Polymeric/Dextran Wafer Dressings as Promising Long-Acting Delivery Systems for Curcumin Topical Delivery and Enhancing Wound Healing in Male Wistar Albino Rats
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation of Curcumin-Loaded Wafer Dressings
2.2. Characterization of Curcumin Loaded Wafer Dressings
2.3. XRD, DSC and FTIR Studies
2.4. In Vitro Release of Selected Curcumin-Loaded Wafer Dressings
2.5. Skin Wound Healing Studies
3. Materials and Methods
3.1. Preparation of Curcumin-Loaded Wafer Dressings
3.2. Characterization of Curcumin Wafer Dressings
3.2.1. Dimension, Drug Content, pH Measurements
3.2.2. Folding Endurance and Mechanical Properties
3.2.3. Erosion Time
3.3. X-ray Diffraction (XRD)
3.4. Differential Scanning Calorimetry (DSC)
3.5. Fourier Transform Infrared Spectroscopic (FTIR) Study
3.6. In Vitro Release Studies
3.7. Wound Healing Study
3.7.1. Animals
3.7.2. Wound Incision Model and Treatment
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Atiyeh, B.S.; Ioannovich, J.; Al-Amm, C.A.; El-Musa, K.A. Management of acute and chronic open wounds: The importance of moist environment in optimal wound healing. Curr. Pharm. Biotechnol. 2002, 3, 179–195. [Google Scholar] [CrossRef] [PubMed]
- Gould, L.; Abadir, P.; Brem, H.; Carter, M.; Conner-Kerr, T.; Davidson, J.; DiPietro, L.A.; Falanga, V.; Fife, C.E.; Gardner, S.E.; et al. Chronic wound repair and healing in older adults: Current status and future research. J. Am. Geriatr. Soc. 2015, 63, 427–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spichler, A.; Hurwitz, B.L.; Armstrong, D.G.; Lipsky, B.A. Microbiology of diabetic foot infections: From Louis Pasteur to ‘crime scene investigation’. BMC Med. 2015, 13, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartford, C.E. Care of outpatient burns. In Advanced Textiles for Wound Care; Herndon, D.N., Ed.; Elsevier Inc.: New York, NY, USA, 2012; pp. 81–92. [Google Scholar]
- Gupta, B.S.; Edwards, J.V. Textile materials and structures for wound care products. In Advanced Textiles for Wound Care; Rajendran, S., Ed.; Elsevier: Alpharetta, GA, USA; Woodhead Publishing Limited: Sawston, UK, 2009; pp. 323–335. [Google Scholar]
- Akiyode, O.; Boateng, J. Composite Biopolymer-based wafer dressings loaded with microbial biosurfactants for potential application in chronic wounds. Polymers 2018, 10, 918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alven, S.; Aderibigbe, B.A. Chitosan and cellulose-based hydrogels for wound management. Int. J. Mol. Sci. 2020, 21, 9656. [Google Scholar] [CrossRef] [PubMed]
- Alven, S.; Nqoro, X.; Aderibigbe, B.A. Polymer-based materials loaded with curcumin for wound healing applications. Polymers 2020, 12, 2286. [Google Scholar] [CrossRef]
- Hussain, Z.; Thu, H.E.; Shuid, A.N.; Katas, H.; Hussain, F. Recent advances in polymer-based wound dressings for the treatment of diabetic foot ulcer: An overview of State-of-the-art. Curr. Drug Targets 2017, 18, 527–550. [Google Scholar] [CrossRef]
