Opportunities and Challenges for In Silico Drug Discovery at Delta Opioid Receptors
Abstract
:1. Introduction
2. Current Structural Insight in δOR Binding Pocket and Activation Mechanism
3. Limitations of Current δOR Structures
4. Opportunities for Computer-Aided Drug Discovery at the δOR
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Erspamer, V.; Melchiorri, P.; Falconieri-Erspamer, G.; Negri, L.; Corsi, R.; Severini, C.; Barra, D.; Simmaco, M.; Kreil, G. Deltorphins: A family of naturally occurring peptides with high affinity and selectivity for delta opioid binding sites. Proc. Natl. Acad. Sci. USA 1989, 86, 5188–5192. [Google Scholar] [CrossRef] [PubMed]
- Fricker, L.D.; Margolis, E.B.; Gomes, I.; Devi, L.A. Five Decades of Research on Opioid Peptides: Current Knowledge and Unanswered Questions. Mol. Pharmacol. 2020, 98, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Cassell, R.J.; Mores, K.L.; Zerfas, B.L.; Mahmoud, A.H.; Lill, M.A.; Trader, D.J.; van Rijn, R.M. Rubiscolins are naturally occurring G protein-biased delta opioid receptor peptides. Eur. Neuropsychopharmacol. 2019, 29, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Gutridge, A.M.; Robins, M.T.; Cassell, R.J.; Uprety, R.; Mores, K.L.; Ko, M.J.; Pasternak, G.W.; Majumdar, S.; van Rijn, R.M. G protein-biased kratom-alkaloids and synthetic carfentanil-amide opioids as potential treatments for alcohol use disorder. Br. J. Pharmacol. 2019, 177, 1497–1513. [Google Scholar] [CrossRef] [PubMed]
- Gutridge, A.M.; Chakraborty, S.; Varga, B.R.; Rhoda, E.S.; French, A.R.; Blaine, A.T.; Royer, Q.H.; Cui, H.; Yuan, J.; Cassell, R.J.; et al. Evaluation of Kratom Opioid Derivatives as Potential Treatment Option for Alcohol Use Disorder. Front. Pharmacol. 2021, 12, 764885. [Google Scholar] [CrossRef] [PubMed]
- Gendron, L.; Cahill, C.M.; von Zastrow, M.; Schiller, P.W.; Pineyro, G. Molecular Pharmacology of delta-Opioid Receptors. Pharmacol. Rev. 2016, 68, 631–700. [Google Scholar] [CrossRef]
- Pradhan, A.A.; Befort, K.; Nozaki, C.; Gaveriaux-Ruff, C.; Kieffer, B.L. The delta opioid receptor: An evolving target for the treatment of brain disorders. Trends Pharmacol. Sci. 2011, 32, 581–590. [Google Scholar] [CrossRef]
- Grant Liska, M.; Crowley, M.G.; Lippert, T.; Corey, S.; Borlongan, C.V. Delta Opioid Receptor and Peptide: A Dynamic Therapy for Stroke and Other Neurological Disorders. Handb. Exp. Pharmacol. 2017, 247, 277–299. [Google Scholar]
- Mabrouk, O.S.; Marti, M.; Salvadori, S.; Morari, M. The novel delta opioid receptor agonist UFP-512 dually modulates motor activity in hemiparkinsonian rats via control of the nigro-thalamic pathway. Neuroscience 2009, 164, 360–369. [Google Scholar] [CrossRef]
- Sarajarvi, T.; Marttinen, M.; Natunen, T.; Kauppinen, T.; Makinen, P.; Helisalmi, S.; Laitinen, M.; Rauramaa, T.; Leinonen, V.; Petaja-Repo, U.; et al. Genetic Variation in delta-Opioid Receptor Associates with Increased beta- and gamma-Secretase Activity in the Late Stages of Alzheimer’s Disease. J. Alzheimers Dis. 2015, 48, 507–516. [Google Scholar] [CrossRef]
- Crist, R.C.; Clarke, T.K. OPRD1 Genetic Variation and Human Disease. Handb. Exp. Pharmacol. 2018, 247, 131–145. [Google Scholar] [PubMed]
