Digital Pills with Ingestible Sensors: Patent Landscape Analysis
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Global Strategy on Digital Health 2020–2025; World Health Organization: Geneva, Switzerland, 2021.
- Knights, J.; Heidary, Z.; Cochran, J.M. Detection of Behavioral Anomalies in Medication Adherence Patterns Among Patients With Serious Mental Illness Engaged With a Digital Medicine System. JMIR Ment. Health 2020, 7, e21378. [Google Scholar] [CrossRef]
- Chai, P.R.; Carreiro, S.; Innes, B.J.; Rosen, R.K.; O’Cleirigh, C.; Mayer, K.H.; Boyer, E.W. Digital Pills to Measure Opioid Ingestion Patterns in Emergency Department Patients With Acute Fracture Pain: A Pilot Study. J. Med. Internet Res. 2017, 19, e19. [Google Scholar] [CrossRef] [PubMed]
- Chai, P.R.; Vaz, C.; Goodman, G.R.; Albrechta, H.; Huang, H.; Rosen, R.K.; Boyer, E.W.; Mayer, K.H.; O’Cleirigh, C. Ingestible electronic sensors to measure instantaneous medication adherence: A narrative review. Digit. Health 2022, 8, 205520762210831. [Google Scholar] [CrossRef] [PubMed]
- Cutler, R.L.; Fernandez-Llimos, F.; Frommer, M.; Benrimoj, C.; Garcia-Cardenas, V. Economic impact of medication non-adherence by disease groups: A systematic review. BMJ Open 2018, 8, e016982. [Google Scholar] [CrossRef] [PubMed]
- Martani, A.; Geneviève, L.D.; Poppe, C.; Casonato, C.; Wangmo, T. Digital pills: A scoping review of the empirical literature and analysis of the ethical aspects. BMC Med. Ethics 2020, 21, 3. [Google Scholar] [CrossRef] [PubMed]
- Alipour, A.; Gabrielson, S.; Patel, P.B. Ingestible Sensors and Medication Adherence: Focus on Use in Serious Mental Illness. Pharmacy 2020, 8, 103. [Google Scholar] [CrossRef] [PubMed]
- Digital Health Trends 2021. Innovation, Evidence, Regulation, and Adoption; IQVIA Institute for Human Data Science: Durham, NC, USA, 2021.
- Flore, J. Ingestible sensors, data, and pharmaceuticals: Subjectivity in the era of digital mental health. New Media Soc. 2021, 23, 2034–2051. [Google Scholar] [CrossRef]
- Shaun, J.; Tetsuro, K.; Katsura, T.; Tsuyoshi, H.; Yasufumi, U. 5-HT1a Receptor Subtype Agonist. U.S. Patent 7,053,092 B2, 30 May 2006. [Google Scholar]
- Mark, Z.; Timothy, R.; Aleksandr, P.; Hooman, H. Communication System with Partial Power Source. U.S. Patent 7,978,064 B2, 12 July 2011. [Google Scholar]
- Takuji, B.; Satoshi, A.; Junichi, K.; Makoto, I.; Youichi, T.; Tsuyoshi, Y.; Kiyoshi, F.; Yoshihiro, N.; Noriyuki, K.; Tsutomu, F.; et al. Low Hygroscopic Aripiprazole Drug Substance and Processes for the Preparation Thereof. U.S. Patent 8,017,615 B2, 13 September 2011. [Google Scholar]
- Timothy, R.; Fataneh, O.; Yashar, B.; Lawrence, A.; Kenneth, R.; James, H.; Robert, L.; George, S.; Andrew, T.; Mark, Z.; et al. Body-Associated Receiver and Method. U.S. Patent 8,114,021 B2, 14 February 2012. [Google Scholar]
- Robertson, T.; Zdeblick, M.J. Multi-Mode Communication Ingestible Event Markers and Systems, and Methods of Using the Same. U.S. Patent 8,258,962 B2, 4 September 2012. [Google Scholar]
- Hooman, H.; Kityee, A.-Y.; Robert, D.; Maria, H.; Timothy, R.; Benedict, C. Highly Reliable Ingestible Event Markers and Methods for Using the Same. U.S. Patent 8,545,402 B2, 1 October 2013. [Google Scholar]
- Mark, Z.; Timothy, R. Implantable Zero-Wire Communications System. U.S. Patent 8,547,248 B2, 1 October 2013. [Google Scholar]
