreased production of IL-1beta or TNF-alpha in an in vitro model of neuroinflammation-induced neurodegeneration. Toxicol. Appl. Pharmacol. 2018, 344, 56–73. [Google Scholar] [CrossRef] [Green Version]
- Qin, H.; Buckley, J.A.; Li, X.; Liu, Y.; Fox, T.H., 3rd; Meares, G.P.; Yu, H.; Yan, Z.; Harms, A.S.; Li, Y.; et al. Inhibition of the JAK/STAT Pathway Protects Against alpha-Synuclein-Induced Neuroinflammation and Dopaminergic Neurodegeneration. J. Neurosci. Off. J. Soc. Neurosci. 2016, 36, 5144–5159. [Google Scholar] [CrossRef]
- Johnson, J.M.; Edwards, S.; Shoemaker, D.; Schadt, E.E. Dark matter in the genome: Evidence of widespread transcription detected by microarray tiling experiments. Trends Genet. 2005, 21, 93–102. [Google Scholar] [CrossRef]
- Pennisi, E. Shining a light on the genome’s ‘dark matter’. Science 2010, 330, 1614. [Google Scholar] [CrossRef]
- Lin, D.; Liang, Y.; Jing, X.; Chen, Y.; Lei, M.; Zeng, Z.; Zhou, T.; Wu, X.; Peng, S.; Zheng, D.; et al. Microarray analysis of an synthetic α-synuclein induced cellular model reveals the expression profile of long non-coding RNA in Parkinson’s disease. Brain Res. 2018, 1678, 384–396. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Wang, T.; Qu, Q.; Kang, T.; Yang, Q. Long Noncoding RNA SNHG1 Promotes Neuroinflammation in Parkinson’s Disease via Regulating miR-7/NLRP3 Pathway. Neuroscience 2018, 388, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Li, J.; Yang, Q.; Gong, C.; Gao, H.; Mao, Z.; Yuan, X.; Zhu, S.; Xue, Z. Dysregulated Long Non-coding RNAs in Parkinson’s Disease Contribute to the Apoptosis of Human Neuroblastoma Cells. Front. Neurosci. 2019, 13, 1320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenamyre, J.T.; Betarbet, R.; Sherer, T.B. The rotenone model of Parkinson’s disease: Genes, environment and mitochondria. Parkinsonism Relat. Disord. 2003, 9 (Suppl. 2), S59–S64. [Google Scholar] [CrossRef]
- Peng, W.X.; Koirala, P.; Mo, Y.Y. LncRNA-mediated regulation of cell signaling in cancer. Oncogene 2017, 36, 5661–5667. [Google Scholar] [CrossRef]
- Kraus, T.F.J.; Haider, M.; Spanner, J.; Steinmaurer, M.; Dietinger, V.; Kretzschmar, H.A. Altered Long Noncoding RNA Expression Precedes the Course of Parkinson’s Disease-a Preliminary Report. Mol. Neurobiol. 2017, 54, 2869–2877. [Google Scholar] [CrossRef]
- Chi, L.M.; Wang, L.P.; Jiao, D. Identification of Differentially Expressed Genes and Long Noncoding RNAs Associated with Parkinson’s Disease. Parkinsons Dis. 2019, 2019, 6078251. [Google Scholar] [CrossRef] [Green Version]
- Márki, S.; Göblös, A.; Szlávicz, E.; Török, N.; Balicza, P.; Bereznai, B.; Takáts, A.; Engelhardt, J.; Klivényi, P.; Vécsei, L.; et al. The rs13388259 Intergenic Polymorphism in the Genomic Context of the BCYRN1 Gene Is Associated with Parkinson’s Disease in the Hungarian Population. Parkinsons Dis. 2018, 2018, 9351598. [Google Scholar]
- Liu, Y.; Lu, Z. Long non-coding RNA NEAT1 mediates the toxic of Parkinson’s disease induced by MPTP/MPP+ via regulation of gene expression. Clin. Exp. Pharm. Physiol. 2018, 45, 841–848. [Google Scholar] [CrossRef]
- Zou, J.; Guo, Y.; Wei, L.; Yu, F.; Yu, B.; Xu, A. Long Noncoding RNA POU3F3 and α-Synuclein in Plasma L1CAM Exosomes Combined with β-Glucocerebrosidase Activity: Potential Predictors of Parkinson’s Disease. Neurotherapeutics 2020, 17, 1104–1119. [Google Scholar] [CrossRef]
- Bu, L.L.; Xie, Y.Y.; Lin, D.Y.; Chen, Y.; Jing, X.N.; Liang, Y.R.; Peng, S.D.; Huang, K.X.; Tao, E.X. LncRNA-T199678 Mitigates α-Synuclein-Induced Dopaminergic Neuron Injury via miR-101-3p. Front. Aging Neurosci. 2020, 12, 599246. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Zheng, S.; Lu, M. Downregulation of lncRNA MEG3 is involved in Parkinson’s disease. Metab. Brain Dis. 2021, 36, 2323–2328. [Google Scholar] [CrossRef] [PubMed]
- Quan, Y.; Wang, J.; Wang, S.; Zhao, J. Association of the Plasma Long Non-coding RNA MEG3 With Parkinson’s Disease. Front. Neurol. 2020, 11, 532891. [Google Scholar] [CrossRef]
- Ye, Y.; He, X.; Lu, F.; Mao, H.; Zhu, Z.; Yao, L.; Luo, W.; Sun, X.; Wang, B.; Qian, C.; et al. A lincRNA-p21/miR-181 family feedback loop regulates microglial activation during systemic LPS- and MPTP- induced neuroinflammation. Cell Death Dis. 2018, 9, 803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, W.; Zhang, L.; Geng, Y.; Liu, Y.; Zhang, N. Long noncoding RNA GAS5 promotes microglial inflammatory response in Parkinson’s disease by regulating NLRP3 pathway through sponging miR-223-3p. Int. Immunopharmacol. 2020, 85, 106614. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Han, C.L.; Wang, K.L.; Sui, Y.P.; Li, Z.B.; Chen, N.; Fan, S.Y.; Shimabukuro, M.; Wang, F.; Meng, F.G. Integrated analysis of exosomal lncRNA and mRNA expression profiles reveals the involvement of lnc-MKRN2-42:1 in the pathogenesis of Parkinson’s disease. CNS Neurosci. Ther. 2020, 26, 527–537. [Google Scholar] [CrossRef]
- Simchovitz, A.; Hanan, M.; Yayon, N.; Lee, S.; Bennett, E.R.; Greenberg, D.S.; Kadener, S.; Soreq, H. A lncRNA survey finds increases in neuroprotective LINC-PINT in Parkinson’s disease substantia nigra. Aging Cell 2020, 19, e13115. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Ke, S.; Wu, Y.; Zhang, D.; Liu, B.; He, Y.H.; Liu, W.; Mu, H.; Song, X. Functional Network of the Long Non-coding RNA Growth Arrest-Specific Transcript 5 and Its Interacting Proteins in Senescence. Front. Genet. 2021, 12, 615340. [Google Scholar] [CrossRef]
- Lu, M.; Sun, W.L.; Shen, J.; Wei, M.; Chen, B.; Qi, Y.J.; Xu, C.S. LncRNA-UCA1 promotes PD development by upregulating SNCA. Eur. Rev. Med. Pharm. Sci. 2018, 22, 7908–7915. [Google Scholar]
- Chen, Y.; Lian, Y.J.; Ma, Y.Q.; Wu, C.J.; Zheng, Y.K.; Xie, N.C. LncRNA SNHG1 promotes α-synuclein aggregation and toxicity by targeting miR-15b-5p to activate SIAH1 in human neuroblastoma SH-SY5Y cells. Neurotoxicology 2018, 68, 212–221. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Y.; Chen, Y.; He, X.; Qian, Y.; Xu, S.; Gao, C.; Mo, C.; Chen, S.; Xiao, Q. LncRNA HOXA-AS2 regulates microglial polarization via recruitment of PRC2 and epigenetic modification of PGC-1α expression. J. Neuroinflamm. 2021, 18, 197. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.J.; Tu, L.; Huang, X.M.; Huang, J.; Qiu, N.; Xie, G.H.; Liao, J.X.; Du, W.; Zhang, Y.Y.; Tian, J.Y. LncRNA MALAT1 facilitates inflammasome activation via epigenetic suppression of Nrf2 in Parkinson’s disease. Mol. Brain 2020, 13, 130. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, X.; Guo, Y.; Rong, H.; Liu, T. The long noncoding RNA HOTAIR promotes Parkinson’s disease by upregulating LRRK2 expression. Oncotarget 2017, 8, 24449–24456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Wang, X.; Zhang, Y.; Zhao, J. LncRNA SNHG1 promotes neuronal injury in Parkinson’s disease cell model by miR-181a-5p/CXCL12 axis. J. Mol. Histol. 2021, 52, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Tan, Z.; Jia, M.; Zhou, X.; Wu, K.; Ding, Y.; Li, W. Long Noncoding RNA SNHG1 Knockdown Ameliorates Apoptosis, Oxidative Stress and Inflammation in Models of Parkinson’s Disease by Inhibiting the miR-125b-5p/MAPK1 Axis. Neuropsychiatr. Dis. Treat 2021, 17, 1153–1163. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, M.; Wei, T.; Zhou, J.; Zhang, Y.; Guo, D. Long non-coding RNA SNHG1 mediates neuronal damage in Parkinson’s disease model cells by regulating miR-216a-3p/Bcl-2-associated X protein. Ann. Transl. Med. 2021, 9, 851. [Google Scholar] [CrossRef]
- Zhao, J.; Geng, L.; Chen, Y.; Wu, C. SNHG1 promotes MPP(+)-induced cytotoxicity by regulating PTEN/AKT/mTOR signaling pathway in SH-SY5Y cells via sponging miR-153-3p. Biol. Res. 2020, 53, 1. [Google Scholar] [CrossRef]
- Xie, N.; Qi, J.; Li, S.; Deng, J.; Chen, Y.; Lian, Y. Upregulated lncRNA small nucleolar RNA host gene 1 promotes 1-methyl-4-phenylpyridinium ion-induced cytotoxicity and reactive oxygen species production through miR-15b-5p/GSK3β axis in human dopaminergic SH-SY5Y cells. J. Cell Biochem. 2019, 120, 5790–5801. [Google Scholar] [CrossRef]
- Qian, C.; Ye, Y.; Mao, H.; Yao, L.; Sun, X.; Wang, B.; Zhang, H.; Xie, L.; Zhang, H.; Zhang, Y.; et al. Downregulated lncRNA-SNHG1 enhances autophagy and prevents cell death through the miR-221/222 /p27/mTOR pathway in Parkinson’s disease. Exp. Cell Res. 2019, 384, 111614. [Google Scholar] [CrossRef]
- Cao, H.; Han, X.; Jia, Y.; Zhang, B. Inhibition of long non-coding RNA HOXA11-AS against neuroinflammation in Parkinson’s disease model via targeting miR-124-3p mediated FSTL1/NF-κB axis. Aging (Albany NY) 2021, 13, 11455–11469. [Google Scholar] [CrossRef]
