Combinatory Effect and Modes of Action of Chrysin and Bone Marrow-Derived Mesenchymal Stem Cells on Streptozotocin/Nicotinamide-Induced Diabetic Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Experimental Animals
2.3. Isolation, Culture, and Characterization of BM-MSCs
2.4. Induction of T2DM Animal Model
2.5. Experimental Protocol
2.6. Sampling and Tissue Preparation
2.7. Oral Glucose Tolerance Test (OGTT)
2.8. Serum Fasting C-Peptide and Insulin Analysis
2.9. Serum-Free Fatty Acids (FFAs)
2.10. Detection of Liver Glycogen Content, G-6-Pase, and Glycogen Phosphorylase Activities
2.11. Detection of Serum IL-1β, TNF-α, and IL-13
2.12. Detection of BM-MSCs’ Different CDs’ mRNA Expression
2.13. Western Blotting Analysis
2.14. Histological Investigation
2.15. Immunohistochemical Investigation
2.16. Statistical Analysis
3. Results
3.1. Characterization of MSCs
3.2. Effect of Chrysin and BM-MSCs on Oral Glucose Tolerance in NA/STZ-Induced Diabetic Rats
3.3. Effect of Chrysin and BM-MSCs on the Serum Insulin and C-Peptide Levels in NA/STZ-Induced Diabetic Rats
3.4. Effect of Chrysin and BM-MSCs on Serum Free Fatty Acid Levels in NA/STZ-Induced Diabetic Rats
3.5. Effects on Liver Glycogen Content, G-6-Pase, and Glycogen Phosphorylase Activities in NA/STZ-Induced Diabetic Rats
3.6. Effect on IL-1β, TNF-α, and IL-13 Levels
3.7. Effects on the Protein Expression Levels of Resistin and Adiponectin
3.8. Effects on the Protein Expression Levels of IR-Βs, IRS-1, and IRS-2
3.9. Effects of Chrysin and BM-MSCs on Histological Changes in the Pancreas in NA/STZ-Induced Diabetic Rats
3.10. Effects of Chrysin and BM-MSCs on Pancreas Immunohistochemical Staining of Insulin in NA/STZ-Induced Diabetic Rats
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Diabetes Association. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2020. Diabetes Care 2020, 43, 14–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Diabetes Federation. IDF Diabetes Atlas, 10th ed.; International Diabetes Federation: Brussels, Belgium, 2021. [Google Scholar]
- Xu, L.; Li, Y.; Dai, Y.; Peng, J. Natural products for the treatment of type 2 diabetes mellitus: Pharmacology and mechanisms. Pharmacol. Res. 2018, 130, 451–465. [Google Scholar] [CrossRef] [PubMed]
- Simó, R.; Hernández, C. Treatment of diabetes mellitus: General goals, and clinical practice management. Rev. Esp. De Cardiol. 2002, 55, 845–860. [Google Scholar] [CrossRef] [PubMed]
- Farzaei, M.H.; Rahimi, R.; Farzaei, F.; Abdollahi, M. Traditional Medicinal Herbs for the Management of Diabetes and its Complications: An Evidence-Based Review. Int. J. Pharmacol. 2015, 11, 874–887. [Google Scholar] [CrossRef] [Green Version]
- Peter, E.L.; Kasali, F.M.; Deyno, S.; Mtewa, A.; Nagendrappa, P.B.; Tolo, C.U.; Ogwang, P.E.; Sesaazi, D. Momordica charantia L. lowers elevated glycaemia in type 2 diabetes mellitus patients: Systematic review and meta-analysis. J. Ethnopharmacol. 2019, 231, 311–324. [Google Scholar] [CrossRef]
- Naz, S.; Imran, M.; Rauf, A.; Orhan, I.E.; Shariati, M.A.; Haq, I.U.; Yasmin, I.; Shahbaz, M.; Qaisrani, T.B.; Shah, Z.A.; et al. Chrysin: Pharmacological and therapeutic properties. Life Sci. 2019, 235, 116797. [Google Scholar] [CrossRef]
- Sangeetha, R. Luteolin in the Management of Type 2 Diabetes Mellitus. Curr. Res. Nutr. Food Sci. J. 2019, 7, 393–398. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, A.; Badruddeen, A.J.; Uddin, M.S.S.; Khan, M.I.; Khalid, M.; Ahmad, M. A naturally occurring flavone (chrysin): Chemistry, occurrence, pharmacokinetic, toxicity, molecular targets and medicinal properties. J. Biol. Act. Prod. Nat. 2018, 8, 208–227. [Google Scholar] [CrossRef]