- Takuji, B.; Satoshi, A.; Junichi, K.; Makoto, I.; Youichi, T.; Tsuyoshi, Y.; Kiyoshi, F.; Yoshihiro, N.; Noriyuki, K.; Tsutomu, F.; et al. Low Hygroscopic Aripiprazole Drug Substance and Processes for the Preparation Thereof. U.S. Patent 8,580,796 B2, 12 November 2013. [Google Scholar]
- Takuji, B.; Satoshi, A.; Junichi, K.; Makoto, I.; Youichi, T.; Tsuyoshi, Y.; Kiyoshi, F.; Yoshihiro, N.; Noriyuki, K.; Tsutomu, F.; et al. Low Hygroscopic Aripiprazole Drug Substance and Processes for the Preparation Thereof. U.S. Patent 8,642,760 B2, 4 February 2014. [Google Scholar]
- Mark, Z.; Andrew, T.; Aleksandr, P.; Timothy, R. Pharma-Informatics System. U.S. Patent 8,674,825 B2, 4 February 2014. [Google Scholar]
- Lawrence, A.; Kityee, A.-Y.; Kenneth, C.; Timothy, R. Active Signal Processing Personal Health Signal Receivers. U.S. Patent 8,718,193 B2, 6 May 2014. [Google Scholar]
- Tetsuro, K.; Taro, I.; Tsuyoshi, H. Carbostyril Derivatives and Serotonin Reuptake Inhibitors for Treatment of Mood Disorders. U.S. Patent 8,759,350 B2, 24 June 2014. [Google Scholar]
- Mark, Z.; Andrew, T.; Aleksandr, P.; Timothy, R.; Hooman, H. Pharma-Informatics System. U.S. Patent 8,847,766 B2, 30 September 2014. [Google Scholar]
- Hooman, H.; Timothy, R.; Olivier, C.; Mark, Z. Controlled Activation Ingestible Identifier. U.S. Patent 8,945,005 B2, 3 February 2015. [Google Scholar]
- Hooman, H.; Timothy, R.; Eric, S.; Brad, C. In-Body Power Source Having High Surface Area Electrode. U.S. Patent 8,956,288 B2, 17 February 2015. [Google Scholar]
- Hooman, H.; James, C.B.; Timothy, R.; Maria, C.H. In-Body Device with Virtual Dipole Signal Amplification. U.S. Patent 8,961,412 B2, 24 February 2015. [Google Scholar]
- Timothy, R.; Mark, Z. Multi-Mode Communication Ingestible Event Markers and Systems, and Methods of Using the Same. U.S. Patent 9,060,708 B2, 23 June 2015. [Google Scholar]
- Shaun, J.; Tetsuro, K.; Katsura, T.; Tsuyoshi, H.; Yasufumi, U. Method of Treating Cognitive Impairments and Schizophrenias. U.S. Patent 9,089,567 B2, 28 July 2015. [Google Scholar]
- Mark, Z.; Aleksandr, P.; Timothy, R.; Hooman, H. Pharma-Informatics System. U.S. Patent 9,119,554 B2, 1 September 2015. [Google Scholar]
- Tetsuro, K.; Taro, I.; Tsuyoshi, H. Carbostyril Derivatives and Mood Stabilizers for Treating Mood Disorders. U.S. Patent 9,125,939 B2, 8 September 2015. [Google Scholar]
- Timothy, R.; Fataneh, O.; Yashar, B.; Lawrence, A.; Kenneth, R.; James, H.; Robert, L.; George, S.; Andrew, T.; Mark, Z.; et al. Body-Associated Receiver and Method. U.S. Patent 9,149,577 B2, 6 October 2015. [Google Scholar]
- Timothy, R.; Mark, Z. Multi-Mode Communication Ingestible Event Markers and Systems, and Methods of Using the Same. U.S. Patent 9,258,035 B2, 9 February 2016. [Google Scholar]
- Nilay, J.; Douglas, W.; Jonathan, W.; Jeffrey, B.; Haifeng, L. Apparatus, System, and Method to Adaptively Optimize Power Dissipation and Broadcast Power in a Power Source for a Communication Device. U.S. Patent 9,268,909 B2, 23 February 2016. [Google Scholar]
- Hooman, H.; Kityee, A.-Y.; Robert, D.; Casillas, H.M.; Timothy, R.; James, C.B. Highly Reliable Ingestible Event Markers and Methods for Using the Same. U.S. Patent 9,320,455 B2, 26 April 2016. [Google Scholar]
- Takuji, B.; Satoshi, A.; Junichi, K.; Makoto, I.; Youichi, T.; Tsuyoshi, Y.; Kiyoshi, F.; Yoshihiro, N.; Noriyuki, K.; Tsutomu, F.; et al. Low Hygroscopic Aripiprazole Drug Substance and Processes for the Preparation Thereof. U.S. Patent 9,359,302 B2, 7 June 2016. [Google Scholar]