- Ma, X.; Wang, Y.; Yin, H.; Hua, L.; Zhang, X.; Xiao, J.; Yuan, Q.; Wang, S.; Liu, Y.; Zhang, S.; et al. Down-regulated long non-coding RNA RMST ameliorates dopaminergic neuron damage in Parkinson’s disease rats via regulation of TLR/NF-κB signaling pathway. Brain Res. Bull. 2021, 174, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.M.; Zhao, L.J.; Qiao, H.Y.; Wu, S.L.; Wang, X.H. Long non-coding RNA-p21 regulates MPP(+)-induced neuronal injury by targeting miR-625 and derepressing TRPM2 in SH-SY5Y cells. Chem. Biol. Interact. 2019, 307, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, J.J.; Zhou, J.H.; Chen, R.; Cen, C.Q. LncRNA HULC induces the progression of osteosarcoma by regulating the miR-372-3p/HMGB1 signalling axis. Mol. Med. 2020, 26, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Zheng, Z.; Chen, H.; Cai, Y.; Xie, W. Knockdown of long non-coding RNA PVT1 induces apoptosis and cell cycle arrest in clear cell renal cell carcinoma through the epidermal growth factor receptor pathway. Oncol. Lett. 2018, 15, 7855–7863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, I.S.; Koppula, S.; Park, S.Y.; Choi, D.K. Analysis of Epidermal Growth Factor Receptor Related Gene Expression Changes in a Cellular and Animal Model of Parkinson’s Disease. Int. J. Mol. Sci. 2017, 18, 430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Honarmand Tamizkar, K.; Gorji, P.; Gholipour, M.; Hussen, B.M.; Mazdeh, M.; Eslami, S.; Taheri, M.; Ghafouri-Fard, S. Parkinson’s Disease Is Associated With Dysregulation of Circulatory Levels of lncRNAs. Front. Immunol. 2021, 12, 763323. [Google Scholar] [CrossRef]
- Singh, S.S.; Rai, S.N.; Birla, H.; Zahra, W.; Rathore, A.S.; Singh, S.P. NF-κB-Mediated Neuroinflammation in Parkinson’s Disease and Potential Therapeutic Effect of Polyphenols. Neurotox Res. 2020, 37, 491–507. [Google Scholar] [CrossRef]
- Hunot, S.; Brugg, B.; Ricard, D.; Michel, P.P.; Muriel, M.P.; Ruberg, M.; Faucheux, B.A.; Agid, Y.; Hirsch, E.C. Nuclear translocation of NF-kappaB is increased in dopaminergic neurons of patients with parkinson disease. Proc. Natl. Acad. Sci. USA 1997, 94, 7531–7536. [Google Scholar] [CrossRef] [Green Version]
- Ghafouri-Fard, S.; Gholipour, M.; Abak, A.; Mazdeh, M.; Taheri, M.; Sayad, A. Expression Analysis of NF-κB-Related lncRNAs in Parkinson’s Disease. Front. Immunol. 2021, 12, 755246. [Google Scholar] [CrossRef]
- Bartel, D.P. microRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef] [Green Version]
- Bartel, D.P. Metazoan microRNAs. Cell 2018, 173, 20–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alberti, C.; Manzenreither, R.A.; Sowemimo, I.; Burkard, T.R.; Wang, J.; Mahofsky, K.; Ameres, S.L.; Cochella, L. Cell-type specific sequencing of microRNAs from complex animal tissues. Nat. Methods 2018, 15, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, M.; Khatamianfar, S.; Hassanian, S.M.; Nedaeinia, R.; Shafiee, M.; Maftouh, M.; Ghayour-Mobarhan, M.; ShahidSales, S.; Avan, A. Exosome-Encapsulated microRNAs as Potential Circulating Biomarkers in Colon Cancer. Curr. Pharm. Des. 2017, 23, 1705–1709. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of microRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khee, S.G.; Yusof, Y.A.; Makpol, S. Expression of senescence-associated microRNAs and target genes in cellular aging and modulation by tocotrienol-rich fraction. Oxid. Med. Cell Longev. 2014, 2014, 725929. [Google Scholar]
- De Gregorio, R.; Pulcrano, S.; De Sanctis, C.; Volpicelli, F.; Guatteo, E.; von Oerthel, L.; Latagliata, E.C.; Esposito, R.; Piscitelli, R.M.; Perrone-Capano, C.; et al. MiR-34b/c Regulates Wnt1 and Enhances Mesencephalic Dopaminergic Neuron Differentiation. Stem Cell Rep. 2018, 10, 1237–1250. [Google Scholar] [CrossRef] [Green Version]
- Ivey, K.N.; Srivastava, D. microRNAs as regulators of differentiation and cell fate decisions. Cell Stem Cell 2010, 7, 36–41. [Google Scholar] [CrossRef] [Green Version]
- Sonntag, K.C. microRNAs and deregulated gene expression networks in neurodegeneration. Brain Res. 2010, 1338, 48–57. [Google Scholar] [CrossRef] [Green Version]
- Millan, M.J. Linking deregulation of non-coding RNA to the core pathophysiology of Alzheimer’s disease: An integrative review. Prog. Neurobiol. 2017, 156, 1–68. [Google Scholar] [CrossRef]
- Taguchi, Y.H.; Wang, H. Exploring microRNA Biomarker for Amyotrophic Lateral Sclerosis. Int. J. Mol. Sci. 2018, 19, 1318. [Google Scholar] [CrossRef] [Green Version]
- Grasso, M.; Piscopo, P.; Talarico, G.; Ricci, L.; Crestini, A.; Tosto, G.; Gasparini, M.; Bruno, G.; Denti, M.A.; Confaloni, A. Plasma microRNA profiling distinguishes patients with frontotemporal dementia from healthy subjects. Neurobiol. Aging 2019, 84, 240.e1–240.e12. [Google Scholar] [CrossRef] [PubMed]
- Cressatti, M.; Juwara, L.; Galindez, J.M.; Velly, A.M.; Nkurunziza, E.S.; Marier, S.; Canie, O.; Gornistky, M.; Schipper, H.M. Salivary microR-153 and microR-223 Levels as Potential Diagnostic Biomarkers of Idiopathic Parkinson’s Disease. Mov. Disord. 2020, 35, 468–477. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Tang, Y.; Bai, X.; Liang, X.; Fan, Y.; Shen, Y.; Huang, F.; Wang, J. Association of the serum microRNA-29 family with cognitive impairment in Parkinson’s disease. Aging (Albany NY) 2020, 12, 13518–13528. [Google Scholar] [CrossRef]
- Shu, Y.; Qian, J.; Wang, C. Aberrant expression of microRNA-132-3p and microRNA-146a-5p in Parkinson’s disease patients. Open Life Sci. 2020, 15, 647–653. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Li, T.; Li, S.; Wei, M.; Qi, H.; Shen, B.; Chang, R.C.; Le, W.; Piao, F. Altered Expression Levels of microRNA-132 and Nurr1 in Peripheral Blood of Parkinson’s Disease: Potential Disease Biomarkers. ACS Chem. Neurosci. 2019, 10, 2243–2249. [Google Scholar] [CrossRef]
- Kurz, A.; Kumar, R.; Northoff, B.H.; Wenk, C.; Schirra, J.; Donakonda, S.; Höglinger, G.U.; Schwarz, J.; Rozanski, V.; Hübner, R.; et al. Differential expression of gut miRNAs in idiopathic Parkinson’s disease. Parkinsonism Relat. Disord. 2021, 88, 46–50. [Google Scholar] [CrossRef]
- Yang, Z.; Li, T.; Cui, Y.; Li, S.; Cheng, C.; Shen, B.; Le, W. Elevated Plasma microRNA-105-5p Level in Patients with Idiopathic Parkinson’s Disease: A Potential Disease Biomarker. Front. Neurosci. 2019, 13, 218. [Google Scholar] [CrossRef] [Green Version]
- Ozdilek, B.; Demircan, B. Serum microRNA expression levels in Turkish patients with Parkinson’s disease. Int. J. Neurosci. 2020, 131, 1181–1189. [Google Scholar] [CrossRef]
- Grossi, I.; Radeghieri, A.; Paolini, L.; Porrini, V.; Pilotto, A.; Padovani, A.; Marengoni, A.; Barbon, A.; Bellucci, A.; Pizzi, M.; et al. microRNA-34a-5p expression in the plasma and in its extracellular vesicle fractions in subjects with Parkinson’s disease: An exploratory study. Int. J. Mol. Med. 2021, 47, 533–546. [Google Scholar] [CrossRef]
- Wu, Q.; Xi, D.Z.; Wang, Y.H. microRNA-599 regulates the development of Parkinson’s disease through mediating LRRK2 expression. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 724–731. [Google Scholar]
- Caggiu, E.; Paulus, K.; Mameli, G.; Arru, G.; Sechi, G.P.; Sechi, L.A. Differential expression of miRNA 155 and miRNA 146a in Parkinson’s disease patients. Eneurologicalsci 2018, 13, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Thome, A.D.; Harms, A.S.; Volpicelli-Daley, L.A.; Standaert, D.G. microRNA-155 Regulates Alpha-Synuclein-Induced Inflammatory Responses in Models of Parkinson Disease. J. Neurosci. 2016, 36, 2383–2390. [Google Scholar] [CrossRef] [PubMed]
- Lv, R.; Du, L.; Liu, X.; Zhou, F.; Zhang, Z.; Zhang, L. Rosmarinic acid attenuates inflammatory responses through inhibiting HMGB1/TLR4/NF-κB signaling pathway in a mouse model of Parkinson’s disease. Life Sci. 2019, 223, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Wang, S.; Qi, W.; Xu, X.; Liang, Y. Overexpression of miR-153 promotes oxidative stress in MPP(+)-induced PD model by negatively regulating the Nrf2/HO-1 signaling pathway. Int. J. Clin. Exp. Pathol. 2018, 11, 4179–4187. [Google Scholar]
- Chiu, C.C.; Yeh, T.H.; Chen, R.S.; Chen, H.C.; Huang, Y.Z.; Weng, Y.H.; Cheng, Y.C.; Liu, Y.C.; Cheng, A.J.; Lu, Y.C.; et al. Upregulated Expression of microRNA-204-5p Leads to the Death of Dopaminergic Cells by Targeting DYRK1A-Mediated Apoptotic Signaling Cascade. Front. Cell Neurosci. 2019, 13, 399. [Google Scholar] [CrossRef] [Green Version]
- Radad, K.; Rausch, W.D.; Gille, G. Rotenone induces cell death in primary dopaminergic culture by increasing ROS production and inhibiting mitochondrial respiration. Neurochem. Int. 2006, 49, 379–386. [Google Scholar] [CrossRef]
- Jauhari, A.; Singh, T.; Mishra, S.; Shankar, J.; Yadav, S. Coordinated Action of miR-146a and Parkin Gene Regulate Rotenone-induced Neurodegeneration. Toxicol. Sci. 2020, 176, 433–445. [Google Scholar] [CrossRef]
- Yu, A.; Zhang, T.; Zhong, W.; Duan, H.; Wang, S.; Ye, P.; Wang, J.; Zhong, S.; Yang, Z. miRNA-144 induces microglial autophagy and inflammation following intracerebral hemorrhage. Immunol. Lett. 2017, 182, 18–23. [Google Scholar] [CrossRef]
- Li, K.; Zhang, J.; Ji, C.; Wang, L. MiR-144-3p and Its Target Gene β-Amyloid Precursor Protein Regulate 1-Methyl-4-Phenyl-1,2-3,6-Tetrahydropyridine-Induced Mitochondrial Dysfunction. Mol. Cells 2016, 39, 543–549. [Google Scholar] [CrossRef] [Green Version]
- Decressac, M.; Mattsson, B.; Weikop, P.; Lundblad, M.; Jakobsson, J.; Björklund, A. TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity. Proc. Natl. Acad. Sci. USA 2013, 110, E1817–E1826. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Yao, J.; Gong, F.; Chen, S.; He, Y.; Hu, C.; Li, C. MiR-29c-3p regulates TET2 expression and inhibits autophagy process in Parkinson’s disease models. Genes Cells 2021, 26, 684–697. [Google Scholar] [CrossRef] [PubMed]