- Mani, R.; Natesan, V. Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry 2018, 145, 187–196. [Google Scholar] [CrossRef]
- Ramírez-Espinosa, J.J.; Saldaña-Ríos, J.; García-Jiménez, S.; Villalobos-Molina, R.; Ávila-Villarreal, G.; Rodríguez-Ocampo, A.N.; Bernal-Fernández, G.; Estrada-Soto, S. Chrysin Induces Antidiabetic, Antidyslipidemic and Anti-Inflammatory Effects in Athymic Nude Diabetic Mice. Molecules 2017, 23, 67. [Google Scholar] [CrossRef]
- Satyanarayana, K.; Sravanthi, K.; Shaker, I.; Ponnulakshmi, R.; Selvaraj, J. Role of chrysin on expression of insulin signaling molecules. J. Ayurveda Integr. Med. 2015, 6, 248–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anitha, T.A.; Rajadurai, M. Evaluation of biochemical profile of chrysin in streptozotocin–nictonimaide induced diabetic rats. Int. J. Pharma Bio Sci. 2015, 6, 905–912. [Google Scholar]
- Dang, L.T.-T.; Phan, N.K.; Truong, K.D. Mesenchymal stem cells for diabetes mellitus treatment: New advances. Biomed. Res. Ther. 2017, 4, 1062–1081. [Google Scholar] [CrossRef] [Green Version]
- Le, P.T.-B.; Van Pham, P.; Vu, N.B.; Dang, L.T.-T.; Phan, N.K. Expanded autologous adipose derived stem cell transplantation for type 2 diabetes mellitus. Biomed. Res. Ther. 2016, 3, 1034–1044. [Google Scholar] [CrossRef] [Green Version]
- Peng, B.-Y.; Dubey, N.K.; Mishra, V.K.; Tsai, F.-C.; Dubey, R.; Deng, W.-P.; Wei, H.-J. Addressing Stem Cell Therapeutic Approaches in Pathobiology of Diabetes and Its Complications. J. Diabetes Res. 2018, 2018, 7806435. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, O.M.; Sayed, H.M. Stem Cell Therapies in Regenerative Medicine and Diabetes Mellitus: Advances, Constraints and Future Prospects. J. Transplant. Stem Cell Biol. 2016, 3, 1–22. [Google Scholar] [CrossRef]
- Van Pham, P.; Vu, N.B.; Phan, N.K. Umbilical cord-derived stem cells (ModulatistTM) show strong immunomodulation capacity compared to adipose tissue-derived or bone marrow-derived mesenchymal stem cells. Biomed. Res. Ther. 2016, 3, 687–696. [Google Scholar] [CrossRef]
- Li, G.; Peng, H.; Qian, S.; Zou, X.; Du, Y.; Wang, Z.; Zou, L.; Feng, Z.; Zhang, J.; Zhu, Y.; et al. Bone Marrow-Derived Mesenchymal Stem Cells Restored High-Fat-Fed Induced Hyperinsulinemia in Rats at Early Stage of Type 2 Diabetes Mellitus. Cell Transplant. 2020, 29, 1–9. [Google Scholar] [CrossRef]
- Hussien, N.I.; Ebrahim, N.; Mohammed, O.M.; Sabry, D. Combination of Obestatin and Bone Marrow Mesenchymal Stem Cells Prevents Aggravation of Endocrine Pancreatic Damage in Type II Diabetic Rats. Int. J. Stem Cells 2017, 10, 129–143. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; XIE, Z.; LIU, J.J.; HAO, H.J.; MU, Y.M. Comparative effects on type 2 diabetes of mesenchymal stem cells derived from bone marrow and adipose tissue. Med. J. Chinese People’s Lib. Army 2016, 41, 534–538. [Google Scholar] [CrossRef]
- Si, Y.; Zhao, Y.; Hao, H.; Liu, J.; Guo, Y.; Mu, Y.; Shen, J.; Cheng, Y.; Fu, X.; Han, W. Infusion of Mesenchymal Stem Cells Ameliorates Hyperglycemia in Type 2 Diabetic Rats. Diabetes 2012, 61, 1616–1625. [Google Scholar] [CrossRef] [PubMed]
- Hamza, A.A.; Fikry, E.M.; Abdallah, W.; Amin, A. Mechanistic insights into the augmented effect of bone marrow mesenchymal stem cells and thiazolidinediones in streptozotocin-nicotinamide induced diabetic rats. Sci. Rep. 2018, 8, 9827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouwens, L.; Houbracken, I.; Mfopou, J.K. The use of stem cells for pancreatic regeneration in diabetes mellitus. Nat. Rev. Endocrinol. 2013, 9, 598–606. [Google Scholar] [CrossRef]