- Tetsuro, K.; Taro, I.; Tsuyoshi, H. Carbostyril Derivatives and Serotonin Reuptake Inhibitors for Treatment of Mood disorders. U.S. Patent 9,387,182 B2, 12 July 2016. [Google Scholar]
- Hooman, H.; Benedict, C.; Timothy, R.; Casillas, H.M. In-Body Device with Virtual Dipole Signal Amplification. U.S. Patent 9,433,371 B2, 9 September 2016. [Google Scholar]
- Lawrence, A.; Yee, A.-Y.K.; Kenneth, C.; Timothy, R. Active Signal Processing Personal Health Signal Receivers. U.S. Patent 9,444,503 B2, 13 September 2016. [Google Scholar]
- Mark, Z. System for Supply Chain Management. U.S. Patent 9,941,931 B2, 10 April 2018. [Google Scholar]
- Timothy, R.; George, S.; Mark, Z.; Yashar, B.; Benedict, C.; Jeremy, F.; Hooman, H.; Tariq, H.; David, O. Ingestible Event Marker Systems. U.S. Patent 10,441,194 B2, 15 October 2019. [Google Scholar]
- Jeremy, F.; Peter, B.; Hooman, H.; Robert, A.; Robert, D.; Iliya, P.; Benedict, C.; Eric, S. Communication System with Enhanced Partial Power Source and Method of Manufacturing Same. U.S. Patent 10,517,507 B2, 31 December 2019. [Google Scholar]
- Jeremy, F.; Peter, B.; Hooman, H.; Robert, A.; Robert, D.; Iliya, P.; Benedict, C.; Eric, S. Communication System with Enhanced Partial Power Source and Method of Manufacturing Same. U.S. Patent 11,229,378 B2, 25 January 2022. [Google Scholar]
- From Big Deals to Bankruptcy, a Digital Health Unicorn Falls Short. Here’s What Other Startups Can Learn from Proteus. Available online: https://www.fiercehealthcare.com/tech/from-billions-to-bankruptcy-proteus-digital-health-fell-short-its-promise-here-s-what-other (accessed on 4 July 2022).
- Velligan, D.I.; Sajatovic, M.; Hatch, A.; Kramata, P.; Docherty, J. Why do psychiatric patients stop antipsychotic medication? A systematic review of reasons for nonadherence to medication in patients with serious mental illness. Patient Prefer. Adherence 2017, 11, 449–468. [Google Scholar] [CrossRef]
- Kane, J.M.; Perlis, R.H.; DiCarlo, L.A.; Au-Yeung, K.; Duong, J.; Petrides, G. First experience with a wireless system incorporating physiologic assessments and direct confirmation of digital tablet ingestions in ambulatory patients with schizophrenia or bipolar disorder. J. Clin. Psychiatry 2013, 74, e533–e540. [Google Scholar] [CrossRef]
- Fowler, J.C.; Cope, N.; Knights, J.; Phiri, P.; Makin, A.; Peters-Strickland, T.; Rathod, S. Hummingbird Study: A study protocol for a multicentre exploratory trial to assess the acceptance and performance of a digital medicine system in adults with schizophrenia, schizoaffective disorder or first-episode psychosis. BMJ Open 2019, 9, e025952. [Google Scholar] [CrossRef]
- Rohatagi, S.; Profit, D.; Hatch, A.; Zhao, C.; Docherty, J.P.; Peters-Strickland, T.S. Optimization of a Digital Medicine System in Psychiatry. J. Clin. Psychiatry 2016, 77, e1101–e1107. [Google Scholar] [CrossRef] [PubMed]
- Delpech, V. The HIV epidemic: Global and United Kingdom trends. Medicine 2022, 50, 202–204. [Google Scholar] [CrossRef] [PubMed]
- Measuring and Monitoring Adherence to ART with Pill Ingestible Sensor System. ClinicalTrials.gov Identifier: NCT02797262. Updated 20 December 2021. Available online: https://clinicaltrials.gov/ct2/show/results/NCT02797262?term=NCT02797262&draw=2&rank=1 (accessed on 4 July 2022).