- Johnston, T.H.; Versi, E.; Howson, P.A.; Ravenscroft, P.; Fox, S.H.; Hill, M.P.; Reidenberg, B.E.; Corey, R.; Brotchie, J.M. DPI-289, a novel mixed delta opioid agonist/mu opioid antagonist (DAMA), has L-DOPA-sparing potential in Parkinson’s disease. Neuropharmacology 2018, 131, 116–127. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhi, F.; Mao, J.; Peng, Y.; Shao, N.; Balboni, G.; Yang, Y.; Xia, Y. delta-opioid receptor activation protects against Parkinson’s disease-related mitochondrial dysfunction by enhancing PINK1/Parkin-dependent mitophagy. Aging 2020, 12, 25035–25059. [Google Scholar] [CrossRef] [PubMed]
- Alongkronrusmee, D.; Chiang, T.; van Rijn, R.M. Delta Opioid Pharmacology in Relation to Alcohol Behaviors. Handb. Exp. Pharmacol. 2016, 247, 199–225. [Google Scholar]
- Chiang, T.; Sansuk, K.; van Rijn, R.M. beta-Arrestin 2 dependence of delta opioid receptor agonists is correlated with alcohol intake. Br. J. Pharmacol. 2016, 173, 332–343. [Google Scholar] [CrossRef]
- Robins, M.T.; Chiang, T.; Mores, K.L.; Alongkronrusmee, D.; van Rijn, R.M. Critical Role for Gi/o-Protein Activity in the Dorsal Striatum in the Reduction of Voluntary Alcohol Intake in C57Bl/6 Mice. Front. Psychiatry 2018, 9, 112. [Google Scholar] [CrossRef]
- Corsetti, M.; Whorwell, P. New therapeutic options for IBS: The role of the first in class mixed micro- opioid receptor agonist and delta-opioid receptor antagonist (mudelta) eluxadoline. Expert Rev. Gastroenterol. Hepatol. 2017, 11, 285–292. [Google Scholar] [CrossRef]
- DiCello, J.J.; Carbone, S.E.; Saito, A.; Pham, V.; Szymaszkiewicz, A.; Gondin, A.B.; Alvi, S.; Marique, K.; Shenoy, P.; Veldhuis, N.A.; et al. Positive allosteric modulation of endogenous delta opioid receptor signaling in the enteric nervous system is a potential treatment for gastrointestinal motility disorders. Am. J. Physiol. Gastrointest. Liver Physiol. 2022, 322, G66–G78. [Google Scholar] [CrossRef]
- Dondio, G. Development of novel pain relief agents acting through the selective activation of the delta-opioid receptor. Farmaco 2000, 55, 178–180. [Google Scholar] [CrossRef]
- Kotzer, C.J.; Hay, D.W.; Dondio, G.; Giardina, G.; Petrillo, P.; Underwood, D.C. The antitussive activity of delta-opioid receptor stimulation in guinea pigs. J. Pharmacol. Exp. Ther. 2000, 292, 803–809. [Google Scholar]
- Petrillo, P.; Angelici, O.; Bingham, S.; Ficalora, G.; Garnier, M.; Zaratin, P.F.; Petrone, G.; Pozzi, O.; Sbacchi, M.; Stean, T.O.; et al. Evidence for a selective role of the delta-opioid agonist [8R-(4bS*,8aalpha,8abeta, 12bbeta)]7,10-Dimethyl-1-methoxy-11-(2-methylpropyl)oxycarbonyl 5,6,7,8,12,12b-hexahydro-(9H)-4,8-methanobenzofuro[3,2-e]pyrrolo[2,3-g]isoquinoli ne hydrochloride (SB-235863) in blocking hyperalgesia associated with inflammatory and neuropathic pain responses. J. Pharmacol. Exp. Ther. 2003, 307, 1079–1089. [Google Scholar] [PubMed]
- Richards, E.M.; Mathews, D.C.; Luckenbaugh, D.A.; Ionescu, D.F.; Machado-Vieira, R.; Niciu, M.J.; Duncan, W.C.; Nolan, N.M.; Franco-Chaves, J.A.; Hudzik, T.; et al. A randomized, placebo-controlled pilot trial of the delta opioid receptor agonist AZD2327 in anxious depression. Psychopharmacology 2016, 233, 1119–1130. [Google Scholar] [CrossRef] [PubMed]
- Cubist Pharmaceuticals LLC. Analgesic Efficacy and Safety of ADL5859 in Subjects With Acute Dental Pain After Third Molar Extraction. Available online: https://clinicaltrials.gov/ct2/show/NCT00993863 (accessed on 12 July 2022).
- Cubist Pharmaceuticals LLC. Study to Assess the Efficacy, Safety, and Tolerability of ADL5747 in Participants With Postherpetic Neuralgia. Available online: https://clinicaltrials.gov/ct2/show/NCT01058642 (accessed on 12 July 2022).