- Nehammer, C.; Ejlerskov, P.; Gopal, S.; Handley, A.; Ng, L.; Moreira, P.; Lee, H.; Issazadeh-Navikas, S.; Rubinsztein, D.C.; Pocock, R. Interferon-β-induced miR-1 alleviates toxic protein accumulation by controlling autophagy. Elife 2019, 8, e49930. [Google Scholar] [CrossRef] [PubMed]
- Ejlerskov, P.; Rubinsztein, D.C.; Pocock, R. IFNB/interferon-β regulates autophagy via a MIR1-TBC1D15-RAB7 pathway. Autophagy 2020, 16, 767–769. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.H.; Wang, Y.B.; Yang, J.; Liu, H.Q.; Wang, L.L. microRNA-326 suppresses iNOS expression and promotes autophagy of dopaminergic neurons through the JNK signaling by targeting XBP1 in a mouse model of Parkinson’s disease. J. Cell Biochem. 2019, 120, 14995–15006. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, W.; Nan, S.; Chang, M.; Fan, J. microRNA-326 Inhibits Apoptosis and Promotes Proliferation of Dopaminergic Neurons in Parkinson’s Disease Through Suppression of KLK7-Mediated MAPK Signaling Pathway. J. Mol. Neurosci. 2019, 69, 197–214. [Google Scholar] [CrossRef]
- Cai, Z.; Zheng, F.; Ding, Y.; Zhan, Y.; Gong, R.; Li, J.; Aschner, M.; Zhang, Q.; Wu, S.; Li, H. Nrf2-regulated miR-380-3p blocks the translation of Sp3 protein and its mediation of paraquat-induced toxicity in mouse neuroblastoma N2a cells. Toxicol. Sci. 2019, 171, 515–529. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Xu, X.; Liang, Y.; Zhu, R. Downregulation of microRNA-15b-5p Targeting the Akt3-Mediated GSK-3β/β-Catenin Signaling Pathway Inhibits Cell Apoptosis in Parkinson’s Disease. Biomed. Res. Int. 2021, 2021, 8814862. [Google Scholar] [CrossRef]
- Qin, X.; Zhang, X.; Li, P.; Wang, M.; Yan, L.; Pan, P.; Zhang, H.; Hong, X.; Liu, M.; Bao, Z. microRNA-185 activates PI3K/AKT signalling pathway to alleviate dopaminergic neuron damage via targeting IGF1 in Parkinson’s disease. J. Drug Target 2021, 29, 875–883. [Google Scholar] [CrossRef]
- Yu, F.; Le, Z.S.; Chen, L.H.; Qian, H.; Yu, B.; Chen, W.H. Identification of Biomolecular Information in Rotenone-Induced Cellular Model of Parkinson’s Disease by Public Microarray Data Analysis. J. Comput. Biol. 2020, 27, 888–903. [Google Scholar] [CrossRef]
- Qin, L.X.; Tan, J.Q.; Zhang, H.N.; Tang, J.G.; Jiang, B.; Shen, X.M.; Tang, B.S.; Wang, C.Y. Preliminary study of hsa-miR-626 change in the cerebrospinal fluid of Parkinson’s disease patients. J. Clin. Neurosci. 2019, 70, 198–201. [Google Scholar] [CrossRef]
- Uwatoko, H.; Hama, Y.; Iwata, I.T.; Shirai, S.; Matsushima, M.; Yabe, I.; Utsumi, J.; Sasaki, H. Identification of plasma microRNA expression changes in multiple system atrophy and Parkinson’s disease. Mol. Brain. 2019, 12, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patil, K.S.; Basak, I.; Dalen, I.; Hoedt, E.; Lange, J.; Lunde, K.A.; Liu, Y.; Tysnes, O.B.; Forsgren, L.; Aarsland, D.; et al. Combinatory microRNA serum signatures as classifiers of Parkinson’s disease. Parkinsonism Relat. Disord. 2019, 64, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Starhof, C.; Hejl, A.M.; Heegaard, N.H.H.; Carlsen, A.L.; Burton, M.; Lilje, B.; Winge, K. The biomarker potential of cell-free microRNA from cerebrospinal fluid in Parkinsonian Syndromes. Mov. Disord. 2019, 34, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, P.; Bhattacharyya, M.; Bandyopadhyay, S.; Roy, D. Studying the system-level involvement of microRNAs in Parkinson’s disease. PLoS ONE 2014, 9, e93751. [Google Scholar] [CrossRef] [Green Version]
- Coccia, E.; Masanas, M.; López-Soriano, J.; Segura, M.F.; Comella, J.X.; Pérez-García, M.J. FAIM Is Regulated by MiR-206, MiR-1-3p and MiR-133b. Front. Cell Dev. Biol. 2020, 8, 584606. [Google Scholar] [CrossRef]
- Su, Y.; Deng, M.F.; Xiong, W.; Xie, A.J.; Guo, J.; Liang, Z.H.; Hu, B.; Chen, J.G.; Zhu, X.; Man, H.Y.; et al. microRNA-26a/Death-Associated Protein Kinase 1 Signaling Induces Synucleinopathy and Dopaminergic Neuron Degeneration in Parkinson’s Disease. Biol. Psychiatry 2019, 85, 769–781. [Google Scholar] [CrossRef] [Green Version]
- Krammes, L.; Hart, M.; Rheinheimer, S.; Diener, C.; Menegatti, J.; Grässer, F.; Keller, A.; Meese, E. Induction of the Endoplasmic-Reticulum-Stress Response: microRNA-34a Targeting of the IRE1α-Branch. Cells 2020, 9, 1442. [Google Scholar] [CrossRef]
- Li, G.; Luo, W.; Wang, B.; Qian, C.; Ye, Y.; Li, Y.; Zhang, S. HMGA1 Induction of miR-103/107 Forms a Negative Feedback Loop to Regulate Autophagy in MPTP Model of Parkinson’s Disease. Front. Cell Neurosci. 2020, 14, 620020. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, L.; Liu, J.; Jin, Y.; Lin, Z.; Du, S.; Fu, Z.; Chen, T.; Qin, Y.; Sui, F.; et al. HIF-1α/microRNA-128-3p axis protects hippocampal neurons from apoptosis via the Axin1-mediated Wnt/β-catenin signaling pathway in Parkinson’s disease models. Aging (Albany NY) 2020, 12, 4067–4081. [Google Scholar] [CrossRef]
- Yao, L.; Zhu, Z.; Wu, J.; Zhang, Y.; Zhang, H.; Sun, X.; Qian, C.; Wang, B.; Xie, L.; Zhang, S.; et al. microRNA-124 regulates the expression of p62/p38 and promotes autophagy in the inflammatory pathogenesis of Parkinson’s disease. Faseb J. 2019, 33, 8648–8665. [Google Scholar] [CrossRef]
- Wang, J.; Wang, W.; Zhai, H. microRNA-124 Enhances Dopamine Receptor Expression and Neuronal Proliferation in Mouse Models of Parkinson’s Disease via the Hedgehog Signaling Pathway by Targeting EDN2. Neuroimmunomodulation 2019, 26, 174–187. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Lin, J.; Zheng, D.; Hong, C.; Ke, L.; Wu, X.; Chen, P. Overexpression of microRNA-133a Inhibits Apoptosis and Autophagy in a Cell Model of Parkinson’s Disease by Downregulating Ras-Related C3 Botulinum Toxin Substrate 1 (RAC1). Med. Sci. Monit. 2020, 26, e922032. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Liu, J.; Chen, L.; Jin, Y.; Zhang, G.; Lin, Z.; Du, S.; Fu, Z.; Chen, T.; Qin, Y.; et al. Serum secreted miR-137-containing exosomes affects oxidative stress of neurons by regulating OXR1 in Parkinson’s disease. Brain Res. 2019, 1722, 146331. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Zhang, Y.; Ji, H.; Chen, L.; Chen, T.; Guo, C.; Zhang, S.; Jia, J.; Niu, P. Overexpression of miR-138-5p suppresses MnCl(2) -induced autophagy by targeting SIRT1 in SH-SY5Y cells. Environ. Toxicol. 2019, 34, 539–547. [Google Scholar] [CrossRef]
- Wang, Z.; Yuan, B.; Fu, F.; Huang, S.; Yang, Z. Hemoglobin enhances miRNA-144 expression and autophagic activation mediated inflammation of microglia via mTOR pathway. Sci. Rep. 2017, 7, 11861. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Song, Y.; Zhu, X. microRNA-181a Regulates Apoptosis and Autophagy Process in Parkinson’s Disease by Inhibiting p38 Mitogen-Activated Protein Kinase (MAPK)/c-Jun N-Terminal Kinases (JNK) Signaling Pathways. Med. Sci. Monit. 2017, 23, 1597–1606. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.X.; Li, Y.; Wang, S.N.; Chen, X.C.; Lin, L.L.; Zhang, H. Overexpression of microRNA-183 promotes apoptosis of substantia nigra neurons via the inhibition of OSMR in a mouse model of Parkinson’s disease. Int. J. Mol. Med. 2019, 43, 209–220. [Google Scholar] [CrossRef]
- Ren, Y.; Li, H.; Xie, W.; Wei, N.; Liu, M. microRNA-195 triggers neuroinflammation in Parkinson’s disease in a Rho-associated kinase 1-dependent manner. Mol. Med. Rep. 2019, 19, 5153–5161. [Google Scholar] [CrossRef]
- Shakespear, N.; Ogura, M.; Yamaki, J.; Homma, Y. Astrocyte-Derived Exosomal microRNA miR-200a-3p Prevents MPP(+)-Induced Apoptotic Cell Death Through Down-Regulation of MKK4. Neurochem. Res. 2020, 45, 1020–1033. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, M.; Wei, M.; Wang, A.; Deng, Y.; Cao, H. microRNA-216a inhibits neuronal apoptosis in a cellular Parkinson’s disease model by targeting Bax. Metab. Brain Dis. 2020, 35, 627–635. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, H.; Yin, H.; Geng, S.; Liu, Y.; Liu, C.; Zhao, J.; Liu, Y.; Wang, X.; Wang, Y. Up-regulated microRNA-218-5p ameliorates the damage of dopaminergic neurons in rats with Parkinson’s disease via suppression of LASP1. Brain Res. Bull. 2021, 166, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Zheng, W. Epigenetic Control of Rho-Associated Protein Kinase 2 in Neurodegeneration. J. Alzheimers Dis. 2019, 72, 815–822. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.M.; Wang, S.; Wen, X.; Han, X.R.; Wang, Y.J.; Shen, M.; Fan, S.H.; Zhuang, J.; Zhang, Z.F.; Shan, Q.; et al. Suppression of microRNA-342-3p increases glutamate transporters and prevents dopaminergic neuron loss through activating the Wnt signaling pathway via p21-activated kinase 1 in mice with Parkinson’s disease. J. Cell Physiol. 2019, 234, 9033–9044. [Google Scholar] [CrossRef]
- Lv, R.; Du, L.; Zhou, F.; Yuan, X.; Liu, X.; Zhang, L. Rosmarinic Acid Alleviates Inflammation, Apoptosis, and Oxidative Stress through Regulating miR-155-5p in a Mice Model of Parkinson’s Disease. ACS Chem. Neurosci. 2020, 11, 3259–3266. [Google Scholar] [CrossRef] [PubMed]
- Butovsky, O.; Jedrychowski, M.P.; Moore, C.S.; Cialic, R.; Lanser, A.J.; Gabriely, G.; Koeglsperger, T.; Dake, B.; Wu, P.M.; Doykan, C.E.; et al. Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nat. Neurosci. 2014, 17, 131–143. [Google Scholar] [CrossRef] [Green Version]