- Feasibility of an Ingestible Sensor System to Measure PrEP Adherence in YMSM. ClinicalTrials.gov Identifier: NCT02891720. Updated 7 September 2016. Available online: https://clinicaltrials.gov/ct2/show/NCT02891720?term=NCT02891720&draw=2&rank=1 (accessed on 4 July 2022).
- DHFS for Medication Adherence Support During Hospital Admissions for Person Living with HIV. ClinicalTrials.gov Identifier: NCT04418037. Updated 25 August 2021. Available online: https://clinicaltrials.gov/ct2/show/NCT04418037?term=NCT04418037&draw=2&rank=1 (accessed on 4 July 2022).
- Digital Health Feedback System (DHFS) for Longitudinal Monitoring of ARVs Used in HIV Pre-Exposure Prophylaxis (PrEP). ClinicalTrials.gov Identifier: NCT03693040. Updated 25 August 2021. Available online: https://clinicaltrials.gov/ct2/show/NCT03693040?term=NCT03693040&draw=2&rank=1 (accessed on 4 July 2022).
- Euliano Neil, R.; Myers Brent, A.; Principe Jose, C.; Meka Venkata, V.; Flores, G. Electronic Medication Compliance Monitoring System and Associated Methods. U.S. Patent 9,743,880 B1, 29 August 2017. [Google Scholar]
- Quantification of Tenofovir Alafenamide Adherence (QUANTI-TAF). ClinicalTrials.gov Identifier: NCT04065347. Updated 25 April 2022. Available online: https://clinicaltrials.gov/ct2/show/NCT04065347?term=NCT04065347&draw=2&rank=1 (accessed on 4 July 2022).
- Chai, P.R.; Goodman, G.R.; Bronzi, O.; Gonzales, G.; Baez, A.; Bustamante, M.J.; Najarro, J.; Mohamed, Y.; Sullivan, M.C.; Mayer, K.H.; et al. Real-World User Experiences with a Digital Pill System to Measure PrEP Adherence: Perspectives from MSM with Substance Use. AIDS Behav. 2022, 26, 2459–2468. [Google Scholar] [CrossRef]
- Mills, S.E.E.; Nicolson, K.P.; Smith, B.H. Chronic pain: A review of its epidemiology and associated factors in population-based studies. Br. J. Anaesth. 2019, 123, e273–e283. [Google Scholar] [CrossRef]
- Sippy, B.C. Ingestible Product and a Method of Using the Same. U.S. Patent 20210244672 A1, 28 April 2021. [Google Scholar]
- S1916 Digital Medicine Program for Pain Control in Cancer Patients. ClinicalTrials.gov identifier: NCT04194528. Updated 10 December 2021. Available online: https://clinicaltrials.gov/ct2/show/NCT04194528?term=NCT04194528&draw=2&rank=1 (accessed on 4 July 2022).