- Broom, D.C.; Jutkiewicz, E.M.; Folk, J.E.; Traynor, J.R.; Rice, K.C.; Woods, J.H. Convulsant activity of a non-peptidic delta-opioid receptor agonist is not required for its antidepressant-like effects in Sprague-Dawley rats. Psychopharmacology 2002, 164, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Vicente-Sanchez, A.; Dripps, I.J.; Tipton, A.F.; Akbari, H.; Akbari, A.; Jutkiewicz, E.M.; Pradhan, A.A. Tolerance to high-internalizing delta opioid receptor agonist is critically mediated by arrestin 2. Br. J. Pharmacol. 2018, 175, 3050–3059. [Google Scholar] [CrossRef]
- Jutkiewicz, E.M.; Rice, K.C.; Traynor, J.R.; Woods, J.H. Separation of the convulsions and antidepressant-like effects produced by the delta-opioid agonist SNC80 in rats. Psychopharmacology 2005, 182, 588–596. [Google Scholar] [CrossRef] [PubMed]
- Codd, E.E.; Carson, J.R.; Colburn, R.W.; Stone, D.J.; Van Besien, C.R.; Zhang, S.P.; Wade, P.R.; Gallantine, E.L.; Meert, T.F.; Molino, L.; et al. JNJ-20788560 [9-(8-azabicyclo[3.2.1]oct-3-ylidene)-9H-xanthene-3-carboxylic acid diethylamide], a selective delta opioid receptor agonist, is a potent and efficacious antihyperalgesic agent that does not produce respiratory depression, pharmacologic tolerance, or physical dependence. J. Pharmacol. Exp. Ther. 2009, 329, 241–251. [Google Scholar]
- Codd, E.E.; Carson, J.R.; Colburn, R.W.; Dax, S.L.; Desai-Krieger, D.; Martinez, R.P.; McKown, L.A.; Neilson, L.A.; Pitis, P.M.; Stahle, P.L.; et al. The novel, orally active, delta opioid RWJ-394674 is biotransformed to the potent mu opioid RWJ-413216. J. Pharmacol. Exp. Ther. 2006, 318, 1273–1279. [Google Scholar] [CrossRef]
- Holt, J.D.; Watson, M.J.; Chang, J.P.; O’Neill, S.J.; Wei, K.; Pendergast, W.; Gengo, P.J.; Chang, K.J. DPI-221 [4-((alpha-s)-alpha-((2s,5r)-2,5-dimethyl-4-(3-fluorobenzyl)-1-piperazinyl)benzyl )-N,N-diethylbenzamide]: A novel nonpeptide delta receptor agonist producing increased micturition interval in normal rats. J. Pharmacol. Exp. Ther. 2005, 315, 601–608. [Google Scholar] [CrossRef]
- Yi, S.P.; Kong, Q.H.; Li, Y.L.; Pan, C.L.; Yu, J.; Cui, B.Q.; Wang, Y.F.; Wang, G.L.; Zhou, P.L.; Wang, L.L.; et al. The opioid receptor triple agonist DPI-125 produces analgesia with less respiratory depression and reduced abuse liability. Acta Pharmacol. Sin. 2017, 38, 977–989. [Google Scholar] [CrossRef]
- Cassell, R.J.; Sharma, K.K.; Su, H.; Cummins, B.R.; Cui, H.; Mores, K.L.; Blaine, A.T.; Altman, R.A.; van Rijn, R.M. The Meta-Position of Phe(4) in Leu-Enkephalin Regulates Potency, Selectivity, Functional Activity, and Signaling Bias at the Delta and Mu Opioid Receptors. Molecules 2019, 24, 4542. [Google Scholar] [CrossRef]
- Vezzi, V.; Onaran, H.O.; Molinari, P.; Guerrini, R.; Balboni, G.; Calo, G.; Costa, T. Ligands raise the constraint that limits constitutive activation in G protein-coupled opioid receptors. J. Biol. Chem. 2013, 288, 23964–23978. [Google Scholar] [CrossRef] [PubMed]
- Bella Ndong, D.; Blais, V.; Holleran, B.J.; Proteau-Gagné, A.; Cantin-Savoie, I.; Robert, W.; Nadon, J.-F.; Beauchemin, S.; Leduc, R.; Piñeyro, G.; et al. Exploration of the fifth position of leu-enkephalin and its role in binding and activating delta (DOP) and mu (MOP) opioid receptors. Pept. Sci. 2019, 111, e24070. [Google Scholar] [CrossRef]
