Evaluation of the Polyphenolic Composition and Bioactivities of Three Native Cabo Verde Medicinal Plants
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phenolic Compounds
2.2. Antioxidant Activity
2.3. Cytotoxic Activity
2.4. Anti-Inflammatory Activity
3. Materials and Methods
3.1. Extract Preparation
3.2. UPLC Analysis of Phenolic Compounds
3.3. Bioactive Properties
3.3.1. Antioxidant Activity
3.3.2. Cytotoxic Activity
3.3.3. Anti-Inflammatory Activity
3.4. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lezotre, P.-L. State of Play and Review of Major Cooperation Initiatives. In International Cooperation, Convergence and Harmonization of Pharmaceutical Regulations; Elsevier Inc.: Oxford, UK, 2014; pp. 7–170. ISBN 9780128000533. [Google Scholar]
- Howes, M.J.R.; Quave, C.L.; Collemare, J.; Tatsis, E.C.; Twilley, D.; Lulekal, E.; Farlow, A.; Li, L.; Cazar, M.E.; Leaman, D.J.; et al. Molecules from Nature: Reconciling Biodiversity Conservation and Global Healthcare Imperatives for Sustainable Use of Medicinal Plants and Fungi. Plants People Planet. 2020, 2, 463–481. [Google Scholar] [CrossRef]
- Abdullahi, A.A. Trends and Challenges of Traditional Medicine in Africa. Afr. J. Trad. Complement. Altern. Med. 2011, 8, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Oladunni Balogun, F.; Omotayo Tom Ashafa, A.; Sabiu, S.; Ayokun-nun Ajao, A.; Palanisamy Perumal, C.; Idowu Kazeem, M.; Adebowale Adedeji, A. Pharmacognosy: Importance and Drawbacks. In Pharmacognosy-Medicinal Plants; IntechOpen: Rijeka, Croatia, 2019; pp. 1–19. [Google Scholar]
- Fokunang, C.N.; Ndikum, V.; Tabi, O.Y.; Jiofack, R.B.; Ngameni, B.; Guedje, N.M.; Tembe-Fokunang, E.A.; Tomkins, P.; Barkwan, S.; Kechia, F.; et al. Traditional Medicine: Past, Present and Future Research and Development Prospects and Integration in the National Health System of Cameroon. Afr. J. Trad. Complement. Altern. Med. 2011, 8, 284–295. [Google Scholar] [CrossRef] [PubMed]
- Hooft, A.; Nabukalu, D.; Mwanga-Amumpaire, J.; Gardiner, M.A.; Sundararajan, R. Factors Motivating Traditional Healer versus Biomedical Facility Use for Treatment of Pediatric Febrile Illness: Results from a Qualitative Study in Southwestern Uganda. Am. J. Trop. Med. Hyg. 2020, 103, 501–507. [Google Scholar] [CrossRef]
- Ekor, M. The Growing Use of Herbal Medicines: Issues Relating to Adverse Reactions and Challenges in Monitoring Safety. Front. Pharmacol. 2014, 4, 177. [Google Scholar] [CrossRef]
- Catarino, L.; Havik, P.; Romeiras, M. Medicinal Plants of Guinea-Bissau: Therapeutic Applications, Ethnic Diversity and Knowledge Transfer. J. Ethnopharmacol. 2016, 183, 71–94. [Google Scholar] [CrossRef]
- WHO. The State of Health in the WHO African Region: An Analysis of the Status of Health, Health Services and Health Systems in the Context of the Sustainable. Available online: https://apps.who.int/iris/handle/10665/275292 (accessed on 18 June 2018).