- Alven, S.; Peter, S.; Mbese, Z.; Aderibigbe, B.A. Polymer-based wound dressing materials loaded with bioactive agents: Potential materials for the treatment of diabetic wounds. Polymers 2022, 14, 724. [Google Scholar] [CrossRef]
- Aderibigbe, B.A.; Buyana, B. Alginate in wound dressings. Pharmaceutics 2018, 10, 42. [Google Scholar] [CrossRef] [Green Version]
- Adamczak, A.; Ożarowski, M.; Karpiński, T. Curcumin, a natural antimicrobial agent with strain-specific activity. Pharmaceuticals 2020, 13, 153. [Google Scholar] [CrossRef]
- Akkol, E.K.; Renda, G.; Ilhan, M.; Bektaş, N.Y. Wound healing acceleration and anti-inflammatory potential of Prunella vulgaris L.: From conventional use to preclinical scientific verification. J. Ethnopharmacol. 2022, 27, 115411. [Google Scholar] [CrossRef] [PubMed]
- Vollono, L.; Falconi, M.; Gaziano, R.; Iacovelli, F.; Dika, E.; Terracciano, C. Potential of curcumin in skin disorders. Nutrients 2019, 11, 2169. [Google Scholar] [PubMed] [Green Version]
- Zhang, D.W.; Fu, M.; Gao, S.H.; Liu, J.L. Curcumin and diabetes: A systematic review. Evid.-Based Complement. Altern. Med. 2013, 2013, 636053. [Google Scholar] [CrossRef] [Green Version]
- Pawar, H.V.; Tetteh, J.; Boateng, J.S. Preparation, optimisation and characterisation of novel wound healing film dressings loaded with streptomycin and diclofenac. Colloids Surf. B Biointerfaces 2013, 102, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Bdelkader, H.; Wertheim, D.; Pierscionek, B.; Alany, R.G. Curcumin in situ gelling polymeric insert with enhanced ocular performance. Pharmaceutics 2020, 12, 1158. [Google Scholar] [CrossRef]
- Snejdrova, E.; Dittrich, M. Pharmaceutically used plasticizers. In Recent Advances in Plasticizers; Luqman, M., Ed.; InTech: Rijeka, Croatia, 2012; pp. 45–68. [Google Scholar]
- Culver, N. Dextran. In Handbook of Pharmaceutical Excipients; Sheskey, P., Cook, W., Cable, C., Eds.; Pharmaceutical Press: New York, NY, USA, 2017; pp. 298–302. [Google Scholar]
- Sun, G.; Zhang, X.; Shen, Y.-I.; Sebastian, R.; Dickinson, L.E.; Fox-Talbot, K.; Reinblatt, M.; Steenbergen, C.; Harmon, J.W.; Gerecht, S. Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing. Proc. Natl. Acad. Sci. USA 2011, 108, 20976–20981. [Google Scholar] [CrossRef] [Green Version]
- Abdelkader, H.; Pierscionek, B.; Alany, R.G. Novel in situ gelling ocular films for the opioid growth factor-receptor antagonist-naltrexone hydrochloride: Fabrication, mechanical properties, mucoadhesion, tolerability and stability studies. Int. J. Pharm. 2014, 477, 631–642. [Google Scholar] [CrossRef]
- Abdelkader, H.; Abdallah, O.Y.; Salem, H.S. Comparison of the effect of tromethamine and polyvinylpyrrolidone on dissolution properties and analgesic effect of nimesulide. AAPS PharmSciTech 2007, 8, E1–E8. [Google Scholar] [CrossRef] [Green Version]
- Gardikis, K.; Hatziantoniou, S.; Viras, K.; Demetzos, C. Effect of a bioactive curcumin derivative on DPPC membrane: A DSC and Raman spectroscopy study. Thermochim. Acta 2006, 447, 1–4. [Google Scholar] [CrossRef]