- Sharma, K.K.; Cassell, R.J.; Meqbil, Y.J.; Su, H.; Blaine, A.T.; Cummins, B.R.; Mores, K.L.; Johnson, D.K.; van Rijn, R.M.; Altman, R.A. Modulating beta-arrestin 2 recruitment at the delta- and mu-opioid receptors using peptidomimetic ligands. RSC Med. Chem. 2021, 12, 1958–1967. [Google Scholar] [CrossRef] [PubMed]
- Conibear, A.E.; Asghar, J.; Hill, R.; Henderson, G.; Borbely, E.; Tekus, V.; Helyes, Z.; Palandri, J.; Bailey, C.; Starke, I.; et al. A Novel G Protein-Biased Agonist at the delta Opioid Receptor with Analgesic Efficacy in Models of Chronic Pain. J. Pharmacol. Exp. Ther. 2020, 372, 224–236. [Google Scholar] [CrossRef]
- Crombie, A.; Arezzo, J.; Cowan, C.; DeWire, S.; Gowen-McDonald, W.; Hawkins, M.; Jutkiewicz, E.; Kramer, M.; Koblish, M.; Lark, M.; et al. TRV250: A novel G protein-biased ligand at the delta receptor for the potential treatment of migraine. Postgrad. Med. 2015, 127 (Suppl. 1), S61. [Google Scholar]
- Nagase, H.; Nemoto, T.; Matsubara, A.; Saito, M.; Yamamoto, N.; Osa, Y.; Hirayama, S.; Nakajima, M.; Nakao, K.; Mochizuki, H.; et al. Design and synthesis of KNT-127, a delta-opioid receptor agonist effective by systemic administration. Bioorg. Med. Chem. Lett. 2010, 20, 6302–6305. [Google Scholar] [CrossRef]
- Knapp, R.J.; Landsman, R.; Waite, S.; Malatynska, E.; Varga, E.; Haq, W.; Hruby, V.J.; Roeske, W.R.; Nagase, H.; Yamamura, H.I. Properties of TAN-67, a nonpeptidic delta-opioid receptor agonist, at cloned human delta- and mu-opioid receptors. Eur. J. Pharmacol. 1995, 291, 129–134. [Google Scholar] [CrossRef]
- Burford, N.T.; Clark, M.J.; Wehrman, T.S.; Gerritz, S.W.; Banks, M.; O’Connell, J.; Traynor, J.R.; Alt, A. Discovery of positive allosteric modulators and silent allosteric modulators of the mu-opioid receptor. Proc. Natl. Acad. Sci. USA 2013, 110, 10830–10835. [Google Scholar] [CrossRef]
- Burford, N.T.; Livingston, K.; Canals, M.; Ryan, M.; Budenholzer, L.; Han, Y.; Shang, Y.; Herbst, J.J.; O’Connell, J.; Banks, M.; et al. Discovery, Synthesis and Molecular Pharmacology of Selective Positive Allosteric Modulators of the delta-Opioid Receptor. J. Med. Chem. 2015, 58, 4220–4229. [Google Scholar] [CrossRef]
- Stanczyk, M.A.; Livingston, K.E.; Chang, L.; Weinberg, Z.Y.; Puthenveedu, M.A.; Traynor, J.R. The delta-opioid receptor positive allosteric modulator BMS 986187 is a G-protein-biased allosteric agonist. Br. J. Pharmacol. 2019, 176, 1649–1663. [Google Scholar] [CrossRef]
- Fujii, H.; Uchida, Y.; Shibasaki, M.; Nishida, M.; Yoshioka, T.; Kobayashi, R.; Honjo, A.; Itoh, K.; Yamada, D.; Hirayama, S.; et al. Discovery of delta opioid receptor full agonists lacking a basic nitrogen atom and their antidepressant-like effects. Bioorg. Med. Chem. Lett. 2020, 30, 127176. [Google Scholar] [CrossRef] [PubMed]
- Meqbil, Y.J.; Su, H.; Cassell, R.J.; Mores, K.L.; Gutridge, A.M.; Cummins, B.R.; Chen, L.; van Rijn, R.M. Identification of a Novel Delta Opioid Receptor Agonist Chemotype with Potential Negative Allosteric Modulator Capabilities. Molecules 2021, 26, 7236. [Google Scholar] [CrossRef] [PubMed]
- Evans, C.J.; Keith, D.E., Jr.; Morrison, H.; Magendzo, K.; Edwards, R.H. Cloning of a delta opioid receptor by functional expression. Science 1992, 258, 1952–1955. [Google Scholar] [CrossRef] [PubMed]
- Kieffer, B.L.; Befort, K.; Gaveriaux-Ruff, C.; Hirth, C.G. The delta-opioid receptor: Isolation of a cDNA by expression cloning and pharmacological characterization. Proc. Natl. Acad. Sci. USA 1992, 89, 12048–12052. [Google Scholar] [CrossRef]