- Yeung, T.Y.; Seeberger, K.L.; Kin, T.; Adesida, A.; Jomha, N.; Shapiro, A.M.J.; Korbutt, G.S. Human Mesenchymal Stem Cells Protect Human Islets from Pro-Inflammatory Cytokines. PLoS ONE 2012, 7, e38189. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, B.; Gulanick, M.; Lamendola, C. Risk factors for type 2 diabetes mellitus. J. Cardiovasc. Nurs. 2002, 16, 17–23. [Google Scholar] [CrossRef]
- Zaky, A.S.; Kandeil, M.; Abdel-Gabbar, M.; Fahmy, E.M.; Almehmadi, M.M.; Ali, T.M.; Ahmed, O.M. The Antidiabetic Effects and Modes of Action of the Balanites aegyptiaca Fruit and Seed Aqueous Extracts in NA/STZ-Induced Diabetic Rats. Pharmaceutics 2022, 14, 263. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, J.K.; Rath, P.C. A Simple Method for Isolation, Propagation, Characterization, and Differentiation of Adult Mouse BoneMarrow-Derived Multipotent Mesenchymal Stem Cells. J. Cell Sci. Ther. 2017, 8, 1000261. [Google Scholar] [CrossRef]
- Ahmed, O.M.; Hassan, M.A.; Saleh, A.S. Combinatory effect of hesperetin and mesenchymal stem cells on the deteriorated lipid profile, heart and kidney functions and antioxidant activity in STZ-induced diabetic rats. Biocell 2020, 44, 27–29. [Google Scholar] [CrossRef]
- Ahmed, E.A.; Ahmed, O.M.; Fahim, H.I.; Mahdi, E.A.; Ali, T.M.; Elesawy, B.H.; Ashour, M.B. Combinatory Effects of Bone Marrow-Derived Mesenchymal Stem Cells and Indomethacin on Adjuvant-Induced Arthritis in Wistar Rats: Roles of IL-1β, IL-4, Nrf-2, and Oxidative Stress. Evid.-Based Complement. Altern. Med. 2021, 2021, 8899143. [Google Scholar] [CrossRef]
- Ahmed, R.H.; Galaly, S.R.; Moustafa, N.; Ahmed, R.R.; Ali, T.M.; Elesawy, B.H.; Ahmed, O.M.; Abdul-Hamid, M. Curcumin and Mesenchymal Stem Cells Ameliorate Ankle, Testis, and Ovary Deleterious Histological Changes in Arthritic Rats via Suppression of Oxidative Stress and Inflammation. Stem Cells Int. 2021, 2021, 3516834. [Google Scholar] [CrossRef]
- Yanai, G.; Hayashi, T.; Zhi, Q.; Yang, K.-C.; Shirouzu, Y.; Shimabukuro, T.; Hiura, A.; Inoue, K.; Sumi, S. Electrofusion of Mesenchymal Stem Cells and Islet Cells for Diabetes Therapy: A Rat Model. PLoS ONE 2013, 8, e64499. [Google Scholar] [CrossRef] [PubMed]
- Babiker, N.E.; Gassoum, A.; Abdelraheem, N.E.; Arbab, M.A.; Aldeaf, S.A.H.; El-Sheikh, M.A.A.; Musa, H.H. The progress of Stem cells in the treatment of diabetes mellitus type 1. Prog. Stem Cell 2017, 4, 175–188. [Google Scholar] [CrossRef]
- Rouhi, S.Z.T.; Sarker, M.R.; Rahmat, A.; Alkahtani, S.A.; Othman, F. The effect of pomegranate fresh juice versus pomegranate seed powder on metabolic indices, lipid profile, inflammatory biomarkers, and the histopathology of pancreatic islets of Langerhans in streptozotocin-nicotinamide induced type 2 diabetic Sprague–Dawley rats. BMC Complement. Altern. Med. 2017, 17, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Aziz, S.M.A.; Ahmed, O.M.; El-Twab, S.M.A.; Al-Muzafar, H.M.; Amin, K.A.; Abdel-Gabbar, M. Antihyperglycemic Effects and Mode of Actions of Musa paradisiaca Leaf and Fruit Peel Hydroethanolic Extracts in Nicotinamide/Streptozotocin-Induced Diabetic Rats. Evid.-Based Complement. Altern. Med. 2020, 2020, 9276343. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, O.M.; El-Twab, S.M.A.; Al-Muzafar, H.M.; Amin, K.A.; Aziz, S.M.A.; Abdel-Gabbar, M. Musa paradisiaca L. leaf and fruit peel hydroethanolic extracts improved the lipid profile, glycemic index and oxidative stress in nicotinamide/streptozotocin-induced diabetic rats. Vet. Med. Sci. 2020, 7, 500–511. [Google Scholar] [CrossRef] [PubMed]
- Pai, S.A.; Martis, E.A.; Munshi, R.P.; Gursahani, M.S.; Mestry, S.N.; Juvekar, A.R. Chrysin mitigated obesity by regulating energy intake and expenditure in rats. J. Tradit. Complement. Med. 2019, 10(6), 577–585. [Google Scholar] [CrossRef]