- Pless Benjamin, D.; Bacher, D. Opioid Overdose Rescue Device. CA Patent 3149412 A1, 4 March 2021. [Google Scholar]
- Brouwers, S.; Sudano, I.; Kokubo, Y.; Sulaica, E.M. Arterial hypertension. Lancet 2021, 398, 249–261. [Google Scholar] [CrossRef]
- Godbehere, P.; Wareing, P. Hypertension assessment and management: Role for digital medicine. J. Clin. Hypertens. 2014, 16, 235. [Google Scholar] [CrossRef]
- Kurt, S.; Nikhil, P.; Chris, D.; Ling, C.A.; Dawn, A. Lisinopril Compositions with an Ingestible Event Marker. WO Patent 2018200691 A3, 3 January 2018. [Google Scholar]
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef]
- Frias, J.; Virdi, N.; Raja, P.; Kim, Y.; Savage, G.; Osterberg, L. Effectiveness of Digital Medicines to Improve Clinical Outcomes in Patients with Uncontrolled Hypertension and Type 2 Diabetes: Prospective, Open-Label, Cluster-Randomized Pilot Clinical Trial. J. Med. Internet Res. 2017, 19, e246. [Google Scholar] [CrossRef]
- Mir, I. Therapeutic Agent Preparations for Delivery into a Lumen of the Intestinal Tract Using a Swallowable Drug Delivery Device. CA Patent 2840617 C, 24 March 2020. [Google Scholar]
- Albrecht, L.-W. Ingestible Device for Measuring Glucose Concentration. EP Patent 3108810 A1, 28 December 2016. [Google Scholar]
- Kalantar-zadeh, K.; Ha, N.; Ou, J.Z.; Berean, K.J. Ingestible Sensors. ACS Sens. 2017, 2, 468–483. [Google Scholar] [CrossRef]
- Lawrence, J.M.; Sharat, S.; Loren, W.C.; Harry, S. Treatment of a Disease of the Gastrointestinal Tract with an Immunosuppressant. WO Patent 2018112255 A1, 21 June 2018. [Google Scholar]
- Lawrence, J.M.; Sharat, S.; Loren, W.C.; Harry, S. Treatment of a Disease of the Gastrointestinal Tract with a TNF Inhibitor. WO Patent 2018112240 A1, 21 June 2018. [Google Scholar]
- Lawrence, J.M.; Sharat, S.; Loren, W.C.; Harry, S. Treatment of a Disease of the Gastrointestinal Tract with an IL-6R Inhibitor. WO Patent 2018/112237 A1, 21 June 2018. [Google Scholar]
- Lawrence, J.M.; Sharat, S.; Loren, W.C.; Harry, S. Treatment of a Disease of the Gastrointestinal Tract with an Il-12/Il-23 Inhibitor Released Using an Ingestible Device. WO Patent 2018112232 A1, 21 June 2018. [Google Scholar]
- Lawrence, J.M.; Sharat, S.; Loren, W.C.; Harry, S. Methods and Ingestible Devices for the Regio-Specific Release of IL-1 Inhibitors at the Site of Gastrointestinal Tract Disease. WO Patent 2018111329 A1, 21 June 2018. [Google Scholar]
- Lawrence, J.M.; Alain, L.; Sasha, D.M.; Terry, P.M.C. Electromechanical Pill Device with Localization Capabilities. EP Patent 3197336 B1, 23 December 2020. [Google Scholar]
- Akio, U.; Hironobu, T.; Hidetake, S.; Hironao, K. Capsule Medication Administration System, Medication Administration Method Using Capsule Medication Administration System, Control Method for Capsule Medication administration System. U.S. Patent 8,021,356 B2, 20 September 2011. [Google Scholar]
- Semler, J.R. Method of Locating an Ingested Capsule. U.S. Patent 20120209083 A1, 16 August 2012. [Google Scholar]
- Lynch, S.M.; Wu, G.Y. Hepatitis C Virus: A Review of Treatment Guidelines, Cost-effectiveness, and Access to Therapy. J. Clin. Transl. Hepatol. 2016, 4, 310–319. [Google Scholar] [CrossRef]
- Digimeds to Optimize Adherence in Patients with Hepatitis C and Increased Risk for Nonadherence. ClinicalTrials.gov Identifier: NCT03164902. Updated 13 December 2018. Available online: https://www.clinicaltrials.gov/ct2/show/NCT03164902?term=NCT03164902&draw=2&rank=1 (accessed on 4 July 2022).
- Desai, A.; Gyawali, B. Financial toxicity of cancer treatment: Moving the discussion from acknowledgement of the problem to identifying solutions. EClinicalMedicine 2020, 20, 100269. [Google Scholar] [CrossRef]
- A Digimed Oncology PharmacoTherapy Registry (ADOPTR). ClinicalTrials.gov Identifier: NCT04088955. Updated 11 March 2020. Available online: https://www.clinicaltrials.gov/ct2/show/NCT04088955?term=NCT04088955&draw=2&rank=1 (accessed on 4 July 2022).