- Duarte, M.C.; Gomes, I.; Catarino, S.; Brilhante, M.; Gomes, S.; Rendall, A.; Moreno, Â.; Fortes, A.R.; Ferreira, V.S.; Baptista, I.; et al. Diversity of useful plants in Cabo Verde Islands: A biogeographic and conservation perspective. Plants 2022, 11, 1313. [Google Scholar] [CrossRef]
- Bäckström, B. Comportamentos de saúde e doença numa comunidade Cabo-Verdiana em Lisboa. Saude Soc. 2011, 20, 758–772. [Google Scholar] [CrossRef]
- Bora, K.S.; Sharma, A. The genus Artemisia: A comprehensive review. Pharm. Biol. 2011, 49, 101–109. [Google Scholar] [CrossRef]
- Vallès, J.; Garcia, S.; Hidalgo, O.; Martín, J.; Pellicer, J.; Sanz, M.; Garnatje, T. Biology, Genome Evolution, Biotechnological Issues and Research including Applied Perspectives in Artemisia (Asteraceae). Adv. Bot. Res. 2011, 60, 349–419. [Google Scholar]
- Abad, M.J.; Bedoya, L.M.; Apaza, L.; Bermejo, P. The Artemisia L. genus: A review of bioactive essential oils. Molecules 2012, 17, 2542–2566. [Google Scholar] [CrossRef] [Green Version]
- Nigam, M.; Atanassova, M.; Mishra, A.P.; Pezzani, R.; Devkota, H.P.; Plygun, S.; Salehi, B.; Setzer, W.N.; Sharifi-Rad, J. Bioactive compounds and health benefits of Artemisia species. Nat. Prod. Commun. 2019, 14, 1934578X19850354. [Google Scholar]
- Willcox, M. Artemisia species: From traditional medicines to modern antimalarials—And back again. J. Altern. Complement. Med. 2009, 15, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Ortet, R.; Prado, S.; Mouray, E.; Thomas, O.P. Sesquiterpene Lactones from the endemic Cape Verdean Artemisia gorgonum. Phytochemistry 2008, 69, 2961–2965. [Google Scholar] [CrossRef] [PubMed]
- Ortet, R.; Thomas, O.P.; Regalado, E.L.; Pino, J.A.; Filippi, J.J.; Fernández, M.D. Composition and biological properties of the volatile oil of Artemisia gorgonum Webb. Chem. Biodivers. 2010, 7, 1325–1332. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.; Mignon, R.; Bastos, M.; Batista, D.; Neng, N.R.; Nogueira, J.M.F.; Vizetto-Duarte, C.; Custódio, L.; Varela, J.; Rauter, A.P. In Vitro Antitumoral Activity of Compounds Isolated from Artemisia gorgonum Webb. Phytother. Res. 2014, 28, 1329–1334. [Google Scholar] [CrossRef]
- Lima, K.; Silva, O.; Figueira, M.E.; Pires, C.; Cruz, D.; Gomes, S.; Maurício, E.M.; Duarte, M.P. Influence of the In Vitro Gastrointestinal Digestion on the Antioxidant Activity of Artemisia gorgonum Webb and Hyptis pectinata (L.) Poit. Infusions from Cape Verde. Food Res. Int. 2019, 115, 150–159. [Google Scholar] [CrossRef]
- Bahramsoltani, R.; Kalkhorani, M.; Abbas Zaidi, S.M.; Farzaei, M.H.; Rahimi, R. The genus Tamarix: Traditional Uses, Phytochemistry, and Pharmacology. J. Ethnopharmacol. 2020, 246, 112245. [Google Scholar] [CrossRef]
- Alshehri, S.A.; Wahab, S.; Saquib Abullais, S.; Das, G.; Hani, U.; Ahmad, W.; Amir, M.; Ahmad, A.; Kandasamy, G.; Vasudevan, R. Pharmacological Efficacy of Tamarix aphylla: A Comprehensive Review. Plants 2022, 11, 118. [Google Scholar] [CrossRef]
- Varela, D.; Romeiras, M.M.; Silva, L. Implications of climate change on the distribution and conservation of Cabo Verde endemic trees. Glob. Ecol. Conserv. 2022, 34, e02025. [Google Scholar] [CrossRef]
- Romeiras, M.M.; Catarino, S.; Gomes, I.; Fernandes, C.; Costa, J.C.; Caujapé-Castells, J.; Duarte, M.C. IUCN Red List assessment of the Cape Verde endemic flora: Towards a global strategy for plant conservation in Macaronesia. Bot. J. Linn. Soc. 2016, 180, 413–425. [Google Scholar] [CrossRef]
- POWO—Plants of the World Online. Available online: http://powo.science.kew.org (accessed on 18 June 2022).
