Design of Novel Tricaprylin-Incorporated Multi-Layered Liposomal System for Skin Delivery of Ascorbic Acid with Improved Chemical Stability
Abstract
:1. Introduction
2. Results and Discussion
2.1. Establishment of the Fabrication Process of the Vit C-Loaded LOS System
2.2. Optimization of the Vit C-Loaded LOS System
2.3. Morphology of Vit C-Loaded CL and LOS System
2.4. Photostability of Vit C-Loaded CL and LOS System
2.5. In Vitro Release Profile of Vit C from the Liposomal Systems
2.6. Ex Vivo Skin Absorption of Vit C following Topical Application of Vit-C Loaded CL or LOS
3. Materials and Methods
3.1. Materials
3.2. Fabrication of Vit C-Loaded Liposomal Formulations
3.3. Physicochemical Characterization of Liposomal Formulations
3.3.1. Morphology of Liposomal Formulations
3.3.2. Vesicular Size and Zeta Potential of Liposomal Formulations
3.3.3. Vit C Content Analysis
3.3.4. Loading Efficiency of Vit C in Liposomal Vesicles
3.4. Photostability of Vit C-Loaded Liposomal Formulations
3.5. In Vitro Release Profile of Liposomal Formulations
3.6. Ex Vivo Skin Absorption of Vit C-Loaded Liposomal Formulations
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, K.; Jiang, H.; Li, W.; Qiang, M.; Dong, T.; Li, H. Role of Vitamin C in Skin Diseases. Front. Physiol. 2018, 9, 819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, I.; Tai, A.; Fujinami, Y.; Sasaki, K.; Okazaki, S. Synthesis and Characterization of a Series of Novel Monoacylated Ascorbic Acid Derivatives, 6-O-Acyl-2-O-Alpha-D-Glucopyranosyl-L-Ascorbic Acids, as Skin Antioxidants. J. Med. Chem. 2002, 45, 462–468. [Google Scholar] [CrossRef] [PubMed]
- Horino, Y.; Takahashi, S.; Miura, T.; Takahashi, Y. Prolonged Hypoxia Accelerates the Posttranscriptional Process of Collagen Synthesis in Cultured Fibroblasts. Life Sci. 2002, 71, 3031–3045. [Google Scholar] [CrossRef] [PubMed]
- Pielesz, A.; Biniaś, D.; Bobiński, R.; Sarna, E.; Paluch, J.; Waksmańska, W. The Role of Topically Applied L-Ascorbic Acid in Ex-Vivo Examination of Burn-Injured Human Skin. Spectrochim. Acta Part A 2017, 185, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Janda, K.; Kasprzak, M.; Wolska, J.; Stachowska, K.E. Vitamin C—Structure, Properties, Occurrence and Functions. Pomeranian J. Life Sci. 2015, 61, 4. [Google Scholar] [CrossRef]
- Yin, X.; Chen, K.; Cheng, H.; Chen, X.; Feng, S.; Song, Y.; Liang, L. Chemical Stability of Ascorbic Acid Integrated into Commercial Products: A Review on Bioactivity and Delivery Technology. Antioxidants 2022, 11, 153. [Google Scholar] [CrossRef]
- Ahmad, I.; Sheraz, M.A.; Ahmed, S.; Shaikh, R.H.; Vaid, F.H.M.; Ur Rehman Khattak, S.; Ansari, S.A. Photostability and Interaction of Ascorbic Acid in Cream Formulations. AAPS PharmSciTech 2011, 12, 917–923. [Google Scholar] [CrossRef] [Green Version]
- Andrews, S.N.; Jeong, E.; Prausnitz, M.R. Transdermal Delivery of Molecules Is Limited by Full Epidermis, Not Just Stratum Corneum. Pharm. Res. 2012, 30, 1099–1109. [Google Scholar] [CrossRef] [Green Version]
- Köse, D.A.; Zümreoglu-Karan, B. Complexation of Boric Acid with Vitamin C. New J. Chem. 2009, 33, 1874–1881. [Google Scholar] [CrossRef]