- Ballesteros, J.A.; Weinstein, H. Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci. 1995, 25, 366–428. [Google Scholar]
- Kong, H.; Raynor, K.; Yasuda, K.; Moe, S.T.; Portoghese, P.S.; Bell, G.I.; Reisine, T. A single residue, aspartic acid 95, in the delta opioid receptor specifies selective high affinity agonist binding. J. Biol. Chem. 1993, 268, 23055–23058. [Google Scholar] [CrossRef]
- Befort, K.; Tabbara, L.; Bausch, S.; Chavkin, C.; Evans, C.; Kieffer, B. The conserved aspartate residue in the third putative transmembrane domain of the delta-opioid receptor is not the anionic counterpart for cationic opiate binding but is a constituent of the receptor binding site. Mol. Pharmacol. 1996, 49, 216–223. [Google Scholar]
- Befort, K.; Tabbara, L.; Kling, D.; Maigret, B.; Kieffer, B.L. Role of aromatic transmembrane residues of the delta-opioid receptor in ligand recognition. J. Biol. Chem. 1996, 271, 10161–10168. [Google Scholar] [CrossRef]
- Onogi, T.; Minami, M.; Katao, Y.; Nakagawa, T.; Aoki, Y.; Toya, T.; Katsumata, S.; Satoh, M. DAMGO, a mu-opioid receptor selective agonist, distinguishes between mu- and delta-opioid receptors around their first extracellular loops. FEBS Lett. 1995, 357, 93–97. [Google Scholar] [CrossRef]
- Minami, M.; Nakagawa, T.; Seki, T.; Onogi, T.; Aoki, Y.; Katao, Y.; Katsumata, S.; Satoh, M. A single residue, Lys108, of the delta-opioid receptor prevents the mu-opioid-selective ligand [D-Ala2,N-MePhe4,Gly-ol5]enkephalin from binding to the delta-opioid receptor. Mol. Pharmacol. 1996, 50, 1413–1422. [Google Scholar]
- Valiquette, M.; Vu, H.K.; Yue, S.Y.; Wahlestedt, C.; Walker, P. Involvement of Trp-284, Val-296, and Val-297 of the human delta-opioid receptor in binding of delta-selective ligands. J. Biol. Chem. 1996, 271, 18789–18796. [Google Scholar] [CrossRef] [PubMed]
- Strahs, D.; Weinstein, H. Comparative modeling and molecular dynamics studies of the delta, kappa and mu opioid receptors. Protein Eng. 1997, 10, 1019–1038. [Google Scholar] [CrossRef] [PubMed]
- Decaillot, F.M.; Befort, K.; Filliol, D.; Yue, S.; Walker, P.; Kieffer, B.L. Opioid receptor random mutagenesis reveals a mechanism for G protein-coupled receptor activation. Nat. Struct. Biol. 2003, 10, 629–636. [Google Scholar] [CrossRef] [PubMed]
- Granier, S.; Manglik, A.; Kruse, A.C.; Kobilka, T.S.; Thian, F.S.; Weis, W.I.; Kobilka, B.K. Structure of the delta-opioid receptor bound to naltrindole. Nature 2012, 485, 400–404. [Google Scholar] [CrossRef] [PubMed]
- Fenalti, G.; Giguere, P.M.; Katritch, V.; Huang, X.P.; Thompson, A.A.; Cherezov, V.; Roth, B.L.; Stevens, R.C. Molecular control of delta-opioid receptor signalling. Nature 2014, 506, 191–196. [Google Scholar] [CrossRef]
- Chavkin, C.; Goldstein, A. Specific receptor for the opioid peptide dynorphin: Structure—Activity relationships. Proc. Natl. Acad. Sci. USA 1981, 78, 6543–6547. [Google Scholar] [CrossRef]
- Fenalti, G.; Zatsepin, N.A.; Betti, C.; Giguere, P.; Han, G.W.; Ishchenko, A.; Liu, W.; Guillemyn, K.; Zhang, H.; James, D.; et al. Structural basis for bifunctional peptide recognition at human delta-opioid receptor. Nat. Struct. Mol. Biol. 2015, 22, 265–268. [Google Scholar] [CrossRef]