- Singh Dewhare, S. Drug resistant tuberculosis: Current scenario and impending challenges. Indian J. Tuberc. 2022, 69, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Browne, S.H.; Umlauf, A.; Tucker, A.J.; Low, J.; Moser, K.; Gonzalez Garcia, J.; Peloquin, C.A.; Blaschke, T.; Vaida, F.; Benson, C.A. Wirelessly observed therapy compared to directly observed therapy to confirm and support tuberculosis treatment adherence: A randomized controlled trial. PLoS Med. 2019, 16, e1002891. [Google Scholar] [CrossRef] [PubMed]
- Hussain, T.; Nassetta, K.; O’Dwyer, L.C.; Wilcox, J.E.; Badawy, S.M. Adherence to immunosuppression in adult heart transplant recipients: A systematic review. Transplant. Rev. 2021, 35, 100651. [Google Scholar] [CrossRef]
- Gandolfini, I.; Palmisano, A.; Fiaccadori, E.; Cravedi, P.; Maggiore, U. Detecting, preventing and treating non-adherence to immunosuppression after kidney transplantation. Clin. Kidney J. 2022, 15, 1253–1274. [Google Scholar] [CrossRef] [PubMed]
- Eisenberger, U.; Wüthrich, R.P.; Bock, A.; Ambühl, P.; Steiger, J.; Intondi, A.; Kuranoff, S.; Maier, T.; Green, D.; DiCarlo, L.; et al. Medication adherence assessment: High accuracy of the new Ingestible Sensor System in kidney transplants. Transplantation 2013, 96, 245–250. [Google Scholar] [CrossRef]
US Patent No. | Patent Expiration | The Title of the Invention, the Owners |
---|---|---|
7053092 | 28/01/2022 | 5HT1a Receptor subtype agonist [10] Otsuka Pharmaceutical Co., Ltd. (Tokyo, Japan) |
7978064 | 14/09/2026 | Communication system with partial power source [11] Proteus Biomedical, Inc. (Redwood City, CA, USA) |
8017615 | 16/06/2024 | Low hygroscopic aripiprazole drug substance and processes for the preparation thereof [12] Otsuka Pharmaceutical Co., Ltd. (Tokyo, Japan) |
8114021 | 21/06/2030 | Body-associated receiver and method [13] Proteus Biomedical, Inc. (Redwood City, CA, USA) |
8258962 | 25/11/2030 | Multi-mode communication ingestible event markers and systems, and methods of using the same [14] Proteus Biomedical, Inc. (Redwood City, CA, USA) |
8545402 | 27/04/2030 | Highly reliable ingestible event markers and methods for using the same [15] Proteus Digital Health, Inc. (Redwood City, CA, USA) |
8547248 | 18/12/2030 | Implantable zero-wire communications system [16] Proteus Digital Health, Inc. (Redwood City, CA, USA) |
8580796 | 25/09/2022 | Low hygroscopic aripiprazole drug substance and processes for the preparation thereof [17] Otsuka Pharmaceutical Co., Ltd. (Tokyo, Japan) |
8642760 | 25/09/2022 | Low hygroscopic aripiprazole drug substance and processes for the preparation thereof [18] Otsuka Pharmaceutical Co., Ltd. (Tokyo, Japan) |
8674825 | 09/04/2029 | Pharma-informatics system [19] Proteus Digital Health, Inc. (Redwood City, CA, USA) |
8718193 | 05/12/2029 | Active signal processing personal health signal receivers [20] Proteus Digital Health, Inc. (Redwood City, CA, USA) |
8759350 | 02/03/2027 | Carbostyril derivatives and serotonin reuptake inhibitors for treatment of mood disorders [21] Otsuka Pharmaceutical Co., Ltd. (Tokyo, Japan) |
8847766 | 29/03/2030 | Pharma-informatics system [22] Proteus Digital Health, Inc. (Redwood City, CA, USA) |
8945005 | 19/08/2029 | Controlled activation ingestible identifier [23] Proteus Digital Health, Inc. (Redwood City, CA, USA) |
8956288 | 06/07/2029 | In-body power source having high surface area electrode [24] Proteus Digital Health, Inc. (Redwood City, CA, USA) |
8961412 | 17/11/2030 | In-body device with virtual dipole signal amplification [25] Proteus Digital Health, Inc. (Redwood City, CA, USA) |
9060708 | 05/03/2029 | Multi-mode communication ingestible event markers and systems, and methods of using the same [26] Proteus Digital Health, Inc. (Redwood City, CA, USA) |