- Cesario, D.; Furia, E.; Mazzone, G.; Beneduci, A.; De Luca, G.; Sicilia, E. Complexation of Al3+ and Ni2+ by L-Ascorbic Acid: An Experimental and Theoretical Investigation. J. Phys. Chem. A 2017, 121, 9773–9781. [Google Scholar] [CrossRef]
- Ahmad, I.; Ali Sheraz, M.; Ahmed, S.; Shad, Z.; Vaid, F.H.M. Photostabilization of Ascorbic Acid with Citric Acid, Tartaric Acid and Boric Acid in Cream Formulations. Int. J. Cosmet. Sci. 2012, 34, 240–245. [Google Scholar] [CrossRef]
- Gopi, S.; Balakrishnan, P. Evaluation and Clinical Comparison Studies on Liposomal and Non-Liposomal Ascorbic Acid (Vitamin C) and Their Enhanced Bioavailability. J. Liposome Res. 2021, 31, 356–364. [Google Scholar] [CrossRef]
- Liston, L.S.; Rivas, P.L.; Sakdiset, P.; See, G.L.; Arce, F. Chemical Permeation Enhancers for Topically-Applied Vitamin C and Its Derivatives: A Systematic Review. Cosmetics 2022, 9, 85. [Google Scholar] [CrossRef]
- Maione-Silva, L.; de Castro, E.G.; Nascimento, T.L.; Cintra, E.R.; Moreira, L.C.; Cintra, B.A.S.; Valadares, M.C.; Lima, E.M. Ascorbic Acid Encapsulated into Negatively Charged Liposomes Exhibits Increased Skin Permeation, Retention and Enhances Collagen Synthesis by Fibroblasts. Sci. Rep. 2019, 9, 522. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Liu, W.; Zou, L.; Liu, W.; Liu, C.; Liang, R.; Chen, J. Storage Stability and Skin Permeation of Vitamin C Liposomes Improved by Pectin Coating. Colloids Surf. B 2014, 117, 330–337. [Google Scholar] [CrossRef]
- Kim, J.S. Liposomal Drug Delivery System. J. Pharm. Investig. 2016, 46, 387–392. [Google Scholar] [CrossRef]
- Rhim, C.-H.; Lee, Y.W.; Lee, S.C.; Lee, S.C. Effect of Cholesterol in Liposome on the Stabilization of Encapsulated Ascorbic Acid. Appl. Biol. Chem. 1999, 42, 205–209. [Google Scholar]
- Luo, Y.; Liu, Z.; Zhang, X.; Huang, J.; Yu, X.; Li, J.; Xiong, D.; Sun, X.; Zhong, Z. Effect of a Controlled-Release Drug Delivery System Made of Oleanolic Acid Formulated into Multivesicular Liposomes on Hepatocellular Carcinoma In Vitro and In Vivo. Int. J. Nanomed. 2016, 11, 3111–3129. [Google Scholar] [CrossRef] [Green Version]
- Salehi, B.; Mishra, A.P.; Nigam, M.; Kobarfard, F.; Javed, Z.; Rajabi, S.; Khan, K.; Ashfaq, H.A.; Ahmad, T.; Pezzani, R.; et al. Multivesicular Liposome (Depofoam) in Human Diseases. Iran. J. Pharm. Sci. 2020, 19, 9. [Google Scholar] [CrossRef]
- Khan, I.T.; Nadeem, M.; Imran, M.; Asif, M.; Khan, M.K.; Din, A.; Ullah, R. Triglyceride, Fatty Acid Profile and Antioxidant Characteristics of Low Melting Point Fractions of Buffalo Milk Fat. Lipids Health Dis. 2019, 18, 59. [Google Scholar] [CrossRef] [Green Version]
- Jaafar-Maalej, C.; Diab, R.; Andrieu, V.; Elaissari, A.; Fessi, H. Ethanol Injection Method for Hydrophilic and Lipophilic Drug-Loaded Liposome Preparation. J. Liposome Res. 2010, 20, 228–243. [Google Scholar] [CrossRef] [PubMed]
- Kriftner, R.W. Liposome Dermatics; Springer: Berlin/Heidelberg, Germany, 1992; pp. 91–100. [Google Scholar] [CrossRef]