- Varga, E.V.; Li, X.; Stropova, D.; Zalewska, T.; Landsman, R.S.; Knapp, R.J.; Malatynska, E.; Kawai, K.; Mizusura, A.; Nagase, H.; et al. The third extracellular loop of the human delta-opioid receptor determines the selectivity of delta-opioid agonists. Mol. Pharmacol. 1996, 50, 1619–1624. [Google Scholar]
- Claff, T.; Yu, J.; Blais, V.; Patel, N.; Martin, C.; Wu, L.; Han, G.W.; Holleran, B.J.; Van der Poorten, O.; White, K.L.; et al. Elucidating the active delta-opioid receptor crystal structure with peptide and small-molecule agonists. Sci. Adv. 2019, 5, eaax9115. [Google Scholar] [CrossRef]
- Kooistra, A.J.; Mordalski, S.; Pandy-Szekeres, G.; Esguerra, M.; Mamyrbekov, A.; Munk, C.; Keseru, G.M.; Gloriam, D.E. GPCRdb in 2021: Integrating GPCR sequence, structure and function. Nucleic Acids Res. 2021, 49, D335–D343. [Google Scholar] [CrossRef]
- Munk, C.; Harpsoe, K.; Hauser, A.S.; Isberg, V.; Gloriam, D.E. Integrating structural and mutagenesis data to elucidate GPCR ligand binding. Curr. Opin. Pharmacol. 2016, 30, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Danev, R.; Belousoff, M.; Liang, Y.L.; Zhang, X.; Eisenstein, F.; Wootten, D.; Sexton, P.M. Routine sub-2.5 A cryo-EM structure determination of GPCRs. Nat. Commun. 2021, 12, 4333. [Google Scholar] [CrossRef] [PubMed]
- Draper-Joyce, C.J.; Khoshouei, M.; Thal, D.M.; Liang, Y.L.; Nguyen, A.T.N.; Furness, S.G.B.; Venugopal, H.; Baltos, J.A.; Plitzko, J.M.; Danev, R.; et al. Structure of the adenosine-bound human adenosine A1 receptor-Gi complex. Nature 2018, 558, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Che, T.; Majumdar, S.; Zaidi, S.A.; Ondachi, P.; McCorvy, J.D.; Wang, S.; Mosier, P.D.; Uprety, R.; Vardy, E.; Krumm, B.E.; et al. Structure of the Nanobody-Stabilized Active State of the Kappa Opioid Receptor. Cell 2018, 172, 55–67.e15. [Google Scholar] [CrossRef]
- Koehl, A.; Hu, H.; Maeda, S.; Zhang, Y.; Qu, Q.; Paggi, J.M.; Latorraca, N.R.; Hilger, D.; Dawson, R.; Matile, H.; et al. Structure of the micro-opioid receptor-Gi protein complex. Nature 2018, 558, 547–552. [Google Scholar] [CrossRef]
- Gmeiner, P.; Wang, H.; Hetzer, F.; Huang, W.; Qu, Q.; Meyerowitz, J.; Kaindl, J.; Hubner, H.; Skiniotis, G.; Kobilka, B.K. Structure-based Evolution of G protein-biased mu-opioid Receptor Agonists. Angew. Chem. Int. Ed. Engl. 2022, 61, e202200269. [Google Scholar]
- Mafi, A.; Kim, S.K.; Goddard, W.A., 3rd. The atomistic level structure for the activated human kappa-opioid receptor bound to the full Gi protein and the MP1104 agonist. Proc. Natl. Acad. Sci. USA 2020, 117, 5836–5843. [Google Scholar] [CrossRef]
- Manglik, A.; Lin, H.; Aryal, D.K.; McCorvy, J.D.; Dengler, D.; Corder, G.; Levit, A.; Kling, R.C.; Bernat, V.; Hubner, H.; et al. Structure-based discovery of opioid analgesics with reduced side effects. Nature 2016, 537, 185–190. [Google Scholar] [CrossRef]
- Lyu, J.; Wang, S.; Balius, T.E.; Singh, I.; Levit, A.; Moroz, Y.S.; O’Meara, M.J.; Che, T.; Algaa, E.; Tolmachova, K.; et al. Ultra-large library docking for discovering new chemotypes. Nature 2019, 566, 224–229. [Google Scholar] [CrossRef]
- Stein, R.M.; Kang, H.J.; McCorvy, J.D.; Glatfelter, G.C.; Jones, A.J.; Che, T.; Slocum, S.; Huang, X.P.; Savych, O.; Moroz, Y.S.; et al. Virtual discovery of melatonin receptor ligands to modulate circadian rhythms. Nature 2020, 579, 609–614. [Google Scholar] [CrossRef]