- Correia, L.P.; Santana, C.P.; Medeiros, A.C.D.; Macêdo, R.O. Sideroxylon obtusifolium herbal medicine characterization using pyrolysis GC/MS, SEM and different thermoanalytical techniques. J. Therm. Anal. Calorim. 2016, 123, 993–1001. [Google Scholar] [CrossRef]
- Oliveira, A.P.; Raith, M.; Kuster, R.M.; Rocha, L.M.; Hamburger, M.; Potterat, O. Metabolite profiling of the leaves of the Brazilian folk medicine Sideroxylon obtusifolium. Planta Med. 2012, 78, 703–710. [Google Scholar] [CrossRef] [PubMed]
- Nunes, R.; Pasko, P.; Tyszka-Czochara, M.; Szewczyk, A.; Szlosarczyk, M.; Carvalho, I.S. Antibacterial, Antioxidant and Anti-Proliferative Properties and Zinc Content of Five South Portugal Herbs. Pharm. Biol. 2017, 55, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Bhosale, V.V.; Banerjee, D. Scientific Validation of Herbal Medicine. In Herbal Medicine in India: Indigenous Knowledge, Practice, Innovation and Its Value; Spinger: Heidelberg, Germany, 2019; ISBN 978-9811372476. [Google Scholar]
- Jhariya, M.K.; Banerjee, A.; Meena, R.S.; Yadav, D.K. Agriculture, Forestry and Environmental Sustainability: A Way Forward. In Sustainable Agriculture, Forest and Environmental Management; Springer Singapore: Singapore, 2019; pp. 1–29. [Google Scholar]
- Sekkien, A.; Swilam, N.; Ebada, S.S.; Esmat, A.; El-Khatib, A.H.; Linscheid, M.W.; Singab, A.N. Polyphenols from Tamarix nilotica: LC–ESI-MSn Profiling and in Vivo Antifibrotic Activity. Molecules 2018, 23, 1411. [Google Scholar] [CrossRef] [PubMed]
- Mahfoudhi, A.; Prencipe, F.P.; Mighri, Z.; Pellati, F. Metabolite Profiling of Polyphenols in the Tunisian Plant Tamarix aphylla (L.) Karst. J. Pharm. Biomed. Anal. 2014, 99, 97–115. [Google Scholar] [CrossRef]
- .Clifford, M.N.; Knight, S.; Kuhnert, N. Discriminating between the six isomers of dicaffeoylquinic acid by LC-MSn. J. Agric. Food Chem. 2005, 53, 3821–3832. [Google Scholar] [CrossRef] [PubMed]
- Clifford, M.N.; Johnston, K.L.; Knight, S.; Kuhnert, N. Hierarchical Scheme for LC-MSn Identification of Chlorogenic Acids. J. Agric. Food Chem. 2003, 51, 2900–2911. [Google Scholar] [CrossRef] [PubMed]
- Olennikov, D.N.; Chirikova, N.K.; Kashchenko, N.I.; Nikolaev, V.M.; Kim, S.W.; Vennos, C. Bioactive Phenolics of the genus Artemisia (Asteraceae): HPLC-DAD-ESI-TQ-MS/MS Profile of the Siberian Species and Their Inhibitory Potential against α-Amylase and α-Glucosidase. Front. Pharmacol. 2018, 9, 756. [Google Scholar] [CrossRef]
- Vallverdú-Queralt, A.; Jauregui, O.; Medina-Remón, A.; Andrés-Lacueva, C.; Lamuela-Raventós, R.M. Improved characterization of tomato polyphenols using liquid chromatography/electrospray ionization linear ion trap quadrupole Orbitrap mass spectrometry and liquid chromatography/electrospray ionization tandem mass spectrometry. RCM 2010, 24, 2986–2992. [Google Scholar] [CrossRef]