- Xing, R.X.; Li, L.G.; Liu, X.W.; Tian, B.X.; Cheng, Y. Down regulation of miR-218, miR-124, and miR-144 relates to Parkinson’s disease via activating NF-κB signaling. Kaohsiung J. Med. Sci. 2020, 36, 786–792. [Google Scholar] [CrossRef]
- He, Q.; Wang, Q.; Yuan, C.; Wang, Y. Downregulation of miR-7116-5p in microglia by MPP(+) sensitizes TNF-α production to induce dopaminergic neuron damage. Glia 2017, 65, 1251–1263. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Lu, M.; Du, R.H.; Qiao, C.; Jiang, C.Y.; Zhang, K.Z.; Ding, J.H.; Hu, G. microRNA-7 targets Nod-like receptor protein 3 inflammasome to modulate neuroinflammation in the pathogenesis of Parkinson’s disease. Mol. Neurodegener. 2016, 11, 28. [Google Scholar] [CrossRef] [Green Version]
- Karic, A.; Terzic, R.; Karic, A.; Peterlin, B. Identifying candidate genes for Parkinson’s disease by integrative genomics method. Biochem. Med. 2011, 21, 174–181. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, W.; Wang, Y.; Zhao, S.; Chang, N. miR-135b Plays a Neuroprotective Role by Targeting GSK3beta in MPP(+)-Intoxicated SH-SY5Y Cells. Dis. Markers 2017, 2017, 5806146. [Google Scholar] [CrossRef] [Green Version]
- Li, X.Q.; Chen, F.S.; Tan, W.F.; Fang, B.; Zhang, Z.L.; Ma, H. Elevated microRNA-129-5p level ameliorates neuroinflammation and blood-spinal cord barrier damage after ischemia-reperfusion by inhibiting HMGB1 and the TLR3-cytokine pathway. J. Neuroinflamm. 2017, 14, 205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, H.; Xu, Z.; Qu, C. Tetramethylpyrazine ameliorates isoflurane-induced cognitive dysfunction by inhibiting neuroinflammation via miR-150 in rats. Exp. Ther. Med. 2020, 20, 3878–3887. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yu, L.; Li, M.; Chen, X.; Tian, Q.; Jiang, Y.; Li, N. microRNA-150 serves as a diagnostic biomarker and is involved in the inflammatory pathogenesis of Parkinson’s disease. Mol. Genet. Genom. Med. 2020, 8, e1189. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Sun, H.; Yao, Y.; Tang, X.; Wu, B. microRNA-217/138-5p downregulation inhibits inflammatory response, oxidative stress and the induction of neuronal apoptosis in MPP(+)-induced SH-SY5Y cells. Am. J. Transl. Res. 2019, 11, 6619–6631. [Google Scholar]
- Cho, H.J.; Liu, G.; Jin, S.M.; Parisiadou, L.; Xie, C.; Yu, J.; Sun, L.; Ma, B.; Ding, J.; Vancraenenbroeck, R.; et al. microRNA-205 regulates the expression of Parkinson’s disease-related leucine-rich repeat kinase 2 protein. Hum. Mol. Genet. 2013, 22, 608–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, L.J.; Tu, L.; Li, T.; Yang, X.L.; Ren, Y.P.; Gu, R.; Zhang, Q.; Yao, H.; Qu, X.; Wang, Q.; et al. Up-regulation of microRNA-375 ameliorates the damage of dopaminergic neurons, reduces oxidative stress and inflammation in Parkinson’s disease by inhibiting SP1. Aging (Albany NY) 2020, 12, 672–689. [Google Scholar] [CrossRef] [PubMed]
- Mao, H.; Ding, L. Downregulation of miR-21 suppresses 1-methyl-4-phenylpyridinium-induced neuronal damage in MES23.5 cells. Exp. Ther. Med. 2019, 18, 2467–2474. [Google Scholar] [CrossRef] [Green Version]
- Lv, Q.; Zhong, Z.; Hu, B.; Yan, S.; Yan, Y.; Zhang, J.; Shi, T.; Jiang, L.; Li, W.; Huang, W. microRNA-3473b regulates the expression of TREM2/ULK1 and inhibits autophagy in inflammatory pathogenesis of Parkinson disease. J. Neurochem. 2021, 157, 599–610. [Google Scholar] [CrossRef]
- Sun, X.; Sun, J.; Shao, X.; Feng, J.; Yan, J.; Qin, Y. Inhibition of microRNA-155 modulates endotoxin tolerance by upregulating suppressor of cytokine signaling 1 in microglia. Exp. Ther. Med. 2018, 15, 4709–4716. [Google Scholar] [CrossRef] [Green Version]
- Martin, N.A.; Molnar, V.; Szilagyi, G.T.; Elkjaer, M.L.; Nawrocki, A.; Okarmus, J.; Wlodarczyk, A.; Thygesen, E.K.; Palkovits, M.; Gallyas, F., Jr.; et al. Experimental Demyelination and Axonal Loss Are Reduced in microRNA-146a Deficient Mice. Front. Immunol. 2018, 9, 490. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.D.; Fan, Q.Y.; Qiu, Z.; Chen, S. MiR-7 alleviates secondary inflammatory response of microglia caused by cerebral hemorrhage through inhibiting TLR4 expression. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 5597–5604. [Google Scholar] [PubMed]
- Choi, D.C.; Yoo, M.; Kabaria, S.; Junn, E. microRNA-7 facilitates the degradation of alpha-synuclein and its aggregates by promoting autophagy. Neurosci. Lett. 2018, 678, 118–123. [Google Scholar] [CrossRef] [PubMed]
- McMillan, K.J.; Murray, T.K.; Bengoa-Vergniory, N.; Cordero-Llana, O.; Cooper, J.; Buckley, A.; Wade-Martins, R.; Uney, J.B.; O’Neill, M.J.; Wong, L.F.; et al. Loss of microRNA-7 Regulation Leads to alpha-Synuclein Accumulation and Dopaminergic Neuronal Loss In Vivo. Mol. Ther. J. Am. Soc. Gene Ther. 2017, 25, 2404–2414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, Y.; Li, T.; Xing, C.; Wang, C.; Duan, Y.; Yuan, L.; Zhang, Y. Effective inhibition of miR-330/SHIP1/NF-κB signaling pathway via miR-330 sponge repolarizes microglia differentiation. Cell Biol. Int. 2021, 45, 785–794. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Dongwei, Z.; Zhang, Z.; Xinhui, Q.; Kunwang, B.; Guohui, L.; Jian, D. miR-let-7a suppresses α-Synuclein-induced microglia inflammation through targeting STAT3 in Parkinson’s disease. Biochem. Biophys. Res. Commun. 2019, 519, 740–746. [Google Scholar] [CrossRef]
- Feng, Y.; Zheng, C.; Zhang, Y.; Xing, C.; Cai, W.; Li, R.; Chen, J.; Duan, Y. Triptolide Inhibits Preformed Fibril-Induced Microglial Activation by Targeting the microRNA155-5p/SHIP1 Pathway. Oxid. Med. Cell Longev. 2019, 2019, 6527638. [Google Scholar] [CrossRef] [Green Version]
- Alieva, A.; Filatova, E.V.; Karabanov, A.V.; Illarioshkin, S.N.; Limborska, S.A.; Shadrina, M.I.; Slominsky, P.A. miRNA expression is highly sensitive to a drug therapy in Parkinson’s disease. Parkinsonism Relat. Disord. 2015, 21, 72–74. [Google Scholar] [CrossRef]
- Chis, A.R.; Moatar, A.I.; Dijmarescu, C.; Rosca, C.; Vorovenci, R.J.; Krabbendam, I.; Dolga, A.; Bejinar, C.; Marian, C.; Sirbu, I.O.; et al. Plasma hsa-mir-19b is a potential LevoDopa therapy marker. J. Cell Mol. Med. 2021, 25, 8715–8724. [Google Scholar] [CrossRef]
- Fu, X.; Shen, Y.; Wang, W.; Li, X. MiR-30a-5p ameliorates spinal cord injury-induced inflammatory responses and oxidative stress by targeting Neurod 1 through MAPK/ERK signalling. Clin. Exp. Pharm. Physiol. 2018, 45, 68–74. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Z.; Wang, F. microRNA-93 Blocks Signal Transducers and Activator of Transcription 3 to Reduce Neuronal Damage in Parkinson’s Disease. Neurochem. Res. 2021, 46, 1859–1868. [Google Scholar] [CrossRef]
- Yang, Z.; Xu, J.; Zhu, R.; Liu, L. Down-Regulation of miRNA-128 Contributes to Neuropathic Pain Following Spinal Cord Injury via Activation of P38. Med. Sci. Monit. 2017, 23, 405–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.Q.; Chen, F.S.; Tan, W.F.; Fang, B.; Zhang, Z.L.; Ma, H. Correction to: Elevated microRNA-129-5p level ameliorates neuroinflammation and blood-spinal cord barrier damage after ischemia-reperfusion by inhibiting HMGB1 and the TLR3-cytokine pathway. J. Neuroinflamm. 2021, 18, 308. [Google Scholar] [CrossRef] [PubMed]
- Zeng, R.; Luo, D.X.; Li, H.P.; Zhang, Q.S.; Lei, S.S.; Chen, J.H. microRNA-135b alleviates MPP(+)-mediated Parkinson’s disease in in vitro model through suppressing FoxO1-induced NLRP3 inflammasome and pyroptosis. J. Clin. Neurosci. 2019, 65, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Peng, T.; Liu, X.; Wang, J.; Liu, Y.; Fu, Z.; Ma, X.; Li, J.; Sun, G.; Ji, Y.; Lu, J.; et al. Long noncoding RNA HAGLROS regulates apoptosis and autophagy in Parkinson’s disease via regulating miR-100/ATG10 axis and PI3K/Akt/mTOR pathway activation. Artif. Cells Nanomed. Biotechnol. 2019, 47, 2764–2774. [Google Scholar] [CrossRef] [Green Version]
- Huarte, M. The emerging role of lncRNAs in cancer. Nat. Med. 2015, 21, 1253–1261. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Z.; Xing, H.; Wang, Y.; Guo, Y. Exosomes derived from miR-188-3p-modified adipose-derived mesenchymal stem cells protect Parkinson’s disease. Mol. Nucleic. Acids 2021, 23, 1334–1344. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, S.; Chen, J.; Cai, H.; Huang, W.; Zhang, Y.; Wang, L.; Xing, Y. microRNA-190 alleviates neuronal damage and inhibits neuroinflammation via Nlrp3 in MPTP-induced Parkinson’s disease mouse model. J. Cell Physiol. 2019, 234, 23379–23387. [Google Scholar] [CrossRef]
- Xia, L.; Zhang, Y.; Dong, T. Inhibition of microRNA-221 Alleviates Neuropathic Pain Through Targeting Suppressor of Cytokine Signaling 1. J. Mol. Neurosci. 2016, 59, 411–420. [Google Scholar] [CrossRef]
- Li, L.; Xu, J.; Wu, M.; Hu, J.M. Protective role of microRNA-221 in Parkinson’s disease. Bratisl. Lek. Listy 2018, 119, 22–27. [Google Scholar] [CrossRef] [Green Version]
- Song, Z.; Xie, B. LncRNA OIP5-AS1 reduces α-synuclein aggregation and toxicity by targeting miR-126 to activate PLK2 in human neuroblastoma SH-SY5Y cells. Neurosci. Lett. 2021, 740, 135482. [Google Scholar] [CrossRef]