- Nakhaei, P.; Margiana, R.; Bokov, D.O.; Abdelbasset, W.K.; Jadidi Kouhbanani, M.A.; Varma, R.S.; Marofi, F.; Jarahian, M.; Beheshtkhoo, N. Liposomes: Structure, Biomedical Applications, and Stability Parameters with Emphasis on Cholesterol. Front. Bioeng. Biotechnol. 2021, 9, 705886. [Google Scholar] [CrossRef]
- Dorrani, M.; Garbuzenko, O.B.; Minko, T.; Michniak-Kohn, B. Development of Edge-Activated Liposomes for SiRNA Delivery to Human Basal Epidermis for Melanoma Therapy. J. Control. Release 2016, 228, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Zeb, A.; Qureshi, O.S.; Kim, H.S.; Cha, J.H.; Kim, H.S.; Kim, J.K. Improved Skin Permeation of Methotrexate via Nanosized Ultradeformable Liposomes. Int. J. Nanomed. 2016, 11, 3813–3824. [Google Scholar] [CrossRef] [Green Version]
- Perez, A.P.; Altube, M.J.; Schilrreff, P.; Apezteguia, G.; Celes, F.S.; Zacchino, S.; de Oliveira, C.I.; Romero, E.L.; Morilla, M.J. Topical Amphotericin B in Ultradeformable Liposomes: Formulation, Skin Penetration Study, Antifungal and Antileishmanial Activity In Vitro. Colloids Surf. B 2016, 139, 190–198. [Google Scholar] [CrossRef]
- Large, D.E.; Abdelmessih, R.G.; Fink, E.A.; Auguste, D.T. Liposome Composition in Drug Delivery Design, Synthesis, Characterization, and Clinical Application. Adv. Drug Deliv. Rev. 2021, 176, 113851. [Google Scholar] [CrossRef]
- Kaddah, S.; Khreich, N.; Kaddah, F.; Charcosset, C.; Greige-Gerges, H. Cholesterol Modulates the Liposome Membrane Fluidity and Permeability for a Hydrophilic Molecule. Food Chem. Toxicol. 2018, 113, 40–48. [Google Scholar] [CrossRef]
- Ren, T.; Lin, X.; Zhang, Q.; You, D.; Liu, X.; Tao, X.; Gou, J.; Zhang, Y.; Yin, T.; He, H.; et al. Encapsulation of Azithromycin Ion Pair in Liposome for Enhancing Ocular Delivery and Therapeutic Efficacy on Dry Eye. Mol. Pharm. 2018, 15, 4862–4871. [Google Scholar] [CrossRef]
- Luo, L.; Chen, Q.; Wei, N.; Liu, Y.; He, H.; Zhang, Y.; Yin, T.; Gou, J.; Tang, X. The Modulation of Drug-Loading Stability within Lipid Membranes via Medium Chain Triglycerides Incorporation. Int. J. Pharm. 2019, 566, 371–382. [Google Scholar] [CrossRef]
- Marsanasco, M.; Marquez, A.L.; Wagner, J.R.; Alonso, S.D.V.; Chiaramoni, N.S. Liposomes as Vehicles for Vitamins E and C: An Alternative to Fortify Orange Juice and Offer Vitamin C Protection after Heat Treatmen. Food Res. Int. 2011, 44, 3039–3046. [Google Scholar] [CrossRef]
- Liu, X.; Wang, P.; Zou, Y.-X.; Luo, Z.-G.; Tamer, T.M. Co-Encapsulation of Vitamin C and β-Carotene in Liposomes: Storage Stability, Antioxidant Activity, and in Vitro Gastrointestinal Digestion. Food Res. Int. 2020, 136, 109587. [Google Scholar] [CrossRef]
- Aguilar, K.; Garvín, A.; Lara-Sagahón, A.V.; Ibarz, A. Ascorbic Acid Degradation in Aqueous Solution during UV-Vis Irradiation. Food Chem. 2019, 297, 124864. [Google Scholar] [CrossRef]
- Meunier, S.M.; Todorovic, B.; Dare, E.V.; Begum, A.; Guillemette, S.; Wenger, A.; Saxena, P.; Campbell, J.L.; Sasges, M.; Aucoin, M.G. Impact of Dissolved Oxygen during UV-Irradiation on the Chemical Composition and Function of CHO Cell Culture Media. PloS ONE 2016, 11, e0150957. [Google Scholar] [CrossRef] [Green Version]