9089567 | 28/01/2022 | Method of treating cognitive impairments and schizophrenias [27] Otsuka Pharmaceutical Co., Ltd. (Tokyo, Japan) |
9119554 | 16/12/2028 | Pharma-informatics system [28] Proteus Digital Health, Inc. (Redwood City, CA, USA) |
9125939 | 28/07/2026 | Carbostyril derivatives and mood stabilizers for treating mood disorders [29] Otsuka Pharmaceutical Co., Ltd. (Tokyo, Japan) |
9149577 | 15/12/2029 | Body-associated receiver and method [30] Proteus Digital Health, Inc. (Redwood City, CA, USA) |
9258035 | 05/03/2029 | Multi-mode communication ingestible event markers and systems, and methods of using the same [31] Proteus Digital Health, Inc. (Redwood City, CA, USA) |
9268909 | 15/10/2033 | Apparatus, system, and method to adaptively optimize power dissipation and broadcast power in a power source for a communication device [32] Proteus Digital Health, Inc. (Redwood City, CA, USA) |
9320455 | 15/12//2031 | Highly reliable ingestible event markers and methods for using the same [33] Proteus Digital Health, Inc. (Redwood City, CA, USA) |
9359302 | 25/09/2022 | Low hygroscopic aripiprazole drug substance and processes for the preparation thereof [34] Otsuka Pharmaceutical Co., Ltd. (Tokyo, Japan) |
9387182 | 25/12/2023 | Carbostyril derivatives and serotonin reuptake inhibitors for treatment of mood disorders [35] Otsuka Pharmaceutical Co., Ltd. (Tokyo, Japan) |
9433371 | 15/09/2029 | In-body device with virtual dipole signal amplification [36] Proteus Digital Health, Inc. (Redwood City, CA, USA) |
9444503 | 19/11/2027 | Active signal processing personal health signal receivers [37] Proteus Digital Health, Inc. (Redwood City, CA, USA) |
9941931 | 04/11/2030 | System for supply chain management [38] Proteus Digital Health, Inc. (Redwood City, CA, USA) |
10441194 | 26/07/2029 | Ingestible event marker systems [39] Proteus Digital Health, Inc. (Redwood City, CA, USA) |
10517507 | 13/06/2032 | Communication system with enhanced partial power source and method of manufacturing same [40] Proteus Digital Health, Inc. (Redwood City, CA, USA) |
11229378 | 11/07/2031 | Communication system with enhanced partial power source and method of manufacturing same [41] Otsuka Pharmaceutical Co., Ltd. (Tokyo, Japan) |
Code | Meaning |
---|---|
International Patent Classification | |
A61B5/00 | Measuring for diagnostic purposes radiation diagnosis by ultrasonic, sonic, or infrasonic waves. Identification of persons |
A61B5/07 | Endoradiosondes |
A61B5/145 | Measuring characteristics of blood in vivo, e.g., gas concentration, pH-value measuring of blood pressure or blood flow non-radiation detecting or locating of foreign bodies in blood |
A61K9/00 | Medicinal preparations characterized by special physical form |
Cooperative Patent Classification | |
A61B5/073 | Intestinal transmitters |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Litvinova, O.; Klager, E.; Tzvetkov, N.T.; Kimberger, O.; Kletecka-Pulker, M.; Willschke, H.; Atanasov, A.G. Digital Pills with Ingestible Sensors: Patent Landscape Analysis. Pharmaceuticals 2022, 15, 1025. https://doi.org/10.3390/ph15081025
Litvinova O, Klager E, Tzvetkov NT, Kimberger O, Kletecka-Pulker M, Willschke H, Atanasov AG. Digital Pills with Ingestible Sensors: Patent Landscape Analysis. Pharmaceuticals. 2022; 15(8):1025. https://doi.org/10.3390/ph15081025
Chicago/Turabian StyleLitvinova, Olena, Elisabeth Klager, Nikolay T. Tzvetkov, Oliver Kimberger, Maria Kletecka-Pulker, Harald Willschke, and Atanas G. Atanasov. 2022. "Digital Pills with Ingestible Sensors: Patent Landscape Analysis" Pharmaceuticals 15, no. 8: 1025. https://doi.org/10.3390/ph15081025
APA StyleLitvinova, O., Klager, E., Tzvetkov, N. T., Kimberger, O., Kletecka-Pulker, M., Willschke, H., & Atanasov, A. G. (2022). Digital Pills with Ingestible Sensors: Patent Landscape Analysis. Pharmaceuticals, 15(8), 1025. https://doi.org/10.3390/ph15081025