- Zhang, L.M.; Wang, M.H.; Yang, H.C.; Tian, T.; Sun, G.F.; Ji, Y.F.; Hu, W.T.; Liu, X.; Wang, J.P.; Lu, H. Dopaminergic neuron injury in Parkinson’s disease is mitigated by interfering lncRNA SNHG14 expression to regulate the miR-133b/α-synuclein pathway. Aging (Albany NY) 2019, 11, 9264–9279. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Chen, Z.Y.; Chen, J.Q.; Chen, H.M. LncRNA NEAT1 promotes autophagy in MPTP-induced Parkinson’s disease through stabilizing PINK1 protein. Biochem. Biophys. Res. Commun. 2018, 496, 1019–1024. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.I.; Zheng, Y.; Gao, L.; Luo, X. LncRNA NEAT1 prompts autophagy and apoptosis in MPTP-induced Parkinson’s disease by impairing miR-374c-5p. Acta Biochim. Biophys. Sin. 2021, 53, 870–882. [Google Scholar] [CrossRef] [PubMed]
- Lang, Y.; Li, Y.; Yu, H.; Lin, L.; Chen, X.; Wang, S.; Zhang, H. HOTAIR drives autophagy in midbrain dopaminergic neurons in the substantia nigra compacta in a mouse model of Parkinson’s disease by elevating NPTX2 via miR-221-3p binding. Aging (Albany NY) 2020, 12, 7660–7678. [Google Scholar] [CrossRef]
- Zhao, J.; Li, H.; Chang, N. LncRNA HOTAIR promotes MPP+-induced neuronal injury in Parkinson’s disease by regulating the miR-874-5p/ATG10 axis. Excli. J. 2020, 19, 1141–1153. [Google Scholar]
- Lin, Q.; Hou, S.; Dai, Y.; Jiang, N.; Lin, Y. LncRNA Hotair targets miR-126-5p to promote the progression of Parkinson’s disease through RAB3IP. Biol. Chem. 2019, 400, 1217–1228. [Google Scholar] [CrossRef]
- Fan, Y.; Zhao, X.; Lu, K.; Cheng, G. LncRNA BDNF-AS promotes autophagy and apoptosis in MPTP-induced Parkinson’s disease via ablating microRNA-125b-5p. Brain Res. Bull. 2020, 157, 119–127. [Google Scholar] [CrossRef]
- Boros, F.A.; Maszlag-Török, R.; Vécsei, L.; Klivényi, P. Increased level of NEAT1 long non-coding RNA is detectable in peripheral blood cells of patients with Parkinson’s disease. Brain Res. 2020, 1730, 146672. [Google Scholar] [CrossRef]
- Simchovitz, A.; Hanan, M.; Niederhoffer, N.; Madrer, N.; Yayon, N.; Bennett, E.R.; Greenberg, D.S.; Kadener, S.; Soreq, H. NEAT1 is overexpressed in Parkinson’s disease substantia nigra and confers drug-inducible neuroprotection from oxidative stress. Faseb. J. 2019, 33, 11223–11234. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Zhang, D.; Guo, J.; Chen, Z.; Chen, Y.; Zhang, J. Deficiency of NEAT1 prevented MPP(+)-induced inflammatory response, oxidative stress and apoptosis in dopaminergic SK-N-SH neuroblastoma cells via miR-1277-5p/ARHGAP26 axis. Brain Res. 2021, 1750, 147156. [Google Scholar] [CrossRef]
- Chen, M.Y.; Fan, K.; Zhao, L.J.; Wei, J.M.; Gao, J.X.; Li, Z.F. Long non-coding RNA nuclear enriched abundant transcript 1 (NEAT1) sponges microRNA-124-3p to up-regulate phosphodiesterase 4B (PDE4B) to accelerate the progression of Parkinson’s disease. Bioengineered 2021, 12, 708–719. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wen, Q.; Xiong, B.; Zhang, L.; Yu, X.; Ouyang, X. Long Noncoding RNA NEAT1 Knockdown Ameliorates 1-Methyl-4-Phenylpyridine-Induced Cell Injury Through microRNA-519a-3p/SP1 Axis in Parkinson Disease. World Neurosurg. 2021, 156, e93–e103. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhang, Y.; Liu, W.; Zhao, J. LncRNA NEAT1 Regulates the Development of Parkinson’s Disease by Targeting AXIN1 Via Sponging miR-212-3p. Neurochem. Res. 2021, 46, 230–240. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.P.; Zhou, F.; Li, J.; Duan, S.J. NEAT1 regulates MPP(+)-induced neuronal injury by targeting miR-124 in neuroblastoma cells. Neurosci. Lett. 2019, 708, 134340. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, D.; Zhao, B.; Jia, C.; Lv, Y.; Liao, J.; Li, K. Long non-coding RNA NEAT1 mediates MPTP/MPP(+)-induced apoptosis via regulating the miR-124/KLF4 axis in Parkinson’s disease. Open Life Sci. 2020, 15, 665–676. [Google Scholar] [CrossRef]
- Liu, R.; Li, F.; Zhao, W. Long noncoding RNA NEAT1 knockdown inhibits MPP(+)-induced apoptosis, inflammation and cytotoxicity in SK-N-SH cells by regulating miR-212-5p/RAB3IP axis. Neurosci. Lett. 2020, 731, 135060. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, Y.; Wang, S.; Yang, F.; Cai, H.; Xing, Y.; Chen, Z.; Chen, J. NEAT1 Decreasing Suppresses Parkinson’s Disease Progression via Acting as miR-1301-3p Sponge. J. Mol. Neurosci. 2021, 71, 369–378. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, Y.; Wang, H.; Liu, P. Long noncoding RNA SRY-box transcription factor 2 overlapping transcript participates in Parkinson’s disease by regulating the microRNA-942-5p/nuclear apoptosis-inducing factor 1 axis. Bioengineered 2021, 12, 8570–8582. [Google Scholar] [CrossRef]
- Song, Q.; Geng, Y.; Li, Y.; Wang, L.; Qin, J. Long noncoding RNA NORAD regulates MPP+-induced Parkinson’s disease model cells. J. Chem. Neuroanat. 2019, 101, 101668. [Google Scholar] [CrossRef]
- Zhou, S.; Zhang, D.; Guo, J.; Chen, Z.; Chen, Y.; Zhang, J. Long non-coding RNA NORAD functions as a microRNA-204-5p sponge to repress the progression of Parkinson’s disease in vitro by increasing the solute carrier family 5 member 3 expression. IUBMB Life 2020, 72, 2045–2055. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, J.; Liu, Q.; Xiao, Z.; Dai, Q. Knockdown of long non-coding RNA AL049437 mitigates MPP+ -induced neuronal injury in SH-SY5Y cells via the microRNA-205-5p/MAPK1 axis. Neurotoxicology 2020, 78, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Kang, C.; Kang, M.; Quan, W.; Gao, H.; Zhong, Z. Long non-coding RNA Mirt2 prevents TNF-α-triggered inflammation via the repression of microRNA-101. Int. Immunopharmacol. 2019, 76, 105878. [Google Scholar] [CrossRef] [PubMed]
- Lun, P.; Ji, T.; Wan, D.H.; Liu, X.; Chen, X.D.; Yu, S.; Sun, P. HOTTIP downregulation reduces neuronal damage and microglial activation in Parkinson’s disease cell and mouse models. Neural. Regen. Res. 2022, 17, 887–897. [Google Scholar] [PubMed]
- Zhang, H.; Wang, Z.; Hu, K.; Liu, H. Downregulation of long noncoding RNA SNHG7 protects against inflammation and apoptosis in Parkinson’s disease model by targeting the miR-425-5p/TRAF5/NF-κB axis. J. Biochem. Mol. Toxicol. 2021, 35, e22867. [Google Scholar] [CrossRef] [PubMed]
- Meng, C.; Gao, J.; Ma, Q.; Sun, Q.; Qiao, T. LINC00943 knockdown attenuates MPP(+)-induced neuronal damage via miR-15b-5p/RAB3IP axis in SK-N-SH cells. Neurol. Res. 2021, 43, 181–190. [Google Scholar] [CrossRef]
- Lian, H.; Wang, B.; Lu, Q.; Chen, B.; Yang, H. LINC00943 knockdown exerts neuroprotective effects in Parkinson’s disease through regulates CXCL12 expression by sponging miR-7-5p. Genes Genom. 2021, 43, 797–805. [Google Scholar] [CrossRef]
- Li, X.; Su, Y.; Li, N.; Zhang, F.R.; Zhang, N. Berberine Attenuates MPP(+)-Induced Neuronal Injury by Regulating LINC00943/miR-142-5p/KPNA4/NF-κB Pathway in SK-N-SH Cells. Neurochem. Res. 2021, 46, 3286–3300. [Google Scholar] [CrossRef]
- L’Episcopo, F.; Tirolo, C.; Testa, N.; Caniglia, S.; Morale, M.C.; Serapide, M.F.; Pluchino, S.; Marchetti, B. Wnt/β-catenin signaling is required to rescue midbrain dopaminergic progenitors and promote neurorepair in ageing mouse model of Parkinson’s disease. Stem Cells 2014, 32, 2147–2163. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Piao, X.; Hu, S.; Gao, J.; Bao, M. LncRNA H19 diminishes dopaminergic neuron loss by mediating microRNA-301b-3p in Parkinson’s disease via the HPRT1-mediated Wnt/β-catenin signaling pathway. Aging (Albany NY) 2020, 12, 8820–8836. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, Q.; Lin, J. LncRNA H19 Attenuates Apoptosis in MPTP-Induced Parkinson’s Disease Through Regulating miR-585-3p/PIK3R3. Neurochem. Res. 2020, 45, 1700–1710. [Google Scholar] [CrossRef] [PubMed]
- Long, L.; Zeng, C.; Chen, H.; Zhou, T.; Wu, L.; Cai, X. ADNCR modulates neural stem cell differentiation and proliferation through the regulation of TCF3 expression. Ann. Transl. Med. 2020, 8, 927. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Huang, X.M.; Liao, J.X.; Dong, Y.K.; Zhu, J.L.; He, C.C.; Huang, J.; Tang, Y.W.; Wu, D.; Tian, J.Y. LncRNA HOTAIR Promotes Neuronal Damage Through Facilitating NLRP3 Mediated-Pyroptosis Activation in Parkinson’s Disease via Regulation of miR-326/ELAVL1 Axis. Cell Mol. Neurobiol. 2021, 41, 1773–1786. [Google Scholar] [CrossRef]
- Li, Y.; Fang, J.; Zhou, Z.; Zhou, Q.; Sun, S.; Jin, Z.; Xi, Z.; Wei, J. Downregulation of lncRNA BACE1-AS improves dopamine-dependent oxidative stress in rats with Parkinson’s disease by upregulating microRNA-34b-5p and downregulating BACE1. Cell Cycle 2020, 19, 1158–1171. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Liu, J.; Zhuang, J.; Dong, X.; Yu, M.; Li, Z. Silencing of UCA1 Protects Against MPP(+)-Induced Cytotoxicity in SK-N-SH Cells via Modulating KCTD20 Expression by Sponging miR-423-5p. Neurochem. Res. 2021, 46, 878–887. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Zhang, S.; Lv, Z.; Long, T.; Luo, Y.; Li, Z. SOX21-AS1 modulates neuronal injury of MMP(+)-treated SH-SY5Y cells via targeting miR-7-5p and inhibiting IRS2. Neurosci. Lett. 2021, 746, 135602. [Google Scholar] [CrossRef]
- Lv, K.; Liu, Y.; Zheng, Y.; Dai, S.; Yin, P.; Miao, H. Long non-coding RNA MALAT1 regulates cell proliferation and apoptosis via miR-135b-5p/GPNMB axis in Parkinson’s disease cell model. Biol. Res. 2021, 54, 10. [Google Scholar] [CrossRef]