- Duncombe, W. The colorimetric micro-determination of non-esterified fatty acids in plasma. Clin. Chim. Acta 1964, 9, 122–125. [Google Scholar] [CrossRef]
- Seifter, S.; Dayton, S. The estimation of glycogen with the anthrone reagent. Arch. Biochem. 1950, 25, 191–200. [Google Scholar]
- Begum, N.; Moses, S.G.; Shanmugasundaram, K.R. Serum enzymes in human and experimental diabetes mellitus. Indian J. Med. Res. 1978, 68, 774–784. [Google Scholar]
- Stalmans, W.; Hers, H.-G. The Stimulation of Liver Phosphorylase b by AMP, Fluoride and Sulfate. A Technical Note on the Specific Determination of the a and b Forms of Liver Glycogen Phosphorylase. JBIC J. Biol. Inorg. Chem. 1975, 54, 341–350. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Bancroft, J.D.; Gamble, M. Theory and Practice of Histological Techniques, 6th ed.; Churchill Livingstone (Elsevier): London, UK, 2008. [Google Scholar]
- Suvarna, K.S.; Layton, C.; Bancroft, J.D. Bancroft’s Theory and Practice of Histological Techniques; Elsevier Health Sciences Elsevier Ltd.: London, UK, 2019. [Google Scholar] [CrossRef]
- Cemek, M.; Kaga, S.; Simsek, N.; Buyukokuroglu, M.E.; Konuk, M. Antihyperglycemic and antioxidative potential of Matricaria chamomilla L. in streptozotocin-induced diabetic rats. J. Nat. Med. 2008, 62, 284–293. [Google Scholar] [CrossRef] [PubMed]
- Zang, L.; Hao, H.; Liu, J.; Li, Y.; Han, W.; Mu, Y. Mesenchymal stem cell therapy in type 2 diabetes mellitus. Diabetol. Metab. Syndr. 2017, 9, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solis, M.A.; Velásquez, I.M.; Correa, R.; Huang, L.L.H. Stem cells as a potential therapy for diabetes mellitus: A call-to-action in Latin America. Diabetol. Metab. Syndr. 2019, 11, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Ishaq, R.K.; Abotaleb, M.; Kubatka, P.; Kajo, K.; Büsselberg, D. Flavonoids and Their Anti-Diabetic Effects: Cellular Mechanisms and Effects to Improve Blood Sugar Levels. Biomolecules 2019, 9, 430. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, O.M.; AbouZid, S.F.; Ahmed, N.A.; Zaky, M.Y.; Liu, H. An Up-to-Date Review on Citrus Flavonoids: Chemistry and Benefits in Health and Diseases. Curr. Pharm. Des. 2021, 27, 513–530. [Google Scholar] [CrossRef]
- Masiello, P. Animal models of type 2 diabetes with reduced pancreatic β-cell mass. Int. J. Biochem. Cell Biol. 2006, 38, 873–893. [Google Scholar] [CrossRef]
- Punitha, I.R.; Rajendran, K.; Shirwaikar, A.; Shirwaikar, A. Alcoholic Stem Extract of Coscinium fenestratum Regulates Carbohydrate Metabolism and Improves Antioxidant Status in Streptozotocin–Nicotinamide Induced Diabetic Rats. Evid.-Based Complement. Altern. Med. 2005, 2, 375–381. [Google Scholar] [CrossRef] [Green Version]
- Veerapur, V.; Prabhakar, K.; Kandadi, M.; Srinivasan, K.; Unnikrishnan, M. Antidiabetic effect of Dodonaea viscosa aerial parts in high fat diet and low dose streptozotocin-induced type 2 diabetic rats: A mechanistic approach. Pharm. Biol. 2010, 48, 1137–1148. [Google Scholar] [CrossRef]
- Schaalan, M.; El-Abhar, H.S.; Barakat, M.; El-Denshary, E.S. Westernized-like-diet-fed rats: Effect on glucose homeostasis, lipid profile, and adipocyte hormones and their modulation by rosiglitazone and glimepiride. J. Diabetes Its Complicat. 2009, 23, 199–208. [Google Scholar] [CrossRef]
- Ruan, H.; Dong, L.Q. Adiponectin signaling and function in insulin target tissues. J. Mol. Cell Biol. 2016, 8, 101–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vinayagam, R.; Xu, B. Antidiabetic properties of dietary flavonoids: A cellular mechanism review. Nutr. Metab. 2015, 12, 60. [Google Scholar] [CrossRef]