- Rukmini, A.; Raharjo, S.; Hastuti, P. Antiphotooxidative Effect of Ascorbic Acid Microemulsion in Virgin Coconut Oil. J. Food Eng. 2012, 2, 206–212. [Google Scholar] [CrossRef] [Green Version]
- Álvarez, T.; Ramírez, R. Influence of Different Light Sources, Illumination Intensities and Storage Times on the Vitamin C Content in Pasteurized Milk. Turk. J. Vet. Anim. Sci. 2005, 29, 1097–1100. [Google Scholar]
- Wester, R.C.; Maibach, H.I. In Vivo Methods for Percutaneous Absorption Measurements. Cutan. Ocul. Toxicol. 2001, 20, 411–422. [Google Scholar] [CrossRef]
- Sato, K.; Sugibayashi, K.; Morimoto, Y. Species Differences in Percutaneous Absorption of Nicorandil. J. Pharm. Sci. 1991, 80, 104–107. [Google Scholar] [CrossRef]
- Abd, E.; Yousef, S.A.; Pastore, M.N.; Telaprolu, K.; Mohammed, Y.H.; Namjoshi, S.; Grice, J.E.; Roberts, M.S. Skin Models for the Testing of Transdermal Drugs. Clin. Pharmacol. Adv. Appl. 2016, 8, 163–176. [Google Scholar] [CrossRef] [Green Version]
- Elhabak, M.; Ibrahim, S.; Abouelatta, S.M. Topical Delivery of L-Ascorbic Acid Spanlastics for Stability Enhancement and Treatment of UVB Induced Damaged Skin. Drug Deliv. 2021, 28, 445–453. [Google Scholar] [CrossRef]
- Fernandes, M.J.G.; Pereira, R.B.; Rodrigues, A.R.O.; Vieira, T.F.; Fortes, A.G.; Pereira, D.M.; Sousa, S.F.; Gonçalves, M.S.T.; Castanheira, E.M.S. Liposomal Formulations Loaded with a Eugenol Derivative for Application as Insecticides: Encapsulation Studies and In Silico Identification of Protein Targets. Nanomaterials 2022, 12, 3583. [Google Scholar] [CrossRef]
- Guimarães, D.; Noro, J.; Loureiro, A.; Lager, F.; Renault, G.; Cavaco-Paulo, A.; Nogueira, E. Increased Encapsulation Efficiency of Methotrexate in Liposomes for Rheumatoid Arthritis Therapy. Biomedicines 2020, 8, 630. [Google Scholar] [CrossRef] [PubMed]
- Rehan, F.; Karim, E.; Ahemad, N.; Farooq Shaikh, M.; Gupta, M.; Gan, S.H.; Chowdhury, E.H. A Comparative Evaluation of Anti-Tumor Activity Following Oral and Intravenous Delivery of Doxorubicin in a Xenograft Model of Breast Tumor. J. Pharm. Investig. 2022, 52, 787–804. [Google Scholar] [CrossRef]
- Łukawski, M.; Dałek, P.; Borowik, T.; Foryś, A.; Langner, M.; Witkiewicz, W.; Przybyło, M. New Oral Liposomal Vitamin C Formulation: Properties and Bioavailability. J. Liposome Res. 2020, 30, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Bakhtiar, A.; Liew, Q.X.; Ng, K.Y.; Chowdhury, E.H. Active Targeting via Ligand-Anchored PH-Responsive Strontium Nanoparticles for Efficient Nucleic Acid Delivery into Breast Cancer Cells. J. Pharm. Investig. 2022, 52, 243–257. [Google Scholar] [CrossRef]
- Gutiérrez-Quequezana, L.; Vuorinen, A.L.; Kallio, H.; Yang, B. Impact of Cultivar, Growth Temperature and Developmental Stage on Phenolic Compounds and Ascorbic Acid in Purple and Yellow Potato Tubers. Food Chem. 2020, 326, 126966. [Google Scholar] [CrossRef]
- Lertpairod, J.; Tiyaboonchai, W. PH-Sensitive Beads Containing Curcumin Loaded Nanostructured Lipid Carriers for a Colon Targeted Oral Delivery System. J. Pharm. Investig. 2022, 52, 387–396. [Google Scholar] [CrossRef]