- Zhai, K.; Liu, B.; Gao, L. Long-Noncoding RNA TUG1 Promotes Parkinson’s Disease via Modulating MiR-152-3p/PTEN Pathway. Hum. Gene Ther. 2020, 31, 1274–1287. [Google Scholar] [CrossRef]
- Shen, Y.; Cui, X.; Hu, Y.; Zhang, Z.; Zhang, Z. LncRNA-MIAT regulates the growth of SHSY5Y cells by regulating the miR-34-5p-SYT1 axis and exerts a neuroprotective effect in a mouse model of Parkinson’s disease. Am. J. Transl. Res. 2021, 13, 9993–10013. [Google Scholar]
- Sang, Q.; Liu, X.; Wang, L.; Qi, L.; Sun, W.; Wang, W.; Sun, Y.; Zhang, H. CircSNCA downregulation by pramipexole treatment mediates cell apoptosis and autophagy in Parkinson’s disease by targeting miR-7. Aging (Albany NY) 2018, 10, 1281–1293. [Google Scholar] [CrossRef]
- Feng, Z.; Zhang, L.; Wang, S.; Hong, Q. Circular RNA circDLGAP4 exerts neuroprotective effects via modulating miR-134-5p/CREB pathway in Parkinson’s disease. Biochem. Biophys. Res. Commun. 2020, 522, 388–394. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Lv, R.; Zhang, J.; Liu, Y. circSAMD4A participates in the apoptosis and autophagy of dopaminergic neurons via the miR-29c-3p-mediated AMPK/mTOR pathway in Parkinson’s disease. Mol. Med. Rep. 2021, 24, 540. [Google Scholar] [CrossRef] [PubMed]
- Kumar, L.; Shamsuzzama; Jadiya, P.; Haque, R.; Shukla, S.; Nazir, A. Functional Characterization of Novel Circular RNA Molecule, circzip-2 and Its Synthesizing Gene zip-2 in C. elegans Model of Parkinson’s Disease. Mol. Neurobiol. 2018, 55, 6914–6926. [Google Scholar] [CrossRef]
- Hanan, M.; Simchovitz, A.; Yayon, N.; Vaknine, S.; Cohen-Fultheim, R.; Karmon, M.; Madrer, N.; Rohrlich, T.M.; Maman, M.; Bennett, E.R.; et al. A Parkinson’s disease circRNAs Resource reveals a link between circSLC8A1 and oxidative stress. EMBO Mol. Med. 2020, 12, e11942. [Google Scholar] [CrossRef]
- Cao, X.; Guo, J.; Mochizuki, H.; Xu, D.; Zhang, T.; Han, H.; Ma, T.; Qi, M.; He, J. Circular RNA circ_0070441 regulates MPP(+)-triggered neurotoxic effect in SH-SY5Y cells via miR-626/IRS2 axis. Metab. Brain. Dis. 2021, 37, 513–524. [Google Scholar] [CrossRef] [PubMed]
- Soares, E.; Reis, J.; Rodrigues, M.; Ribeiro, C.F.; Pereira, F.C. Circulating Extracellular Vesicles: The Missing Link between Physical Exercise and Depression Management? Int. J. Mol. Sci. 2021, 22, 542. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Reddy, P.H. Are circulating microRNAs peripheral biomarkers for Alzheimer’s disease? Biochim. Biophys. Acta 2016, 1862, 1617–1627. [Google Scholar] [CrossRef]
- Turchinovich, A.; Weiz, L.; Burwinkel, B. Extracellular miRNAs: The mystery of their origin and function. Trends Biochem. Sci. 2012, 37, 460–465. [Google Scholar] [CrossRef]
- Nies, Y.H.; Mohamad Najib, N.H.; Lim, W.L.; Kamaruzzaman, M.A.; Yahaya, M.F.; Teoh, S.L. microRNA Dysregulation in Parkinson’s Disease: A Narrative Review. Front. Neurosci. 2021, 15, 660379. [Google Scholar] [CrossRef]
- Zhang, P.; Rasheed, M.; Liang, J.; Wang, C.; Feng, L.; Chen, Z. Emerging Potential of Exosomal Non-coding RNA in Parkinson’s Disease: A Review. Front. Aging Neurosci. 2022, 14, 819836. [Google Scholar] [CrossRef]
- Izco, M.; Carlos, E.; Alvarez-Erviti, L. The Two Faces of Exosomes in Parkinson’s Disease: From Pathology to Therapy. Neuroscientist 2022, 28, 180–193. [Google Scholar] [CrossRef] [PubMed]
- Akbari, M.; Gholipour, M.; Hussen, B.M.; Taheri, M.; Eslami, S.; Sayad, A.; Ghafouri-Fard, S. Expression of BDNF-Associated lncRNAs in Parkinson’s disease. Metab. Brain Dis. 2022, 37, 901–909. [Google Scholar] [CrossRef] [PubMed]
- Sproviero, D.; Gagliardi, S.; Zucca, S.; Arigoni, M.; Giannini, M.; Garofalo, M.; Olivero, M.; Dell’Orco, M.; Pansarasa, O.; Bernuzzi, S.; et al. Different miRNA Profiles in Plasma Derived Small and Large Extracellular Vesicles from Patients with Neurodegenerative Diseases. Int. J. Mol. Sci. 2021, 22, 2737. [Google Scholar] [CrossRef]
- Van den Berg, M.M.J.; Krauskopf, J.; Ramaekers, J.G.; Kleinjans, J.C.S.; Prickaerts, J.; Briedé, J.J. Circulating microRNAs as potential biomarkers for psychiatric and neurodegenerative disorders. Prog. Neurobiol. 2020, 185, 101732. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Deng, N.; Lu, K.; Liao, Q.; Long, X.; Gou, D.; Bi, F.; Zhou, J. Elevated plasma miR-133b and miR-221-3p as biomarkers for early Parkinson’s disease. Sci. Rep. 2021, 11, 15268. [Google Scholar] [CrossRef]
- Da Silva, F.C.; Rode, M.P.; Vietta, G.G.; Iop, R.D.R.; Creczynski-Pasa, T.B.; Martin, A.S.; Da Silva, R. Expression levels of specific microRNAs are increased after exercise and are associated with cognitive improvement in Parkinson’s disease. Mol. Med. Rep. 2021, 24, 618. [Google Scholar] [CrossRef]
- Oliveira, S.R.; Dionísio, P.A.; Correia Guedes, L.; Gonçalves, N.; Coelho, M.; Rosa, M.M.; Amaral, J.D.; Ferreira, J.J.; Rodrigues, C.M.P. Circulating Inflammatory miRNAs Associated with Parkinson’s Disease Pathophysiology. Biomolecules 2020, 10, 945. [Google Scholar] [CrossRef]
- Doxakis, E. Cell-free microRNAs in Parkinson’s disease: Potential biomarkers that provide new insights into disease pathogenesis. Aging Res. Rev. 2020, 58, 101023. [Google Scholar] [CrossRef]
- Ravanidis, S.; Bougea, A.; Papagiannakis, N.; Maniati, M.; Koros, C.; Simitsi, A.M.; Bozi, M.; Pachi, I.; Stamelou, M.; Paraskevas, G.P..; et al. Circulating Brain-enriched microRNAs for detection and discrimination of idiopathic and genetic Parkinson’s disease. Mov. Disord. 2020, 35, 457–467. [Google Scholar] [CrossRef]
- Vallelunga, A.; Iannitti, T.; Capece, S.; Somma, G.; Russillo, M.C.; Foubert-Samier, A.; Laurens, B.; Sibon, I.; Meissner, W.G.; Barone, P.; et al. Serum miR-96-5P and miR-339-5P Are Potential Biomarkers for Multiple System Atrophy and Parkinson’s Disease. Front. Aging Neurosci. 2021, 13, 632891. [Google Scholar] [CrossRef]
- Zago, E.; Dal Molin, A.; Dimitri, G.M.; Xumerle, L.; Pirazzini, C.; Bacalini, M.G.; Maturo, M.G.; Azevedo, T.; Spasov, S.; Gómez-Garre, P.; et al. Early downregulation of hsa-miR-144-3p in serum from drug-naïve Parkinson’s disease patients. Sci. Rep. 2022, 12, 1330. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, M.; Peymani, M.; Ghaedi, K.; Irani, S.; Etemadifar, M. Significant modulations of linc001128 and linc0938 with miR-24-3p and miR-30c-5p in Parkinson disease. Sci. Rep. 2022, 12, 2569. [Google Scholar] [CrossRef] [PubMed]
- Tong, G.; Zhang, P.; Hu, W.; Zhang, K.; Chen, X. Diagnostic Test to Identify Parkinson’s Disease from the Blood Sera of Chinese Population: A Cross-Sectional Study. Parkinsons. Dis. 2022, 2022, 8683877. [Google Scholar] [CrossRef] [PubMed]
- Ghit, A.; Deeb, H.E. Cytokines, miRNAs, and Antioxidants as Combined Non-invasive Biomarkers for Parkinson’s Disease. J. Mol. Neurosci. 2022, 72, 1133–1140. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Chai, S.; Xiong, T.; Wei, J.; Mao, W.; Zhu, Y.; Li, X.; Wei, W.; Dai, X.; Yang, B.; et al. Aberrant Expression of Circulating microRNA Leads to the Dysregulation of Alpha-Synuclein and Other Pathogenic Genes in Parkinson’s Disease. Front. Cell Dev. Biol. 2021, 9, 695007. [Google Scholar] [CrossRef]
- Ruf, W.P.; Freischmidt, A.; Grozdanov, V.; Roth, V.; Brockmann, S.J.; Mollenhauer, B.; Martin, D.; Haslinger, B.; Fundel-Clemens, K.; Otto, M.; et al. Protein Binding Partners of Dysregulated miRNAs in Parkinson’s Disease Serum. Cells 2021, 10, 791. [Google Scholar] [CrossRef]
- Jiang, X.; Xiao, L.; Jiang, X.; Li, G.; Lu, Z. Screening of Parkinson’s Differential microRNA Based on GEO Database and Its Clinical Verification. Biomed. Res. Int. 2021, 2021, 8171236. [Google Scholar] [CrossRef]
- Manna, I.; Quattrone, A.; De Benedittis, S.; Vescio, B.; Iaccino, E.; Quattrone, A. Exosomal miRNA as peripheral biomarkers in Parkinson’s disease and progressive supranuclear palsy: A pilot study. Parkinsonism Relat. Disord. 2021, 93, 77–84. [Google Scholar] [CrossRef]
- Li, L.; Ren, J.; Pan, C.; Li, Y.; Xu, J.; Dong, H.; Chen, Y.; Liu, W. Serum miR-214 Serves as a Biomarker for Prodromal Parkinson’s Disease. Front. Aging Neurosci. 2021, 13, 700959. [Google Scholar] [CrossRef]
- He, S.; Huang, L.; Shao, C.; Nie, T.; Xia, L.; Cui, B.; Lu, F.; Zhu, L.; Chen, B.; Yang, Q. Several miRNAs derived from serum extracellular vesicles are potential biomarkers for early diagnosis and progression of Parkinson’s disease. Transl. Neurodegener. 2021, 10, 25. [Google Scholar] [CrossRef]
- Nie, C.; Sun, Y.; Zhen, H.; Guo, M.; Ye, J.; Liu, Z.; Yang, Y.; Zhang, X. Differential Expression of Plasma Exo-miRNA in Neurodegenerative Diseases by Next-Generation Sequencing. Front. Neurosci. 2020, 14, 438. [Google Scholar] [CrossRef] [PubMed]
- Ravanidis, S.; Bougea, A.; Papagiannakis, N.; Koros, C.; Simitsi, A.M.; Pachi, I.; Breza, M.; Stefanis, L.; Doxakis, E. Validation of differentially expressed brain-enriched microRNAs in the plasma of PD patients. Ann. Clin. Transl. Neurol. 2020, 7, 1594–1607. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.X.; Tan, J.Q.; Zhang, H.N.; Tang, J.G.; Jiang, B.; Shen, X.M.; Guo, J.F.; Tan, L.M.; Tang, B.; Wang, C.Y. Preliminary Study of hsa-mir-626 Change in the Cerebrospinal Fluid in Parkinson’s Disease. Neurol. India 2021, 69, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Chen, J.; Sun, Y.; Li, F.; Wei, L.; Sun, W.; Deng, J.; Yuan, Y.; Wang, Z. Profiling of Differentially Expressed microRNAs in Saliva of Parkinson’s Disease Patients. Front. Neurol. 2021, 12, 738530. [Google Scholar] [CrossRef]