- Granata, R.; Volante, M.; Settanni, F.; Gauna, C.; Ghé, C.; Annunziata, M.; Deidda, B.; Gesmundo, I.; Abribat, T.; van der Lely, A.-J.; et al. Unacylated ghrelin and obestatin increase islet cell mass and prevent diabetes in streptozotocin-treated newborn rats. J. Mol. Endocrinol. 2010, 45, 9–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, H.; Liu, J.; Shen, J.; Zhao, Y.; Liu, H.; Hou, Q.; Tong, C.; Ti, D.; Dong, L.; Cheng, Y.; et al. Multiple intravenous infusions of bone marrow mesenchymal stem cells reverse hyperglycemia in experimental type 2 diabetes rats. Biochem. Biophys. Res. Commun. 2013, 436, 418–423. [Google Scholar] [CrossRef] [PubMed]
- Al-Hariri, M.T.; Eldin, T.A.G.; Al-Harb, M.M. Protective effect and potential mechanisms of propolis on streptozotocin-induced diabetic rats. J. Taibah Univ. Med. Sci. 2016, 11, 7–12. [Google Scholar] [CrossRef] [Green Version]
- El-Bassossy, H.M.; Abo-Warda, S.M.; Fahmy, A. Chrysin and Luteolin Alleviate Vascular Complications Associated with Insulin Resistance Mainly Through PPAR-γ Activation. Am. J. Chin. Med. 2014, 42, 1153–1167. [Google Scholar] [CrossRef]
- Kapoor, R.; Kakkar, P. Naringenin accords hepatoprotection from streptozotocin induced diabetes in vivo by modulating mitochondrial dysfunction and apoptotic signaling cascade. Toxicol. Rep. 2014, 1, 569–581. [Google Scholar] [CrossRef] [Green Version]
- Mahmoud, M.F.; Hassan, N.A.; El-Bassossy, H.; Fahmy, A. Quercetin Protects against Diabetes-Induced Exaggerated Vasoconstriction in Rats: Effect on Low Grade Inflammation. PLoS ONE 2013, 8, e63784. [Google Scholar] [CrossRef]
- Oh, Y.S.; Bae, G.D.; Baek, D.J.; Park, E.-Y.; Jun, H.-S. Fatty Acid-Induced Lipotoxicity in Pancreatic Beta-Cells During Development of Type 2 Diabetes. Front. Endocrinol. 2018, 9, 384. [Google Scholar] [CrossRef]
- Unger, R.H. Lipotoxicity in the Pathogenesis of Obesity-Dependent NIDDM: Genetic and Clinical Implications. Diabetes 1995, 44, 863–870. [Google Scholar] [CrossRef]
- Randle, P.; Garland, P.; Hales, C.; Newsholme, E. The Glucose Fatty-Acid Cycle Its Role In Insulin Sensitivity and the Metabolic Disturbances of Diabetes Mellitus. Lancet 1963, 281, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Lewis, G.F.; Carpentier, A.; Adeli, K.; Giacca, A. Disordered Fat Storage and Mobilization in the Pathogenesis of Insulin Resistance and Type 2 Diabetes. Endocr. Rev. 2002, 23, 201–229. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Lee, C.; Tsai, S.; Huang, C.; Wu, M.; Tai, S.; Lin, F.; Chao, N.; Chang, C. Association Between Serum Leptin and Adiponectin Levels with Risk of Insulin Resistance and Impaired Glucose Tolerance in Non-diabetic Women. Kaohsiung J. Med. Sci. 2009, 25, 116–125. [Google Scholar] [CrossRef] [Green Version]
- Tomas, E.; Tsao, T.-S.; Saha, A.K.; Murrey, H.E.; Zhang, C.C.; Itani, S.I.; Lodish, H.F.; Ruderman, N.B. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: Acetyl–CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc. Natl. Acad. Sci. USA 2002, 99, 16309–16313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamauchi, T.; Kamon, J.; Waki, H.; Terauchi, Y.; Kubota, N.; Hara, K.; Mori, Y.; Ide, T.; Murakami, K.; Tsuboyama-Kasaoka, N.; et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 2001, 7, 941–946. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, T.; Kamon, J.; Ito, Y.; Tsuchida, A.; Yokomizo, T.; Kita, S.; Sugiyama, T.; Miyagishi, M.; Hara, K.; Tsunoda, M.; et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 2003, 423, 762–769. [Google Scholar] [CrossRef]
- Ajuwon, K.M.; Spurlock, M.E. Adiponectin inhibits LPS-induced NF-κB activation and IL-6 production and increases PPARγ2 expression in adipocytes. Am. J. Physiol. Integr. Comp. Physiol. 2005, 288, R1220–R1225. [Google Scholar] [CrossRef]