- Barros, L.; Dueñas, M.; Alves, C.T.; Silva, S.; Henriques, M.; Santos-Buelga, C.; Ferreira, I.C.F.R. Antifungal activity and detailed chemical characterization of Cistus ladanifer phenolic extracts. Ind. Crops Prod. 2013, 41, 41–45. [Google Scholar] [CrossRef]
- Silva, A.R.; Ayuso, M.; Pereira, C.; Dias, M.I.; Kostić, M.; Calhelha, R.C.; Pablo, A.G.; Ferreira, I.C.F.R.; Barros, L. Evaluation of parasite and host phenolic composition and bioactivities—The Practical Case of Cytinus hypocistis (L.) L. and Halimium lasianthum (Lam.) Greuter. Ind. Crops Prod. 2022, 176, 114343. [Google Scholar] [CrossRef]
- Ali, J.S.; Riaz, N.; Mannan, A.; Latif, M.; Zia, M. Antioxidant, Antimicrobial, Enzyme Inhibition, and Cytotoxicity Guided Investigation of Sideroxylon mascatense (A.DC.) T.D. Penn. Leaves Extracts. Nat. Prod. Res. 2022, 36, 4227–4230. [Google Scholar] [CrossRef] [PubMed]
- de Aquino, P.E.A.; de Souza, T.d.F.G.; Santos, F.A.; Viana, A.F.S.C.; Louchard, B.O.; Leal, L.K.A.M.; Rocha, T.M.; Evangelista, J.S.A.M.; de Aquino, N.C.; de Alencar, N.M.N.; et al. The Wound Healing Property of N-Methyl-(2S,4R)-trans-4-Hydroxy-L-Proline from Sideroxylon obtusifolium is related to its anti-inflammatory and antioxidant actions. J. Evid.-Based Integr. Med. 2019, 24, 2515690X19865166. [Google Scholar] [CrossRef] [PubMed]
- Hassan, L.E.A.; Khadeer Ahamed, M.B.; Abdul Majid, A.S.; Baharetha, H.M.; Muslim, N.S.; Nassar, Z.D.; Abdul Majid, A.M.S. Correlation of Antiangiogenic, Antioxidant and cytotoxic activities of some Sudanese medicinal plants with phenolic and flavonoid contents. BMC Complement. Altern. Med. 2014, 14, 406. [Google Scholar] [CrossRef]
- Yusufoglu, H.S.; Alqasoumi, S.I. Anti-inflammatory and wound healing activities of herbal gel containing an antioxidant Tamarix aphylla leaf extract. Int. J. Pharmacol. 2011, 7, 829–835. [Google Scholar] [CrossRef]
- Chaturvedi, S.; Drabu, S.; Sharma, M. Anti-inflammatory and analgesic activity of Tamarix gallica. Int. J. Pharm. Sci. 2012, 4, 653–658. [Google Scholar]
- Sayago, C.; Camargo, V.; Barbosa, F.; Gularte, C.; Pereira, G.; Miotto, S.; Cechinel Filho, V.; Luiz Puntel, R.; Folmer, V.; Mendez, A. Chemical composition and in vitro antioxidant activity of hydro-ethanolic extracts from Bauhinia forficata subsp. pruinosa and B. variegata. Acta Biol. Hung. 2013, 64, 21–33. [Google Scholar] [CrossRef]
- Wang, K.S.; Li, J.; Wang, Z.; Mi, C.; Ma, J.; Piao, L.X.; Xu, G.H.; Li, X.; Jin, X. Artemisinin inhibits inflammatory response via regulating NF-κB and MAPK Signaling Pathways. Immunopharmacol. Immunotoxicol. 2017, 39, 28–36. [Google Scholar] [CrossRef]