- Sanger, H.L.; Klotz, G.; Riesner, D.; Gross, H.J.; Kleinschmidt, A.K. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc. Natl. Acad. Sci. USA 1976, 73, 3852–3856. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.L. The biogenesis and emerging roles of circular RNAs. Nat. Rev. Mol. Cell Biol. 2016, 17, 205–211. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, Q.; Bao, C.; Li, S.; Guo, W.; Zhao, J.; Chen, D.; Gu, J.; He, X.; Huang, S. Circular RNA is enriched and stable in exosomes: A promising biomarker for cancer diagnosis. Cell Res. 2015, 25, 981–984. [Google Scholar] [CrossRef] [Green Version]
- Kristensen, L.S.; Andersen, M.S.; Stagsted, L.V.W.; Ebbesen, K.K.; Hansen, T.B.; Kjems, J. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet. 2019, 20, 675–691. [Google Scholar] [CrossRef]
- Patop, I.L.; Wüst, S.; Kadener, S. Past, present, and future of circRNAs. Embo J. 2019, 38, e100836. [Google Scholar] [CrossRef]
- Kong, F.; Lv, Z.; Wang, L.; Zhang, K.; Cai, Y.; Ding, Q.; Sun, Z.; Zhen, H.; Jiao, F.; Ma, Q.; et al. RNA-sequencing of peripheral blood circular RNAs in Parkinson disease. Medicine 2021, 100, e25888. [Google Scholar] [CrossRef]
- Ravanidis, S.; Bougea, A.; Karampatsi, D.; Papagiannakis, N.; Maniati, M.; Stefanis, L.; Doxakis, E. Differentially Expressed Circular RNAs in Peripheral Blood Mononuclear Cells of Patients with Parkinson’s Disease. Mov. Disord. 2021, 36, 1170–1179. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Han, X.; Zhang, C.; Sun, C.; Huang, S.; Xiao, W.; Gao, Y.; Liang, Q.; Luo, F.; Lu, W.; et al. Hsa_circ_0060450 Negatively Regulates Type I Interferon-Induced Inflammation by Serving as miR-199a-5p Sponge in Type 1 Diabetes Mellitus. Front. Immunol. 2020, 11, 576903. [Google Scholar] [CrossRef]
- Shen, L.; Hu, Y.; Lou, J.; Yin, S.; Wang, W.; Wang, Y.; Xia, Y.; Wu, W. circRNA-0044073 is upregulated in atherosclerosis and increases the proliferation and invasion of cells by targeting miR-107. Mol. Med. Rep. 2019, 19, 3923–3932. [Google Scholar] [CrossRef]
- Yuan, X.; Zhang, Y.; Cai, C.; Liu, C.; Xie, J.; Yi, C. Circular RNA circZNF652 is overexpressed in osteoarthritis and positively regulates LPS-induced apoptosis of chondrocytes by upregulating PTEN. Autoimmunity 2021, 54, 415–421. [Google Scholar] [CrossRef]
- Chen, J.N.; Zhang, Y.N.; Tian, L.G.; Zhang, Y.; Li, X.Y.; Ning, B. Down-regulating Circular RNA Prkcsh suppresses the inflammatory response after spinal cord injury. Neural. Regen. Res. 2022, 17, 144–151. [Google Scholar]
- Hansen, T.B.; Jensen, T.I.; Clausen, B.H.; Bramsen, J.B.; Finsen, B.; Damgaard, C.K.; Kjems, J. Natural RNA circles function as efficient microRNA sponges. Nature 2013, 495, 384–388. [Google Scholar] [CrossRef]
- Rivetti di Val Cervo, P.; Romanov, R.A.; Spigolon, G.; Masini, D.; Martín-Montañez, E.; Toledo, E.M.; La Manno, G.; Feyder, M.; Pifl, C.; Ng, Y.H.; et al. Induction of functional dopamine neurons from human astrocytes in vitro and mouse astrocytes in a Parkinson’s disease model. Nat. Biotechnol. 2017, 35, 444–452. [Google Scholar] [CrossRef]
- Javed, H.; Menon, S.A.; Al-Mansoori, K.M.; Al-Wandi, A.; Majbour, N.K.; Ardah, M.T.; Varghese, S.; Vaikath, N.N.; Haque, M.E.; Azzouz, M.; et al. Development of Nonviral Vectors Targeting the Brain as a Therapeutic Approach for Parkinson’s Disease and Other Brain Disorders. Mol. Ther. 2016, 24, 746–758. [Google Scholar] [CrossRef] [Green Version]
- Lowenstein, P.R.; Mandel, R.J.; Xiong, W.D.; Kroeger, K.; Castro, M.G. Immune responses to adenovirus and adeno-associated vectors used for gene therapy of brain diseases: The role of immunological synapses in understanding the cell biology of neuroimmune interactions. Curr. Gene Ther. 2007, 7, 347–360. [Google Scholar] [CrossRef] [Green Version]
- Lundberg, C.; Björklund, T.; Carlsson, T.; Jakobsson, J.; Hantraye, P.; Déglon, N.; Kirik, D. Applications of lentiviral vectors for biology and gene therapy of neurological disorders. Curr. Gene Ther. 2008, 8, 461–473. [Google Scholar] [CrossRef]
- Yin, H.; Kanasty, R.L.; Eltoukhy, A.A.; Vegas, A.J.; Dorkin, J.R.; Anderson, D.G. Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 2014, 15, 541–555. [Google Scholar] [CrossRef]
- Cooper, J.M.; Wiklander, P.B.; Nordin, J.Z.; Al-Shawi, R.; Wood, M.J.; Vithlani, M.; Schapira, A.H.; Simons, J.P.; El-Andaloussi, S.; Alvarez-Erviti, L. Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice. Mov. Disord. 2014, 29, 1476–1485. [Google Scholar] [CrossRef] [Green Version]
- Kojima, R.; Bojar, D.; Rizzi, G.; Hamri, G.C.; El-Baba, M.D.; Saxena, P.; Ausländer, S.; Tan, K.R.; Fussenegger, M. Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson’s disease treatment. Nat. Commun. 2018, 9, 1305. [Google Scholar] [CrossRef] [Green Version]
- Kalani, A.; Kamat, P.K.; Chaturvedi, P.; Tyagi, S.C.; Tyagi, N. Curcumin-primed exosomes mitigate endothelial cell dysfunction during hyperhomocysteinemia. Life Sci. 2014, 107, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Saraiva, C.; Paiva, J.; Santos, T.; Ferreira, L.; Bernardino, L. microRNA-124 loaded nanoparticles enhance brain repair in Parkinson’s disease. J. Control. Release 2016, 235, 291–305. [Google Scholar] [CrossRef]
Species of lncRNAs | Changes in lncRNAs Levels in PD’s Brain, CSF and Serum | Changes in lncRNAs Levels in Genetic Mouse Models and Cell Models for PD | Response of lncRNAs to PD “Triggers” In Vitro (Exposure Time if Relevant) | lncRNAs Target Genes (Experimentally Validated) |
---|---|---|---|---|
H19 | ↓/PD’s brain [26] | |||
lincRNA-p21 | ↑/PD’s brain [26] | |||
LINC-PINT | ↑/PD’s brain [26] | |||
Malat1 | ↑/PD’s brain [26] | |||
SNHG1 | ↑/PD’s brain [26] | |||
HOTAIRM1 | ↑/PD’s circulating leukocytes [23] | ↑/apoptosis ↑/neuroinflammation | MAPK, Jak-STAT | |
AC1131056.3 | ↑/PD’s circulating leukocytes [23] | ↑/apoptosis ↑/neuroinflammation | MAPK, Jak-STAT | |
XIST | ↓/PD’s serum [27] | ↓/apoptosis | hsa-miR-133b/IGF1R | |
PART1 | ↓/PD’s serum [27] | ↓/apoptosis | hsa-miR-133b/IGF1R | |
rs13388259 | ↓/PD’s serum [28] | ↑/apoptosis | HNF4A | |
NEAT1 | ↑/MPTP induced C57BL/6 mice [29] | ↑/α-synuclein aggregation ↑/apoptosis | Bax/Bcl-2 caspase-3 | |
G069488 | ↑/α-synuclein aggregation | |||
RP11-142J21.2 | ↑/α-synuclein aggregation [21] | |||
AC009365.4. | ↑/α-synuclein aggregation [21] | |||
Linc-POU3F3 | ↑/L1CAM exosome in PD plasma [30] | ↑/autophagy ↑/α-syn concentrations | GCase | |
MEG3 | ↓/PD’s serum [35] | ↓/MPP+ treated SH-SY5Y cells [32,33] | ↓/apoptosis | LRRK2 |
HOXA-AS2 | ↑/PD‘s PBMCs [41] | ↑/neuroinflammation ↑/microglial activation | ↓/PGC-1α ↑/PRC2 | |
MALAT1 | ↑/MPTP-induced PD mice ↑/LPS/ATP-induced microglia cells [42] | ↑/inflammasome activation ↑/reactive oxygen species (ROS) | ↓/Nrf2 | |
RMST | ↑/brain SN of PD rats | ↑/oxidative stress ↑/apoptosis | ↑/TLR/NF-Κb | |
Lnc-MKRN2-42:1 | ↑/PD’s serum [36] | |||
LINC-PINT | ↑/PD’s serum [37] | ↓/cellular survival ↑/oxidative stress | ||
UCA1 | ↑/PD mice brain ↑/MPP+-induced SH-SY5Y cells [39,40] | ↑/caspase-3 activation ↑/apoptosis | ↑/SNCA | |
HOTAIR | ↑/PD mice brain ↑/MPP+-induced SH-SY5Y cells [41] | ↑/caspase-3 activation ↑/apoptosis | ↑/LRRK2 | |
GAS5 | ↑/old mouse brain [38] | ↓/cell cycle progression ↑/apoptosis |
Species of miRNAs | Changes in miRNA Levels in PD’s Brain, CSF and Serum | Changes in miRNA Levels in Genetic Mouse Models and Cell Models for PD | Response of miRNA to PD “Triggers” In Vitro (Exposure Time if Relevant) | miRNA Target Genes (Experimentally Validated) |
---|---|---|---|---|
miR-1 | ↓/CSF | ↓/autophagy | ↑/TBC-7 ↑/TBC1D15 [92,93] | |
miR-1-3p | FAIM [105] | |||
miR-15b-5p | ↓/SH-SY5Y cells | ↑/apoptosis | ↑/Akt3 ↑/CSK-33β/β-catenin [97] | |
miR-26a | ↓/PBMCs | ↓/C57 BL/6 | ↑/α-syn | ↑/DAPK1 [106] |
miR-27a/27b | ↑/midbrain | ↑/mitochondrial fragmentation ↑/ROS | ↓/PARKIN ↓/PINK1 [6] | |
miR-29c | ↑/serum [78] | |||
miR-29c-3p | ↓/DA neuron | ↓/autophagy | ↑/TET2 | |
miR-29b | ↓/serum [74,82] | |||
miR-34a-5p | ↑/EVs [79] | ↑/SH-SY5Y cells | ↑/ER stress | ↓/IRE1α [107] |
miR-103 | ↓/MN9D cells ↓/C57BL/6 mice | ↑/LC3-II ↑/p62 | ↑/CDK5R1/CDK5 [108] | |
miR-105-5p | ↑/serum [77] | |||
miR-107 | ↓/MN9D cells ↓/C57BL/6 mice | ↑/LC3-II ↑/p62 | ↑/CDK5R1/CDK5 [108] | |
miR-123-3P | ↓/hippocampal tissue | ↓ | ↑/apoptosis | ↑/Axin1 ↓/Wnt/β-catenin [109] |
miR-124 | ↓/brain | ↓/C57BL/6 mice | ↑/cytokines ↑/apoptosis ↓/autophagy | ↑/MEKK3/NF-κB [8] ↑/62/p38 [110] ↑/Hedgehog [111] |
miR-125b-5p | ||||
miR-128 | ↑/brain | ↑/DA neuron | ↓/autophagy ↑/α-syn | ↓/TFEB [90] |
miR-132-3p | ↓, ↑/serum [73,74,75] | |||
miR-133a | ↓/PC-12 cells | ↑/apoptosis | ↑/RAC1 [112] | |
miR-133b | FAIM [105] | |||
miR-137 | ↑/plasma | ↑/ROS | ↓/OXR1 [113] | |
miR-138-5p | ↑/SH-SY5Y cells | ↑/TNF-α ↑/IL-1β ↑/ROS | ↓/SIRT1 [114] | |
miR-144 | ↓/brain | ↓/autophagy ↑/mitochondrial fragmentation | ↑/mTOR [115] ↑/β-amyloid precursor protein [89] | |
miR-146a | ↑/SH-SY5Y cells | ↑/mitochondrial fragmentation ↑/ROS | ↓/PARKIN [87] | |