- Paradkar, A.; Ambike, A.A.; Jadhav, B.K.; Mahadik, K. Characterization of curcumin–PVP solid dispersion obtained by spray drying. Int. J. Pharm. 2004, 271, 281–286. [Google Scholar] [CrossRef]
- Jain, D.; Carvalho, E.; Banerjee, R. Biodegradable hybrid polymeric membranes for ocular drug delivery. Acta Biomater. 2010, 6, 370–1379. [Google Scholar] [CrossRef] [PubMed]
- Maharjan, P.; Jin, M.; Kim, D.; Yang, J.; Maharjan, A.; Shin, M.C.; Cho, K.H.; Kim, M.S.; Min, K.A. Evaluation of epithelial transport and oxidative stress protection of nanoengineered curcumin derivative-cyclodextrin formulation for ocular delivery. Arch. Pharm. Res. 2019, 42, 909–925. [Google Scholar]
- Athira, G.; Jyothi, A. Preparation and characterization of curcumin loaded cassava starch nanoparticles with improved cellular absorption. Int. J. Pharm. Pharm. Sci. 2014, 6, 171–176. [Google Scholar]
- Jones, V.; Grey, J.; Harding, K. ABC of wound healing and wound dressings. BMJ 2006, 332, 777–780. [Google Scholar] [CrossRef] [PubMed]
- Gharibi, R.; Yeganeh, H.; Rezapour-Lactoee, A.; Hassan, Z.M. Stimulation of wound healing by electroactive, antibacterial, and antioxidant polyurethane/siloxane dressing membranes: In vitro and in vivo evaluations. ACS Appl. Mater. Interfaces 2015, 7, 24296–24311. [Google Scholar] [CrossRef]
- Cukjati, D.; Reberšek, S.; Miklavčič, D. A reliable method of determining wound healing rate. Med. Biol. Eng. Comput. 2001, 39, 263–271. [Google Scholar] [CrossRef]
- Vidal, A.; Zerón, H.M.; Giacaman, I.; Romero, M.D.S.C.; López, S.P.; Trillo, L.E.M. A simple mathematical model for wound closure evaluation. J. Am. Coll. Clin. Wound Spec. 2016, 7, 40–49. [Google Scholar] [CrossRef] [Green Version]
- Lee, O.J.; Kim, J.-H.; Moon, B.M.; Chao, J.R.; Yoon, J.; Ju, H.W.; Lee, J.M.; Park, H.J.; Kim, D.W.; Kim, S.J.; et al. Fabrication and characterization of hydrocolloid dressing with silk fibroin nanoparticles for wound healing. Tissue Eng. Regen. Med. 2016, 13, 218–226. [Google Scholar] [CrossRef]
- Niknam, S.; Tofighi, Z.; Faramarzi, M.A.; Abdollahifar, M.A.; Sajadi, E.; Dinarvand, R.; Toliyat, T. Polyherbal combination for wound healing: Matricaria chamomilla L. and Punica granatum L. DARU J. Pharm. Sci. 2021, 29, 133–145. [Google Scholar] [CrossRef]
Formulation | F1 | F2 | F3 | F5 | F6 | F7 |
---|---|---|---|---|---|---|
Content (mg) | 2.0 ± 0.4 | 1.85 ± 0.3 | 1.9 ± 0.3 | 1.95 ± 0.3 | 10 ± 0.5 | 20 ± 1.0 |
Weight (mg) | 112 ± 5.5 | 114 ± 6.5 | 115 ± 7.0 | 118 ± 8.0 | 130 ± 10.0 | 135 ± 12.0 |
Thickness (µm) | 210 ± 10 | 200 ± 5.0 | 205 ± 15 | 210 ± 10 | 310 ± 5.5 | 325 ± 6.5 |
pH | 7 | 7 | 7 | 7 | 7 | 7 |
Folding endurance | 10 ± 3.0 | 10 ± 1.0 | 3 ± 1.0 | 10 ± 2.0 | 8 ± 2.0 | 6 ± 4.0 |
Toughness (mN) | 12,078 ± 453 | 22,537 ± 541 | 3067 ± 321 | 39,067 ± 342 | 7112 ± 711 | 3894 ± 781 |
Extensibility (mm) | 126 ± 13.0 | 125 ± 11.0 | 126 ± 1.0 | 125 ± 2.0 | 126 ± 2.0 | 123 ± 2.0 |
Erosion time (min) | 30 ± 3.5 | 18 ± 4.0 | 5 ± 2.5 | 5 ± 1.5 | 10 ± 5 | 15 ± 2.0 |
Formula | Zero | First | Higuchi | Korsmeyer–Peppas | |||||
---|---|---|---|---|---|---|---|---|---|
R | K0 | R | K | R | KH | R | K | n | |