- Bessada, S.M.F.; Barreira, J.C.M.; Barros, L.; Ferreira, I.C.F.R.; Oliveira, M.B.P.P. Phenolic profile and antioxidant activity of Coleostephus myconis (L.) Rchb.f.: An underexploited and highly disseminated species. Ind. Crops Prod. 2016, 89, 45–51. [Google Scholar] [CrossRef]
- Spréa, R.M.; Fernandes, Â.; Calhelha, R.C.; Pereira, C.; Pires, T.C.S.P.; Alves, M.J.; Canan, C.; Barros, L.; Amaral, J.S.; Ferreira, I.C.F.R. Chemical and bioactive characterization of the aromatic plant: Levisticum officinale W.D.J. Koch: A comprehensive study. Food Funct. 2020, 11, 1292–1303. [Google Scholar] [CrossRef] [PubMed]
- Corrêa, R.C.G.; de Souza, A.H.P.; Calhelha, R.C.; Barros, L.; Glamoclija, J.; Sokovic, M.; Peralta, R.M.; Bracht, A.; Ferreira, I.C.F.R. Bioactive formulations prepared from fruiting bodies and submerged culture mycelia of the brazilian edible mushroom Pleurotus ostreatoroseus Singer. Food Funct. 2015, 6, 2155–2164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Status | Plant (Species/Family) | Distribution | Common Name | Ecology and Conservation | Indication | Route of Administration |
---|---|---|---|---|---|---|
Native (non-endemic) | ||||||
T. senegalensis (Tamaricaceae) | Arabian Peninsula, northwestern Africa, and Cabo Verde (in all the islands except in Fogo) | Tarrafe | Tree that grows in saline soil, sandy, and sea shore (Not Evaluated-IUCN) | Cold treatment | Infusion; herbal baths are also added to a tea together with a spoonful of grog (alcoholic) | |
Endemic | ||||||
A. gorgonum (Asteraceae) | Cabo Verde: Santo Antão, Santiago, and Fogo islands | Losna | Perennial shrub that occurs in altitude semi-arid to sub-humid zones. It is threatened by continued habitat loss (Endangered-IUCN) | Intestinal parasites, fever, uterus, and cramps | Infusion; alcoholic | |
S. marginatum (Sapotaceae) | Cabo Verde: all the islands, except in Sal and Maio | Marmulano | Tree growing in steep escarpments and inaccessible places. It is threatened by continued habitat loss (Endangered-IUCN) | Bone fractures and pain | Infusion; alcoholic; topical |
Peak | Rt (min) | λmax (nm) | [M − H]− (m/z) | MSn (m/z) | Tentative Identification | References |
---|---|---|---|---|---|---|
Tamarix senegalensis | ||||||
1 | 7.15 | 303 | 273 | 229 (9),193(100),178(11),153(5) | Ferulic acid sulphate derivative | [33,34] |
2 | 14.3 | 347 | 395 | 315(33),300(100),217(5) | Methylquercetin-sulphate (tamarixetin sulphate) | [34] |
3 | 15.42 | 351 | 477 | 315(12),301(100) | Methylquercetin hexoside (tamarixetin-3-O-hexoside) | [34] |
4 | 15.79 | 352 | 299 | 285(100),271(14) | Methylkaempferol (kaempferide) | [34] |
5 | 16.3 | 350 | 379 | 299(35),284(100) | Kaempferol methyl ether sulphate | [33,34] |
6 | 16.71 | 346 | 461 | 285(100) | Kaempferol-O-hexurunoside | [34] |
Artemisia gorgonum | ||||||
7 | 5.11 | 325 | 353 | 191(100),179(45),161(5),135(5) | 3-O-Caffeoylquinic acid | Standard compound |