- Kaul, S.; Jain, N.; Nagaich, U. Ultra Deformable Vesicles for Boosting Transdermal Delivery of 2-Arylpropionic Acid Class Drug for Management of Musculoskeletal Pain. J. Pharm. Investig. 2022, 52, 217–231. [Google Scholar] [CrossRef]
- Nastiti, C.M.R.R.; Ponto, T.; Mohammed, Y.; Roberts, M.S.; Benson, H.A.E. Novel Nanocarriers for Targeted Topical Skin Delivery of the Antioxidant Resveratrol. Pharmaceutics 2020, 12, 108. [Google Scholar] [CrossRef] [Green Version]
- Neri, I.; Laneri, S.; Di Lorenzo, R.; Dini, I.; Russo, G.; Grumetto, L. Parabens Permeation through Biological Membranes: A Comparative Study Using Franz Cell Diffusion System and Biomimetic Liquid Chromatography. Molecules 2022, 27, 4263. [Google Scholar] [CrossRef]
Formulation No. | CL | LOS1 | LOS2 | LOS3 | LOS4 | LOS5 | LOS6 | LOS7 |
---|---|---|---|---|---|---|---|---|
Vit C (mg) | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
PC (mg) | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
DPPG (mg) | 0.4 | 0 | 0.2 | 0.4 | 1 | 0.4 | 0.4 | 0.4 |
Tricaprylin (mg) | 0 | 10 | 10 | 10 | 10 | 4 | 10 | 20 |
Cholesterol (mg) | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
10 mM succinate Buffer (mL) | q.s. | q.s. | q.s. | q.s. | q.s. | q.s. | q.s. | q.s. |
Total (mL) | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
pH (a) | 3.5 | 3.6 | 3.5 | 3.5 | 3.3 | 3.4 | 3.4 | 3.5 |
Formulation No. | LOS8 | LOS9 | LOS10 | LOS11 | LOS12 | LOS13 | LOS14 | |
Vit C (mg) | 10 | 10 | 10 | 10 | 10 | 10 | 10 | |
PC (mg) | 20 | 20 | 20 | 20 | 20 | 20 | 20 | |
DPPG (mg) | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 | |
Tricaprylin (mg) | 40 | 10 | 10 | 10 | 10 | 10 | 10 | |
Cholesterol (mg) | 2 | 0 | 0.4 | 1 | 2 | 4 | 8 | |
10 mM succinate Buffer (mL) | q.s. | q.s. | q.s. | q.s. | q.s. | q.s. | q.s. | |
Total (mL) | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | |
pH (a) | 3.4 | 3.4 | 3.3 | 3.5 | 3.5 | 3.4 | 3.4 |
CL | LOS | |
---|---|---|
Permeated (mg/cm2) | 0.162 ± 0.023 | 0.197 ± 0.056 |
Flux (mg·cm−2·h−1) | 0.007 ± 0.001 | 0.008 ± 0.002 |
Lag time (h) | 1.455 ± 0.731 | 2.097 ± 0.841 |
Permeability coefficient (10−6·cm/h) | 0.718 ± 0.078 | 0.909 ± 0.235 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ho, M.J.; Park, D.W.; Kang, M.J. Design of Novel Tricaprylin-Incorporated Multi-Layered Liposomal System for Skin Delivery of Ascorbic Acid with Improved Chemical Stability. Pharmaceuticals 2023, 16, 121. https://doi.org/10.3390/ph16010121
Ho MJ, Park DW, Kang MJ. Design of Novel Tricaprylin-Incorporated Multi-Layered Liposomal System for Skin Delivery of Ascorbic Acid with Improved Chemical Stability. Pharmaceuticals. 2023; 16(1):121. https://doi.org/10.3390/ph16010121
Chicago/Turabian StyleHo, Myoung Jin, Dong Woo Park, and Myung Joo Kang. 2023. "Design of Novel Tricaprylin-Incorporated Multi-Layered Liposomal System for Skin Delivery of Ascorbic Acid with Improved Chemical Stability" Pharmaceuticals 16, no. 1: 121. https://doi.org/10.3390/ph16010121
APA StyleHo, M. J., Park, D. W., & Kang, M. J. (2023). Design of Novel Tricaprylin-Incorporated Multi-Layered Liposomal System for Skin Delivery of Ascorbic Acid with Improved Chemical Stability. Pharmaceuticals, 16(1), 121. https://doi.org/10.3390/ph16010121