F1 | 0.91 | 1.18 | 0.94 | 2.75 | 0.99 | 8.51 | 0.79 | 7.02 | 0.56 |
F5 | 0.8 | 1.20 | 0.91 | 1.42 | 0.94 | 5.24 | 0.81 | 3.8 | 0.55 |
F6 | 0.84 | 0.74 | 0.88 | 0.67 | 0.97 | 3.3 | 0.81 | 3.01 | 0.51 |
F7 | 0.77 | 0.71 | 0.81 | 0.53 | 0.94 | 2.45 | 0.91 | 1.89 | 0.52 |
Formulation | Healing Rate (Day−1) | T1/2 (Days) | Regression Coefficient (R) |
---|---|---|---|
Drug-free wafer | 0.032 ± 0.005 | 20 ± 3.0 | 0.95 |
Curcumin suspension | 0.043 ± 0.003 * | 13 ± 1.5 * | 0.97 |
F5 (2 mg) | 0.058 ± 0.002 * | 10 ± 1.0 * | 0.99 |
F6 (10 mg) | 0.095 ± 0.007 * | 7.0 ± 1.0 * | 0.98 |
F7 (20 mg) | 0.095 ± 0.007 ** | 8.5 ± 1.5 ** | 0.97 |
Formulation | F1 | F2 | F3 | F4 | F5 | F6 | F7 |
---|---|---|---|---|---|---|---|
Curcumin (mg) | 34 | 34 | 34 | 34 | 34 | 170 | 340 |
HPMC 5% (g) | 20 | - | - | - | 5 | 5 | 5 |
CMC 5% (g) | - | 20 | - | - | 5 | 5 | 5 |
SA 5% (g) | - | - | 20 | - | 5 | 5 | 5 |
PVP K15 10% (g) | - | - | - | 10 | 2.5 | 2.5 | 2.5 |
PVA 5% (g) | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Dextran (mg) | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
PEG 1000 (mg) | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Glycerin (mg) | 250 | 250 | 250 | 250 | 250 | 280 | 310 |
Groups (n = 5) | Treatment/Dosage |
---|---|
Group I | Placebo/drug free-wafer dressing applied every other day |
Group II | Curcumin suspension (10 mg/mL)/1 mL applied every other day |
Group III | F5 applied every other day |
Group IV | F6 applied every other day |
Group V | F7 applied every other day |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Fatease, A.; Abourehab, M.A.S.; Alqahtani, A.M.; Chidambaram, K.; Qureshi, A.A.; Venkatesan, K.; Alshahrani, S.M.; Abdelkader, H. Polymeric/Dextran Wafer Dressings as Promising Long-Acting Delivery Systems for Curcumin Topical Delivery and Enhancing Wound Healing in Male Wistar Albino Rats. Pharmaceuticals 2023, 16, 38. https://doi.org/10.3390/ph16010038
Al Fatease A, Abourehab MAS, Alqahtani AM, Chidambaram K, Qureshi AA, Venkatesan K, Alshahrani SM, Abdelkader H. Polymeric/Dextran Wafer Dressings as Promising Long-Acting Delivery Systems for Curcumin Topical Delivery and Enhancing Wound Healing in Male Wistar Albino Rats. Pharmaceuticals. 2023; 16(1):38. https://doi.org/10.3390/ph16010038
Chicago/Turabian StyleAl Fatease, Adel, Mohammed A. S. Abourehab, Ali M. Alqahtani, Kumarappan Chidambaram, Absar Ahmed Qureshi, Krishnaraju Venkatesan, Sultan M. Alshahrani, and Hamdy Abdelkader. 2023. "Polymeric/Dextran Wafer Dressings as Promising Long-Acting Delivery Systems for Curcumin Topical Delivery and Enhancing Wound Healing in Male Wistar Albino Rats" Pharmaceuticals 16, no. 1: 38. https://doi.org/10.3390/ph16010038
APA StyleAl Fatease, A., Abourehab, M. A. S., Alqahtani, A. M., Chidambaram, K., Qureshi, A. A., Venkatesan, K., Alshahrani, S. M., & Abdelkader, H. (2023). Polymeric/Dextran Wafer Dressings as Promising Long-Acting Delivery Systems for Curcumin Topical Delivery and Enhancing Wound Healing in Male Wistar Albino Rats. Pharmaceuticals, 16(1), 38. https://doi.org/10.3390/ph16010038