- Mather, K.J.; Funahashi, T.; Matsuzawa, Y.; Edelstein, S.; Bray, G.A.; Kahn, S.E.; Crandall, J.; Marcovina, S.; Goldstein, B.; Goldberg, R.; et al. Adiponectin, Change in Adiponectin, and Progression to Diabetes in the Diabetes Prevention Program. Diabetes 2008, 57, 980–986. [Google Scholar] [CrossRef] [Green Version]
- Ohashi, K.; Ouchi, N.; Matsuzawa, Y. Anti-inflammatory and anti-atherogenic properties of adiponectin. Biochimie 2012, 94, 2137–2142. [Google Scholar] [CrossRef]
- Kim, K.-H.; Lee, K.; Moon, Y.S.; Sul, H.S.; Matter, N.; Marx, M.; Weg-Remers, S.; Ponta, H.; Herrlich, P.; König, H. A Cysteine-rich Adipose Tissue-specific Secretory Factor Inhibits Adipocyte Differentiation. J. Biol. Chem. 2001, 276, 11252–11256. [Google Scholar] [CrossRef] [Green Version]
- Rajala, M.W.; Qi, Y.; Patel, H.R.; Takahashi, N.; Banerjee, R.; Pajvani, U.B.; Sinha, M.K.; Gingerich, R.L.; Scherer, P.E.; Ahima, R.S. Regulation of Resistin Expression and Circulating Levels in Obesity, Diabetes, and Fasting. Diabetes 2004, 53, 1671–1679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lochhead, P.A.; Salt, I.P.; Walker, K.S.; Hardie, D.G.; Sutherland, C. 5-aminoimidazole-4-carboxamide riboside mimics the effects of insulin on the expression of the 2 key gluconeogenic genes PEPCK and glucose-6-phosphatase. Diabetes 2000, 49, 896–903. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, R.R.; Rangwala, S.M.; Shapiro, J.S.; Rich, A.S.; Rhoades, B.; Qi, Y.; Wang, J.; Rajala, M.W.; Pocai, A.; Scherer, P.E.; et al. Regulation of Fasted Blood Glucose by Resistin. Science 2004, 303, 1195–1198. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Ma, X.; Zhang, L.; Sun, H.; Liu, X. Capsaicin Reduces Blood Glucose by Increasing Insulin Levels and Glycogen Content Better than Capsiate in Streptozotocin-Induced Diabetic Rats. J. Agric. Food Chem. 2017, 65, 2323–2330. [Google Scholar] [CrossRef]
- Iftikhar, A.; Aslam, B.; Iftikhar, M.; Majeed, W.; Batool, M.; Zahoor, B.; Amna, N.; Gohar, H.; Latif, I. Effect of Caesalpinia bonduc Polyphenol Extract on Alloxan-Induced Diabetic Rats in Attenuating Hyperglycemia by Upregulating Insulin Secretion and Inhibiting JNK Signaling Pathway. Oxidative Med. Cell. Longev. 2020, 2020, 9020219. [Google Scholar] [CrossRef]
- Ahmed, O.M.; Mahmoud, A.M.; Abdel-Moneim, A.; Ashour, M.B. Antidiabetic effects of hesperidin and naringin in type 2 diabetic rats. Diabetol. Croat. 2012, 41, 53–67. [Google Scholar]
- Ali, A.M.; Gabbar, M.A.; Abdel-Twab, S.M.; Fahmy, E.M.; Ebaid, H.; Alhazza, I.M.; Ahmed, O.M. Antidiabetic Potency, Antioxidant Effects, and Mode of Actions of Citrus reticulata Fruit Peel Hydroethanolic Extract, Hesperidin, and Quercetin in Nicotinamide/Streptozotocin-Induced Wistar Diabetic Rats. Oxidative Med. Cell. Longev. 2020, 2020, 1–22. [Google Scholar] [CrossRef]
- Ahmed, O.M.; Moneim, A.A.; Yazid, I.A.; Mahmoud, A.M. Antihyperglycemic, antihyperlipidemic and antioxidant effects and the probable mechanisms of action of Rutagraveolens infusion and rutin in nicotinamide-streptozotocin-induced diabetic rats. Diabetol. Croat. 2010, 39, 15–35. [Google Scholar]
- Pari, L.; Suman, S. Antihyperglycemic and antilipidperoxidative effects of flavonoid naringin in streptozotocin-nicotinamide induced diabetic rats. Int. J. Biol. Med. Res. 2010, 1, 206–210. [Google Scholar]
- Morral, N. Novel targets and therapeutic strategies for type 2 diabetes. Trends Endocrinol. Metab. 2003, 14, 169–175. [Google Scholar] [CrossRef]
- Ahmed, O.M. The hypoglycemic effect of curcumin and esculetin and their probable mechanisms of action in streptozotocin diabetic albino rats. J. Egypt. Ger. Soc. Zool. 2005, 46, 351–375. [Google Scholar]