8 | 9.6 | 325 | 353 | 173(100),179(23),191(14),161(5),135(5) | 4-O-Caffeoylquinic acid | [35] |
9 | 10.91 | 325 | 353 | 191(100),179(8),161(7),135(4) | cis 5-O-Caffeoylquinic acid | [35] |
10 | 11.01 | 326 | 353 | 191(100),179(12),173(5),135(5) | trans 5-O-Caffeoylquinic acid | [35] |
11 | 13.11 | 334 | 593 | 431(34),341(56),311(100),313(12),283(17) | Apigenin-6-C-Glc-4”-O-Glc (isosaponarin) | [35] |
12 | 13.27 | 291 | 325 | 163(100) | Melilotoside | [35] |
13 | 14.02 | 330 | 563 | 503(25),473(98)443(100),413(5),383(35)353(32)325(5)297(5) | Apigenin-6-C-Ara-8-C-Glc (schaftoside) | [35] |
14 | 16.26 | 322 | 515 | MS2: 353(100); MS3: 191(23),179(54),173(100),135(19) | 1,4-di-O-Caffeoylquinic acid | [35] |
15 | 16.3 | 321 | 515 | MS2: 353(100); MS3: 191(100),179(51),173(13),135(5) | 3,5-di-O-Caffeoylquinic acid | [35] |
16 | 17.14 | 326 | 515 | MS2: 353(100); MS3: 191(34),179(42),173(100),135(11) | 4,5-di-O-Caffeoylquinic acid | [35] |
17 | 18.41 | 327 | 515 | MS2: 353(100); MS3: 191(98),179(88),173(100),135(14) | cis 3,4-di-O-Caffeoylquinic acid | [35] |
18 | 18.97 | 326 | 515 | MS2: 353(100); MS3: 191(97),179(85),173(100),135(12) | trans 3,4-di-O-Caffeoylquinic acid | [35] |
Sideroxylon marginatum | ||||||
19 | 14 | 354 | 741 | 301(00) | Quercetin-O-hexosyl-deoxyhexosyl-pentoside | [36] |
20 | 14.49 | 354 | 595 | 301(00) | Quercetin-O-hexosyl-pentoside | [37] |
21 | 15.03 | 354 | 609 | 301(00) | Quercetin-O-hexosyl-deoxyhexoside | Characterization |
22 | 15.21 | 350 | 463 | 315(00) | Isorhamnetin derivative | DAD/MS |
23 | 16.87 | 347 | 447 | 301(00) | Quercetin-O-deoxyhexoside | [38] |
Peak | Quantification (mg/g Extract) | t-Student’s Test p-Value | |
---|---|---|---|
Ethanolic | Infusion | ||
Tamarix senegalensis | |||
1 | 1.25 ± 0.05 | 10.7 ± 0.03 | <0.001 |
2 | 0.63 ± 0.02 | 1.17 ± 0.02 | <0.001 |
3 | 0.95 ± 0.04 | 1.61 ± 0.03 | <0.001 |
4 | 0.78 ± 0.03 | 1.53 ± 0.01 | <0.001 |
5 | 1.44 ± 0.08 | 1.27 ± 0.06 | <0.001 |
6 | 1.59 ± 0.06 | 1.90 ± 0.08 | <0.001 |
Total Phenolic Acids | 1.25 ± 0.05 | 10.70 ± 0.03 | <0.001 |
Total Flavonoids | 5.4 ± 0.2 | 7.47 ± 0.03 | <0.001 |
Total Phenolic Compounds | 13.3 ± 0.5 | 36.35 ± 0.01 | <0.001 |
Artemisia gorgonum | |||
7 | 0.55 ± 0.02 | 2.23 ± 0.06 | <0.001 |
8 | 0.48 ± 0.01 | 2.90 ± 0.03 | <0.001 |
9 | 1.54 ± 0.09 | 9.5 ± 0.2 | <0.001 |
10 | nd | 6.0 ± 0.1 | - |
11 | 0.013 ± 0.001 | 0.53 ± 0.05 | <0.001 |
12 | 1.58 ± 0.02 | 17.8 ± 0.4 | <0.001 |
13 | 0.41 ± 0.01 | 4.56 ± 0.09 | <0.001 |
14 | 0.73 ± 0.03 | 12.66 ± 0.07 | <0.001 |
15 | 0.50 ± 0.02 | 15.2 ± 0.4 | <0.001 |
16 | 0.53 ± 0.02 | 24.3 ± 0.2 | <0.001 |
17 | 0.37 ± 0.01 | 1.89 ± 0.07 | <0.001 |
18 | 0.23 ± 0.01 | 2.07 ± 0.01 | <0.001 |
Total Phenolic Acids | 6.48 ± 0.01 | 95 ± 1 | <0.001 |
Total Flavonoids | 0.42 ± 0.01 | 5.1 ± 0.1 | <0.001 |