- Irwin, J.J.; Shoichet, B.K. ZINC--a free database of commercially available compounds for virtual screening. J. Chem Inf Model. 2005, 45, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Sterling, T.; Irwin, J.J. ZINC 15--Ligand Discovery for Everyone. J. Chem. Inf. Model. 2015, 55, 2324–2337. [Google Scholar] [CrossRef] [PubMed]
- Irwin, J.J.; Tang, K.G.; Young, J.; Dandarchuluun, C.; Wong, B.R.; Khurelbaatar, M.; Moroz, Y.S.; Mayfield, J.; Sayle, R.A. ZINC20-A Free Ultralarge-Scale Chemical Database for Ligand Discovery. J. Chem. Inf. Model. 2020, 60, 6065–6073. [Google Scholar] [CrossRef]
- Sadybekov, A.A.; Sadybekov, A.V.; Liu, Y.; Iliopoulos-Tsoutsouvas, C.; Huang, X.P.; Pickett, J.; Houser, B.; Patel, N.; Tran, N.K.; Tong, F.; et al. Synthon-based ligand discovery in virtual libraries of over 11 billion compounds. Nature 2022, 601, 452–459. [Google Scholar] [CrossRef] [PubMed]
- Seyedabadi, M.; Gharghabi, M.; Gurevich, E.V.; Gurevich, V.V. Structural basis of GPCR coupling to distinct signal transducers: Implications for biased signaling. Trends Biochem. Sci. 2022, 47, 570–581. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Manglik, A.; Venkatakrishnan, A.J.; Laeremans, T.; Feinberg, E.N.; Sanborn, A.L.; Kato, H.E.; Livingston, K.E.; Thorsen, T.S.; Kling, R.C.; et al. Structural insights into micro-opioid receptor activation. Nature 2015, 524, 315–321. [Google Scholar] [CrossRef]
- Qu, Q.; Huang, W.; Aydin, D.; Paggi, J.M.; Seven, A.B.; Wang, H.; Chakraborty, S.; Che, T.; DiBerto, J.F.; Robertson, M.J.; et al. Structural insights into distinct signaling profiles of the μOR activated by diverse agonists. bioRxiv 2021. [Google Scholar] [CrossRef]
- Uprety, R.; Che, T.; Zaidi, S.A.; Grinnell, S.G.; Varga, B.R.; Faouzi, A.; Slocum, S.T.; Allaoa, A.; Varadi, A.; Nelson, M.; et al. Controlling opioid receptor functional selectivity by targeting distinct subpockets of the orthosteric site. Elife 2021, 10, e56519. [Google Scholar] [CrossRef]
- de Waal, P.W.; Shi, J.; You, E.; Wang, X.; Melcher, K.; Jiang, Y.; Xu, H.E.; Dickson, B.M. Molecular mechanisms of fentanyl mediated beta-arrestin biased signaling. PLoS Comput. Biol. 2020, 16, e1007394. [Google Scholar] [CrossRef]
- Pandy-Szekeres, G.; Esguerra, M.; Hauser, A.S.; Caroli, J.; Munk, C.; Pilger, S.; Keseru, G.M.; Kooistra, A.J.; Gloriam, D.E. The G protein database, GproteinDb. Nucleic Acids Res. 2022, 50, D518–D525. [Google Scholar] [CrossRef]
- Minnich, A.J.; McLoughlin, K.; Tse, M.; Deng, J.; Weber, A.; Murad, N.; Madej, B.D.; Ramsundar, B.; Rush, T.; Calad-Thomson, S.; et al. AMPL: A Data-Driven Modeling Pipeline for Drug Discovery. J. Chem. Inf. Model. 2020, 60, 1955–1968. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Zidek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Callaway, E. What’s next for AlphaFold and the AI protein-folding revolution. Nature 2022, 604, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Unke, O.T.; Chmiela, S.; Sauceda, H.E.; Gastegger, M.; Poltavsky, I.; Schutt, K.T.; Tkatchenko, A.; Muller, K.R. Machine Learning Force Fields. Chem Rev. 2021, 121, 10142–10186. [Google Scholar] [CrossRef]
- Doerr, S.; Majewski, M.; Perez, A.; Kramer, A.; Clementi, C.; Noe, F.; Giorgino, T.; De Fabritiis, G. TorchMD: A Deep Learning Framework for Molecular Simulations. J. Chem. Theory Comput. 2021, 17, 2355–2363. [Google Scholar] [CrossRef]