- Rehman, K.; Akash, M.S.H. Mechanisms of inflammatory responses and development of insulin resistance: How are they interlinked? J. Biomed. Sci. 2016, 23, 87. [Google Scholar] [CrossRef] [Green Version]
- Hanchang, W.; Khamchan, A.; Wongmanee, N.; Seedadee, C. Hesperidin ameliorates pancreatic β-cell dysfunction and apoptosis in streptozotocin-induced diabetic rat model. Life Sci. 2019, 235, 116858. [Google Scholar] [CrossRef] [PubMed]
- Tsalamandris, S.; Antonopoulos, A.S.; Oikonomou, E.; Papamikroulis, G.-A.; Vogiatzi, G.; Papaioannou, S.; Deftereos, S.; Tousoulis, D. The Role of Inflammation in Diabetes: Current Concepts and Future Perspectives. Eur. Cardiol. Rev. 2019, 14, 50–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahad, A.; Ganai, A.A.; Mujeeb, M.; Siddiqui, W.A. Chrysin, an anti-inflammatory molecule, abrogates renal dysfunction in type 2 diabetic rats. Toxicol. Appl. Pharmacol. 2014, 279, 1–7. [Google Scholar] [CrossRef]
- Li, Y.; Liu, J.; Liao, G.; Zhang, J.; Chen, Y.; Li, L.; Li, L.; Liu, F.; Chen, B.; Guo, G.; et al. Early intervention with mesenchymal stem cells prevents nephropathy in diabetic rats by ameliorating the inflammatory microenvironment. Int. J. Mol. Med. 2018, 41, 2629–2639. [Google Scholar] [CrossRef]
- Jiang, L.Q.; Franck, N.; Egan, B.; Sjögren, R.J.O.; Katayama, M.; Duque-Guimaraes, D.; Arner, P.; Zierath, J.R.; Krook, A. Autocrine role of interleukin-13 on skeletal muscle glucose metabolism in type 2 diabetic patients involves microRNA let-7. Am. J. Physiol. Metab. 2013, 305, 1359–1366. [Google Scholar] [CrossRef] [Green Version]
- Chan, M.H.S.; Carey, A.L.; Watt, M.J.; Febbraio, M.A. Cytokine gene expression in human skeletal muscle during concentric contraction: Evidence that IL-8, like IL-6, is influenced by glycogen availability. Am. J. Physiol. Integr. Comp. Physiol. 2004, 287, 322–327. [Google Scholar] [CrossRef] [Green Version]
- Machado, M.V.; Yang, Y.; Diehl, A.M. The benefits of restraint: A pivotal role for IL-13 in hepatic glucose homeostasis. J. Clin. Investig. 2012, 123, 115–117. [Google Scholar] [CrossRef] [Green Version]
- Maedler, K.; Størling, J.; Sturis, J.; Zuellig, R.A.; Spinas, G.A.; Arkhammar, P.O.; Mandrup-Poulsen, T.; Donath, M.Y. Glucose- and Interleukin-1β-Induced β-Cell Apoptosis Requires Ca2+ Influx and Extracellular Signal-Regulated Kinase (ERK) 1/2 Activation and Is Prevented by a Sulfonylurea Receptor 1/Inwardly Rectifying K+ Channel 6.2 (SUR/Kir6.2) Selective Potassium Channel Opener in Human Islets. Diabetes 2004, 53, 1706–1713. [Google Scholar] [CrossRef] [Green Version]
- Stanya, K.; Jacobi, D.; Liu, S.; Bhargava, P.; Dai, L.; Gangl, M.R.; Inouye, K.; Barlow, J.L.; Ji, Y.; Mizgerd, J.; et al. Direct control of hepatic glucose production by interleukin-13 in mice. J. Clin. Investig. 2013, 123, 261–271. [Google Scholar] [CrossRef] [PubMed]
Groups | AUC (mg/dL × 120 min) × 102 | % Change |
---|---|---|
Normal | 81.57 ± 4.71 a | |
Diabetic control | 478.94 ± 21.85 d | 487.15 |
Diabetic treated with chrysin | 334.83 ± 28.99 b,c | −30.09 |
Diabetic treated with BM-MSCs | 385.88 ± 10.84 c | −19.43 |
Diabetic treated with chrysin and BM-MSCs | 306.36 ± 30.50 b | −36.03 |
F-probability | p < 0.001 |
Groups | Insulin (ng/mL) | % Change | C-Peptide (pg/mL) | % Change |
---|---|---|---|---|
Normal | 2.92 ± 0.10 c | 8.93 ± 0.43 c | ||
Diabetic control | 1.03 ± 0.02 a | −64.86 | 2.53 ± 0.15 a | −71.64 |
Diabetic treated with chrysin | 2.29 ± 0.08 b | 122.98 | 5.1 ± 0.11 b | 101.34 |
Diabetic treated with BM-MSCs | 2.43 ± 0.13 b | 136.90 | 6.17 ± 0.27 b | 143.70 |
Diabetic treated with chrysin and BM-MSCs | 2.45 ± 0.05 b | 138.56 | 5.83 ± 0.43 b | 130.28 |