miR-146-5p | ↓/serum [73,74] | |||
miR-153 | ↓/brain ↓/serum [72,84] ↓/saliva | ↑/α-syn | ↑/HO-1 [84] | |
miR-155 | ↑/C57BL/6 mice | ↑/α-syn ↑/iNOS | ↑/MHCII [80] | |
miR-155-5p | ↑/PBMCs [107] | ↑/α-syn ↑/iNOS [81] | ||
miR-181a | ↓/serum | ↓/SK-N-SH | ↑/apoptosis ↓/autophagy | ↑/p38MAPK/JNK [116] |
miR-183 | ↑/brain | ↑/substantia nigra neurons | ↑/apoptosis | ↓/OSMR [117] |
miR-185 | ↓ | ↑/ROS | ↓/PI3K/AKT ↓/IGF1 [98] | |
miR-195 | ↑/serum | ↑/neuroinflammation | ↑/ROCK1 [78,118] | |
miR-200a-3p | ↓/MPP-ADEXx | ↑/apoptosis | ↑/MKK4 [119] | |
miR-204-5P | ↑/brain | ↑/α-syn [104] | ↑/DYRK1A [85] | |
miR-206 | FAIM [105] | |||
miR-216 | ↓/apoptosis | ↓/Bax [120] | ||
miR-217 | ↑/SH-SY5Y | ↑/TNF-α ↑/IL-1β ↑/ROS | ↓/SIRT1 [84] | |
miR-218-5p | ↓/brain | ↓/brain SN of PD rats | ↑/apoptosis ↑/ROS ↑/NF-Κb | ↑/LASP1 [121] |
miR-223 | ↓/brain [72] ↓/serum↓/saliva | |||
miR-291 | ↓/ROCK2 [122] | |||
miR-326 | ↓/brain | ↓/autophagy ↑/iNOS ↑/apoptosis ↑/α-syn | ↑/XBP1 [94,95] ↑/MAPK/KLK7 | |
miR-331-5p | ↓/CSF [103] | |||
miR-342-3p | ↑/C57BL/6 mice | ↑/apoptosis | ↓/PAK1 ↓/Wnt [123] | |
miR-380-3p | ↑/N2a | ↑/apoptosis | ↓/Sp3 [96] | |
miR-486-5p | ↑/colonic biopsies [76] | |||
miR-599 | ↓/brain | ↑/LERK2 [80] | ||
hsa-miR-626 | ↓/CSF [100] | |||
hsa-miR-19b-3p | ↑/CSF [124] |
Species of miRNAs | Changes in miRNA Levels in PD’s Brain, CSF and Serum | Changes in miRNA Levels in Genetic Mouse Models and Cell Models for PD | Response of miRNA to PD “Triggers” In Vitro (Exposure Time if Relevant) | miRNA Target Genes (Experimentally Validated) |
---|---|---|---|---|
miR-7 | ↓/PD’s serum [128] | ↓/MPTP/p-treated mice↓/A53T tg/tg mice [128] | ↓/IL-1β↓/α-syn aggregation [142] ↑/autophagy [142] | ↓/NLRP3 [148] ↓/TLR4 [141] |
miR-let-7a | ↓/C57BL/6 mice ↓/LPS-exposed BV2 cells | ↓/microglia activation ↓/TNF-a, IL-6, IL-1b, and IL-12 | ↓/STAT3 [145] | |
miR-21 | ↑/MPP(+) treated MES23.5 cells [137] | ↑/iNOS ↑/IL-1β, IL-6 and TNF-α ↑/apoptosis | ↓/Bcl-2 | |
miR-29a-3p | ↑/microglial motility ↑/phagocytosis | ↑/ROCK/CDC42 [129] | ||
miR-30a-5p | ↓/microglial [149] | ↓/TNF-α, IL-1β and IL-10 | ↓/Neurod 1 ↓/MAPK/ERK | |
miR-93 | ↓/LPS-exposed BV2 cells [150] | ↓/microglial activation ↓/iNOS, IL-6 and TNF-α | ↓/STAT3 | |
miR-99a | ↑/C57BL6 mice microglial [125] | |||
miR-103a-3p | ↑/microglial motility ↑/phagocytosis | ↑/ROCK/CDC42 [129] | ||
miR-181 | ↓/BV2 cells [34] | ↓/iNOS, NO and ROS ↓/microglial motility | ↑/PKC-δ | |
miR-124 | ↓/PD’s brain [8] | ↓/BV2 cells [8] | ↓/neuroinflammation [111]↓/neuronal death [111]↓/apoptosis [8] ↓/TNF-α, iNOS, and IL-1b [110] ↑,↓/autophagy [110] | ↓/MEKK3/NF-κB [8] ↓/p62/p-38 [129] ↓/Hedgehog [130] |
miR-125b-5p | ↑/C57BL6 mice microglial [125] | |||
miR-128 | ↑/A9,A10 DA neurons [90,151] | ↑/α-syn aggregation | ↓/p38 ↓/TFEB | |
miR-129-5p | ↓/C57BL6 mice [152] | ↓/inflammation↓/blood–spinal cord barrier (BCSB) | ↓/HMGB1 ↓/TLR3 | |
miR-135b | ↓/SH-SY5Y cells [128] | ↑/TNF-α, IL-1β ↑/apoptosis ↓/pyroptosis [153] | ↑/GSK-3β ↓/FoxO1 [153] ↓/TXNIP, NLRP3, Caspase-1 [153] | |
miR-138-5p | ↑/MPP(+) induced SH-SY5Y cells [134] | ↑/iNOS ↑/IL-1β and TNF-α | ↓/SIRT1 | |
miR-144 | ↓/PD’s brain | ↑/NF-κB [126] | ||
miR-146a | ↑/PD’s PBMCs [81,140] | ↑/microglial activation | ||
miR-150 | ↓/PD‘s serum | ↓/BV2 cells [154] | ↓/IL-1β, IL-6 and TNF-α [154,155] | ↓/AKT3 |
miR-155 | ↑/PD’s PBMCs [81] | ↑/C57BL6 mice [82] | ↑/iNOS [82] ↑/microglial activation | ↑/MHCII ↓/SOCS1 |
miR-155-5p | ↑/PD’s PBMCs [81] | ↑/C57BL6 mice [124] | ↑/microglial activation↑/oxidative stress ↑/apoptosis ↑/TNF-α and IL-1β | ↓/SOCS1 ↓/Nrf2 |
miR-188-3p | ↓/PD’s serum | ↓/pyroptosis [156] ↓/autophagy | ↓/CDK50 ↓/NLRP3 | |
miR-190 | ↓/LPS-induced BV2 cells [157] | ↓/iNOS, IL-6 and TGF-β ↑/IL-10 | ↓/NLRP3 | |
miR-195 | ↓/LPS-induced BV2 cells [118] | ↓/IL-6 and TNF-α ↑/IL-4 and IL-10 | ↓/ROCK1 | |
miR-217 | ↑/MPP(+) induced SH-SY5Y cells [134] | ↑/iNOS ↑/IL-1β and TNF-α | ↓/SIRT1 | |
miR-218 | ↓/PD’s brain | ↑/NF-κB [147] | ||
miR-221 | ↑/CCI-induced rat model [158] ↓/6-OHDA treated PC12 pheochromocytoma cells [159] | ↑/TNF-α,IL-1β, and IL-6 ↓/apoptosis | ↓/SOCS1 ↑/NF-κB ↑/p38 MAPK ↓/PTEN | |
miR-330 | ↓/LPS-induced BV2 cells [144] | ↓/microglial polarization ↓/iNOS | ↓/NF-κB ↑/SHIP1 and Arg1 | |
miR-342-3p | ↑/C57BL6 mice microglial [131] | |||
miR-375 | ↓/6-OHDA treated Wistar rats substantia nigra [136] | ↓/TNF-α, IL-6 and IL-1β ↓/SOD and GSH-Px ↑/MDA | ↓/SP1 | |
miR-3473b | ↑/LPS treated BV2 cells [138] ↑/C57/BL6 mice | ↑/microglial motility ↑/autophagy | ↓/TREM2/ULK1 | |
miR-7116-5p | ↓/C57BL6 mice microglia [127] | ↓/IL-1β, IL-6,TNF-α and iNOS |
Non-Coding RNA | Species of ncRNAs | Expression | Related Genes | Functional Role in PD | References |
---|---|---|---|---|---|
lncRNA | OIP-AS1 | ↓ | miR-126/PLK2 | ↓/α-synuclein aggregation ↑/autophagy | [160] |
SNHG1 | ↑ | miR-15b-5/SIAH1 miR-7/NLRP3 miR-181a-5p/CXCL12 miR-125B-5p/MAPK1 miR-216A-3P/Bcl-2 miR-221/222/p27/mTOR miR-15b-5p/GSK3β miR-153-3p/PTEN/AKT/mTOR | ↑/α-synuclein aggregation ↑/apoptosis ↑/microglial activation | [40,44,45,46,47,48] | |
SNHG14 | ↑ | miR-133b/α-synuclein miR-124-3p/KLF4 | ↑/DA neuron injury ↑/α-synuclein aggregation ↑/apoptosis ↑/inflammation | [161] | |
SNHG7 | ↑ | miR-425-5P/TRAF5 | ↑/neuronal apoptosis ↑/TH-positive cell loss ↑/microglial activation ↑/oxidative stress ↑/neuroinflammation | [184] | |
NEAT1 | ↑ | miR-34-5p/SYT1 miR-51PA-3p | ↑/autophagy ↑/apoptosis ↓/cell proliferation | [162,163,172] | |
HOTAIR | ↑ | miR-221-3P/NPTX2 miR-874-5p/ATG10 miR-126-5p/RAB3IP miR-326/ELAVL1 | ↑/autophagy ↑/apoptosis ↓/cell proliferation ↑/NLRP3 inflammasome activation | [164] [165] [166] [192] | |
BDNF-AS | ↑ | miR-125b-5p | ↑/autophagy ↑/apoptosis ↓/cell proliferation | [167] | |
NEAT1 | ↑ | miR-1277-5P/ARHGAP26 miR-124-3p/PDE4B miR-519a-3p/SP1 miR-212-3p/AXIN1 miR-212-5p/RAB3IP miR-124/KLF4 miR-374c-5p miR-1301-3p/GJB1 | ↑/neuroinflammation (IL-6,TNF-α,IL-1β) ↓/neuron viability ↑/apoptosis ↑/NLRP3 inflammasome activation | [163,170,171,172,173,174,176] | |
SRY-box | ↑ | miR942-5/NAIF1 | ↑/apoptosis ↑/cleaved caspase-3 protein expression ↑/TNF-α, IL-1β, ROS and LDH | [178] | |
NORAD | ↓ | miR-204-5p/SLC5A3 | ↓/cytotoxicity ↓/inflammatory response ↓/oxidate stress (ROS) | [179,180] | |
AL049437 | ↑ | miR-205-5p/MAPK1 | ↑/cytotoxicity↑/inflammatory response ↑/oxidate stress (ROS) | [181] | |
Mirt2 | ↓ | miR-101/NF-κB/p38MAPK | ↓/inflammatory response (IL-6,TNF-α,IL-1β) ↓/oxidate stress (ROS) ↓/apoptosis | [182] | |
HOTTIP | ↑ | miR-615-3p/FOXO1 | ↑/microglial activation, ↑/proinflammatory cytokine secretion (IL-lβ, IL-6, IL-18, TNF-α, iNOS, COX2, NF-κB) ↑/apoptosis | [183] | |
LINC00943 | ↑ | miR-15b-5p/RAB3IP miR-7b-5p/CXCL12 miR-142-5p/KPNA4/NF-κB | ↑/TNF-α, IL-1β and IL-6 ↑/oxidative injury ↑/apoptosis | [185,186,187] | |
BACE1-AS | ↑ | miR-34b-5p/BACE | ↑/TNF-α, IL-1β and IL-6 ↑/oxidative injury ↑/apoptosis | [193] | |
H19 | ↓ | miR-301b-3p/HPRT1/Wnt/β-catenin miR-585-3p | ↓/neuron loss ↓/neuronal injury | [189,190] | |
UCA1 | ↑ | miR-423-5p/KCTD20 | ↑/cytotoxicity ↑/apoptosis | [194] | |
SOX21-AS1 | ↑ | miR-7-5p/IRS2 | ↑/cell injury | [195] | |
MALAT1 | ↑ | miR-135b-5p/GPNMB | ↓/cell proliferation ↑/apoptosis | [196] | |
TUG1 | ↑ | miR-152-3p/PTEN | ↑/cell apoptosis ↑/oxidative stress ↑/neuroinflammation | [197] | |
HAGLROS | ↑ | miR-100/ATG10 PI3K/Akt/Mtor | ↑/cell apoptosis ↓/proliferation | [154] | |
MIAT | ↓ | miR-34-5p/SYT1 | ↓/apoptosis | [198] | |
HOXA11-AS | ↑ | miR-124-3p/FSTL1 | ↑/NLRP3 inflammasome activity ↑/microglial activation | [50] | |
Linc-p21 | ↑ | miR-625/TRPM2 miR-181/PKC-δ | ↑/oxidative stress | [26,34] | |
ADNCR | miR-204-5p/TCF3 | ||||
T199678 | ↓ | miR-101-3p | ↓/oxidative stress ↓/apoptosis | [31] | |
GAS5 | ↑ | miR-223-3p/NLRP3 | ↑/microglial activation, ↑/apoptosis | [35] | |
circRNA | circSNCA | ↑ | miR-7 | ↑/cell apoptosis ↑/α-synuclein aggregation ↓/autophagy | [199] |
circDLGAP4 | ↓ | miR-134-5p/CREB | ↑/autophagy ↓/mitochondrial dysfunction ↓/apoptosis | [200] | |
circSAMD4A | ↑ | miR-29c-3p/AMPK/mTOR | ↑/autophagy ↑/apoptosis | [201] | |
circzip-2 | ↓ | miR-60-3p/Daf-16 | ↓/α-synuclein expression ↓/ROS | [202] | |
circSLC8A1 | ↑ | miR-128/Ago2 | ↑/oxidative stress | [203] | |
Circ_0070441 | ↑ | miR-626/IRS2 | ↑/cell apoptosis ↑/inflammation | [204] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Yao, L.; Zheng, Z.; Koc, S.; Lu, G. The Role of Non-Coding RNAs in the Pathogenesis of Parkinson’s Disease: Recent Advancement. Pharmaceuticals 2022, 15, 811. https://doi.org/10.3390/ph15070811
Zhang H, Yao L, Zheng Z, Koc S, Lu G. The Role of Non-Coding RNAs in the Pathogenesis of Parkinson’s Disease: Recent Advancement. Pharmaceuticals. 2022; 15(7):811. https://doi.org/10.3390/ph15070811
Chicago/Turabian StyleZhang, Hanwen, Longping Yao, Zijian Zheng, Sumeyye Koc, and Guohui Lu. 2022. "The Role of Non-Coding RNAs in the Pathogenesis of Parkinson’s Disease: Recent Advancement" Pharmaceuticals 15, no. 7: 811. https://doi.org/10.3390/ph15070811
APA StyleZhang, H., Yao, L., Zheng, Z., Koc, S., & Lu, G. (2022). The Role of Non-Coding RNAs in the Pathogenesis of Parkinson’s Disease: Recent Advancement. Pharmaceuticals, 15(7), 811. https://doi.org/10.3390/ph15070811