- Yang, Y.; Jimenez-Negron, O.A.; Kitchin, J.R. Machine-learning accelerated geometry optimization in molecular simulation. J. Chem. Phys. 2021, 154, 234704. [Google Scholar] [CrossRef]
- Fonseca, G.; Poltavsky, I.; Vassilev-Galindo, V.; Tkatchenko, A. Improving molecular force fields across configurational space by combining supervised and unsupervised machine learning. J. Chem. Phys. 2021, 154, 124102. [Google Scholar] [CrossRef]
- Guedes, I.A.; Pereira, F.S.S.; Dardenne, L.E. Empirical Scoring Functions for Structure-Based Virtual Screening: Applications, Critical Aspects, and Challenges. Front. Pharmacol. 2018, 9, 1089. [Google Scholar] [CrossRef]
- Jiménez-Luna, J.; Grisoni, F.; Schneider, G. Drug discovery with explainable artificial intelligence. Nat. Mach. Intell. 2020, 2, 573–584. [Google Scholar] [CrossRef]
Structure | Auxiliary Protein | Structure Ligand | |||||||
---|---|---|---|---|---|---|---|---|---|
Method | PDB | Resolution | State | Degree Active (%) | % of Seq | Fusion | Name | Type | Function |
X-ray | 6PT2 | 2.8 | Active | 76 | 78 | BRIL | KGCHM07 | peptide | Agonist |
X-ray | 6PT3 | 3.3 | Active | 76 | 78 | BRIL | DPI-287 | small-molecule | Agonist |
X-ray * | 4RWD | 2.7 | Inactive | 7 | 79 | BRIL | DIPP-NH2 | peptide | Antagonist |
X-ray | 4RWA | 3.3 | Inactive | 7 | 77 | BRIL | DIPP-NH2 | peptide | Antagonist |
X-ray | 4N6H | 1.8 | Inactive | 7 | 81 | BRIL | Naltrindole | small-molecule | Antagonist |
X-ray | 4EJ4 | 3.4 | Inactive | 7 | 76 | T4-Lysozyme | Naltrindole | small-molecule | Antagonist |
Agonist | Antagonist | ||||||||
---|---|---|---|---|---|---|---|---|---|
6PT2 | 6PT3 | 4RWD | 4RWA | 4N6H | 4EJ4 | ||||
Amino Acid | Sequence Number | Generic Number | Segment | KGCHM07 | DPI-287 | DIPP-NH2 | Naltrindole | ||
A | 98 | 2.53 | TM2 | ||||||
L | 125 | 3.29 | TM3 | ||||||
D | 128 | 3.32 | TM3 | ||||||
Y | 129 | 3.33 | TM3 | ||||||
M | 132 | 3.36 | TM3 | ||||||
M | 199 | ECL2 | ECL2 | ||||||
L | 200 | ECL2 | ECL2 | ||||||
D | 210 | 5.35 | TM5 | ||||||
K | 214 | 5.39 | TM5 | ||||||
V | 217 | 5.42 | TM5 | ||||||
W | 274 | 6.48 | TM6 | ||||||
I | 277 | 6.51 | TM6 | ||||||
H | 278 | 6.52 | TM6 | ||||||
V | 281 | 6.55 | TM6 | ||||||
W | 284 | 6.58 | TM6 | ||||||
R | 291 | ECL3 | ECL3 | ||||||
L | 300 | 7.35 | TM7 | ||||||
I | 304 | 7.39 | TM7 | ||||||
Y | 308 | 7.43 | TM7 | ||||||
Color legend: | Hydrophobic | Aromatic (face to edge) | Aromatic (face to face) | Accessible | |||||
polar (charge-assisted hydrogen bond) | polar (charge-charge) | polar (hydrogen bond) | polar (hydrogen bond with backbone) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meqbil, Y.J.; van Rijn, R.M. Opportunities and Challenges for In Silico Drug Discovery at Delta Opioid Receptors. Pharmaceuticals 2022, 15, 873. https://doi.org/10.3390/ph15070873
Meqbil YJ, van Rijn RM. Opportunities and Challenges for In Silico Drug Discovery at Delta Opioid Receptors. Pharmaceuticals. 2022; 15(7):873. https://doi.org/10.3390/ph15070873
Chicago/Turabian StyleMeqbil, Yazan J., and Richard M. van Rijn. 2022. "Opportunities and Challenges for In Silico Drug Discovery at Delta Opioid Receptors" Pharmaceuticals 15, no. 7: 873. https://doi.org/10.3390/ph15070873
APA StyleMeqbil, Y. J., & van Rijn, R. M. (2022). Opportunities and Challenges for In Silico Drug Discovery at Delta Opioid Receptors. Pharmaceuticals, 15(7), 873. https://doi.org/10.3390/ph15070873