F-probability | p < 0.001 | p < 0.001 |
Groups | FFAs (mg/dL) | % Change |
---|---|---|
Normal | 14.72 ± 0.34 a | |
Diabetic control | 26.45 ± 1.47 b | 79.69 |
Diabetic treated with chrysin | 17.56 ± 0.50 a | −33.61 |
Diabetic treated with BM-MSCs | 17.46 ± 0.39 a | −33.99 |
Diabetic treated with chrysin and BM-MSCs | 15.48 ± 0.93 a | −41.47 |
F-probability | p < 0.001 |
Groups | Liver Glycogen (mg/g Tissue) | % Change | G-6-Pase (mg Pi Liberated/g Tissue/Hour) | % Change | Glycogen Phosphorylase (mg Pi Liberated/g Tissue/Hour) | % Change |
---|---|---|---|---|---|---|
Normal | 36.84 ± 1.10 d | 14.89 ± 0.67 a | 11.69 ± 0.50 a | |||
Diabetic control | 16.76 ± 0.34 a | −52.69 | 28.75 ± 0.67 d | 93.08 | 25.78 ± 0.48 d | 120.53 |
Diabetic treated with chrysin | 23.54 ± 1.1 b | 40.45 | 18.44 ± 0.73 b | −35.86 | 18.83 ± 0.29 b,c | −26.96 |
Diabetic treated with BM-MSCs | 21.01 ± 0.25 b | 25.36 | 20.01 ± 0.94 b,c | −30.40 | 16.47 ± 0.88 b | −36.11 |
Diabetic treated with chrysin and BM-MSCs | 28.19 ± 1.19 c | 68.20 | 21.77 ± 0.63 c | −24.28 | 19.03 ± 0.56 c | −26.18 |
F-probability | p < 0.001 | p < 0.001 | p < 0.001 |
Groups | IL-1β (pg/mL) | % Change | TNF-α (pg/mL) | % Change | IL-13 (pg/mL) | % Change |
---|---|---|---|---|---|---|
Normal | 15.23 ± 0.82 a | 42.7 ± 1.45 a | 116.30 ± 3.01 c | |||
Diabetic control | 91.43 ± 4.55 d | 500.33 | 138.3 ± 7.71 d | 223.89 | 55.13 ± 6.35 a | −52.60 |
Diabetic treated with chrysin | 31.90 ± 2.75 b | −65.11 | 65.07 ± 1.85 b | −52.95 | 97.13 ± 1.42 b | 76.18 |
Diabetic treated with BM-MSCs | 39.47 ± 5.58 b,c | −56.83 | 94.5 ± 2.41 c | −31.67 | 95.67 ± 3.49 b | 73.54 |
Diabetic treated with chrysin and BM-MSCs | 49.07 ± 2.56 c | −46.33 | 44.1 ± 2.08 a | −68.11 | 93.03 ± 6.36 b | 68.75 |
F-probability | p < 0.001 | p < 0.001 | p < 0.001 |
Groups | Integrated Density | % Change | Area Fraction | % Change |
---|---|---|---|---|
Normal | 28,094 ± 237.1 e | 13.74 ± 0.12 e | ||
Diabetic control | 772.3 ± 19.0 a | −97.25 | 0.38 ± 0.01 a | −97.23 |
Diabetic treated with chrysin | 6111 ± 576.2 c | 691.27 | 2.99 ± 0.28 c | 686.84 |
Diabetic treated with BM-MSCs | 3917 ± 600.2 b | 407.19 | 1.92 ± 0.29 b | 404.74 |
Diabetic treated with chrysin and BM-MSCs | 11,245 ± 196 d | 1356.04 | 5.31 ± 0.19 d | 1297.11 |
F-probability | p < 0.001 | p < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sayed, H.M.; Awaad, A.S.; Abdel Rahman, F.E.-Z.S.; Al-Dossari, M.; Abd El-Gawaad, N.S.; Ahmed, O.M. Combinatory Effect and Modes of Action of Chrysin and Bone Marrow-Derived Mesenchymal Stem Cells on Streptozotocin/Nicotinamide-Induced Diabetic Rats. Pharmaceuticals 2023, 16, 34. https://doi.org/10.3390/ph16010034
Sayed HM, Awaad AS, Abdel Rahman FE-ZS, Al-Dossari M, Abd El-Gawaad NS, Ahmed OM. Combinatory Effect and Modes of Action of Chrysin and Bone Marrow-Derived Mesenchymal Stem Cells on Streptozotocin/Nicotinamide-Induced Diabetic Rats. Pharmaceuticals. 2023; 16(1):34. https://doi.org/10.3390/ph16010034
Chicago/Turabian StyleSayed, Hesham M., Ashraf S. Awaad, Fatma El-Zahraa S. Abdel Rahman, M. Al-Dossari, N. S. Abd El-Gawaad, and Osama M. Ahmed. 2023. "Combinatory Effect and Modes of Action of Chrysin and Bone Marrow-Derived Mesenchymal Stem Cells on Streptozotocin/Nicotinamide-Induced Diabetic Rats" Pharmaceuticals 16, no. 1: 34. https://doi.org/10.3390/ph16010034
APA StyleSayed, H. M., Awaad, A. S., Abdel Rahman, F. E. -Z. S., Al-Dossari, M., Abd El-Gawaad, N. S., & Ahmed, O. M. (2023). Combinatory Effect and Modes of Action of Chrysin and Bone Marrow-Derived Mesenchymal Stem Cells on Streptozotocin/Nicotinamide-Induced Diabetic Rats. Pharmaceuticals, 16(1), 34. https://doi.org/10.3390/ph16010034