Total Phenolic Compounds | 6.90 ± 0.01 | 100 ± 1 | <0.001 |
Sideroxylon marginatum | |||
19 | 1.33 ± 0.02 | 4.5 ± 0.3 | <0.001 |
20 | 0.64 ± 0.01 | 1.22 ± 0.04 | <0.001 |
21 | 0.56 ± 0.01 | 1.36 ± 0.04 | <0.001 |
22 | 0.67 ± 0.01 | 1.42 ± 0.06 | <0.001 |
23 | 0.56 ± 001 | 0.93 ± 0.02 | <0.001 |
Total Phenolic Compounds | 3.76 ± 0.01 | 9.5 ± 0.3 | <0.001 |
T. senegalensis | A. gorgonum | S. marginatum | ||
---|---|---|---|---|
Antioxidant activity | ||||
TBARS (EC50; mg/mL) a | Ethanolic | 0.161 ± 0.005 b | 0.149 ± 0.003 c | 0.27 ± 0.01 a |
Infusion | 0.83 ± 0.02 a | 0.42 ± 0.02 b | 0.87 ± 0.05 a | |
OxHLIA (EC50; µg/mL) b Δt = 60 min | Ethanolic | 39 ± 1 b | 15 ± 1 c | 99 ± 2 a |
Infusion | 10.4 ± 0.5 c | 102 ± 4 b | 115 ± 4 a | |
Cytotoxicity over tumor cell lines (GI50 μg/mL) c | ||||
AGS | Ethanolic | 85 ± 2 b | 18.2 ± 0.4 c | 116 ± 12 a |
Infusion | 208 ± 20 a | 67 ± 6 b | 75 ± 1 b | |
CaCO2 | Ethanolic | 125 ± 4 b | 17.3 ± 0.2 c | 251 ± 12 a |
Infusion * | >400 | 181 ± 10 | 285 ± 2 | |
MCF-7 | Ethanolic | 149 ± 4 b | 57 ± 6 c | 201 ± 1 a |
Infusion * | >400 | 129 ± 10 | 209 ± 4 | |
Cytotoxicity over non-tumor cell lines (GI50 µg/mL) c | ||||
PLP2 | Ethanolic | 178 ± 3 | >400 | >400 |
Infusion | >400 | >400 | >400 | |
Anti-inflammatory activity (EC50 μg/mL) d | ||||
RAW 264.7 | Ethanolic * | 35 ± 1 | >400 | 43 ± 4 |
Infusion | >400 | >400 | >400 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
P. Essoh, A.; Liberal, Â.; Fernandes, Â.; Dias, M.I.; Pereira, C.; Mandim, F.; Moldão-Martins, M.; Cravo, P.; Duarte, M.P.; Moura, M.; et al. Evaluation of the Polyphenolic Composition and Bioactivities of Three Native Cabo Verde Medicinal Plants. Pharmaceuticals 2022, 15, 1162. https://doi.org/10.3390/ph15091162
P. Essoh A, Liberal Â, Fernandes Â, Dias MI, Pereira C, Mandim F, Moldão-Martins M, Cravo P, Duarte MP, Moura M, et al. Evaluation of the Polyphenolic Composition and Bioactivities of Three Native Cabo Verde Medicinal Plants. Pharmaceuticals. 2022; 15(9):1162. https://doi.org/10.3390/ph15091162
Chicago/Turabian StyleP. Essoh, Anyse, Ângela Liberal, Ângela Fernandes, Maria Inês Dias, Carla Pereira, Filipa Mandim, Margarida Moldão-Martins, Pedro Cravo, Maria Paula Duarte, Mónica Moura, and et al. 2022. "Evaluation of the Polyphenolic Composition and Bioactivities of Three Native Cabo Verde Medicinal Plants" Pharmaceuticals 15, no. 9: 1162. https://doi.org/10.3390/ph15091162
APA StyleP. Essoh, A., Liberal, Â., Fernandes, Â., Dias, M. I., Pereira, C., Mandim, F., Moldão-Martins, M., Cravo, P., Duarte, M. P., Moura, M., Romeiras, M. M., & Barros, L. (2022). Evaluation of the Polyphenolic Composition and Bioactivities of Three Native Cabo Verde Medicinal Plants. Pharmaceuticals, 15(9), 1162. https://doi.org/10.3390/ph15091162