A Review of Synthetic Access to Therapeutic Compounds Extracted from Psilocybe
Abstract
:1. Introduction
2. Results and Discussion
2.1. Original Hofmann Synthesis and Its Several Improvements
2.2. Synthesis of Isotopically Labeled Psilocin and Other Psilocin Synthesis
2.3. Metallo-Catalyzed Psilocin Synthesis
2.4. Biocatalytic Route
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gartz, J. Further investigations on psychoactive mushrooms of the genera Psilocybe, Gymnopilus and Conocybe. Ann. Musei Civ. Rovereto 1992, 7, 265–274. [Google Scholar]
- Stijve, T.; Kuyper, T.W. Occurrence of psilocybin in various higher fungi from several European countries. Planta Med. 1985, 51, 385–387. [Google Scholar] [CrossRef] [PubMed]
- Semerdzieva, M.; Wurst, M.; Koza, T.; Gartz, J. Psilocybin in fruiting-bodies of Inocybe aeruginascens. Planta Med. 1986, 52, 83–85. [Google Scholar] [CrossRef]
- Gartz, J. Detection of tryptamines derivatives in fungi of the genera Gerronema, Hygrocybe, Psathyrella and Inocybe. Biochem. Physiol. Pflanz. 1986, 181, 275–278. [Google Scholar] [CrossRef]
- Hofmann, A.; Frey, A.; Ott, H.; Petrzilka, T.; Troxler, F. The structure and synthesis of psilocybin. Experientia 1958, 14, 397–399. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, A.; Troxler, F. Identification of psilocin. Experientia 1959, 15, 101–102. [Google Scholar] [CrossRef] [PubMed]
- Horita, A.; Weber, L.J. The enzymatic dephosphorylation and oxidation of psilocybin and psilocin by mammalian tissue homogenates. Biochem. Pharmacol. 1961, 7, 47–54. [Google Scholar] [CrossRef]
- Horita, A.; Weber, L.J. Dephosphorylation of psilocybin in the intact mouse. Toxicol. Appl. Pharmacol. 1962, 4, 730–737. [Google Scholar] [CrossRef]
- Kalberer, F.; Kreis, W.; Rutschmann, J. The fate of psilocin in the rat. Biochem. Pharmacol. 1962, 11, 261–269. [Google Scholar] [CrossRef]
- Hasler, F.; Bourquin, D.; Brenneisen, R.; Bär, T.; Vollenweider, F.X. Determination of psilocin and 4-hydroxyindole-3-acetic acid in plasma by HPLC-ECD and pharmacokinetic profiles of oral and intravenous psilocybin in man. Pharm. Acta Helv. 1997, 72, 175–184. [Google Scholar] [CrossRef]
- Gartz, J. Extraction and analysis of indole derivatives from fungal biomass. J. Basic Microbiol. 1994, 34, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Borner, S.; Brenneisen, R. Determination of tryptamine derivatives in hallucinogenic mushrooms using high-performance liquid chromatography with photodiode array detection. J. Chromatograph. 1987, 408, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Lenz, C.; Wick, J.; Hoffmeister, D. Identification of ω-N-Methyl-4-hydroxytryptamine (Norpsilocin) as a Psilocybe Natural Product. J. Nat. Prod. 2017, 80, 2835–2838. [Google Scholar] [CrossRef] [PubMed]
- Sherwood, A.M.; Halberstadt, A.L.; Klein, A.K.; McCorvy, J.D.; Kaylo, K.W.; Kargbo, R.B.; Meisenheimer, P. Synthesis and biological evaluation of tryptamines found in hallucinogenic mushrooms: Norbaeocystin, baeocystin, norpsilocin and aeruginascin. J. Nat. Prod. 2020, 83, 461–467. [Google Scholar] [CrossRef]
- Repke, D.B.; Leslie, D.T.; Guzman, G. Baeocystin in Psilocybe, Conocybe and Panaeolus. Lloyda 1977, 40, 566–578. [Google Scholar]
- Repke, D.B.; Leslie, D.T. Baeocystin in Psilocybe semilanceata. J. Pharm. Sci. 1977, 66, 113–114. [Google Scholar] [CrossRef]
- Leung, A.; Paul, A. Baeocystin and norbaeocystin: New analogs of psilocybin from Psilocybe baeocystis. J. Pharm. Sci. 1968, 57, 1667–1671. [Google Scholar] [CrossRef]
- Stijve, T.; Klan, J.; Kuyper, T.W. Occurrence of psilocybin and baeocystin in the genus Inocybe. Persoonia 1985, 12, 469–473. [Google Scholar]
- Gartz, J. Occurrence of psilocybin, psilocin and baeocystin in Gymnopilus purpuratus. Persoonia 1989, 14, 19–22. [Google Scholar]
- Gartz, J. Analysis of aeruginascin in fruit bodies of the mushroom Inocybe aeruginascens. Int. J. Crude Drug Res. 1989, 27, 141–144. [Google Scholar] [CrossRef]
- Jensen, N.; Gartz, J.; Laatsch, H. Aeruginascin, a trimethylammonium analogue of psilocybin from the hallucinogenic mushroom Inocybe aeruginascens. Planta Med. 2006, 72, 665–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gartz, J. Variation der Alkaloidmengen in Fruchtkörpern von Inocybe aeruginascens. Planta Med. 1987, 53, 539–541. [Google Scholar] [CrossRef] [PubMed]
- Fricke, J.; Blei, F.; Hoffmeister, D. Enzymatic synthesis of psilocybin. Angew. Chem. Int. Ed. 2017, 56, 12352–12355. [Google Scholar] [CrossRef] [PubMed]
- Gartz, J. Magic Mushrooms Around the World: A Scientific Journey Across Cultures and Time; LIS Publishers: Los Angeles, CA, USA, 1996. [Google Scholar]
- Geiger, H.A.; Wurst, M.G.; Daniels, R.N. DARK Classics in Chemical Neuroscience: Psilocybin. ACS Chem. Neurosci. 2018, 9, 2438–2447. [Google Scholar] [CrossRef] [PubMed]
- Dinis-Oliveira, R.J. Metabolism of psilocybin and psilocin: Clinical and forensic toxicological relevance. Drug Metab. Rev. 2017, 49, 84–91. [Google Scholar] [CrossRef]
- Pereira, N.A.; Marins, J.C.; Moussatché, H. Some pharmacological studies on bufotenine and bufotenidine. Rev. Bras. Biol. 1963, 23, 211–222. [Google Scholar]
- Glennon, R.; Peroutka, S.; Dukat, M. Binding characteristics of a quaternary amine analog of serotonin 5-HT Q. In Serotonin: Molecular Biology, Receptors and Functional Effects; Fozard, J.R., Saxena, P.R., Eds.; Birkhaüser: Basel, Switzerland, 1991; pp. 186–191. [Google Scholar]
- Bogenschutz, M.P.; Ross, S.; Bhatt, S.; Baron, T.; Forcehimes, A.A.; Laska, E.; Mennenga, S.E.; O’Donnell, K.; Owens, L.T.; Podrebarac, S.; et al. Percentage of Heavy Drinking Days Following Psilocybin-Assisted Psychotherapy vs. Placebo in the Treatment of Adult Patients with Alcohol Use Disorder: A Randomized Clinical Trial. JAMA Psychiatry 2022, 79, 953–962. [Google Scholar] [CrossRef]
- Feltman, R. The FDA Is Fast Tracking a Second Psilocybin Drug to Treat Depression; Popular Sciences. 2019. Available online: https://popsci.com/story/health/psilocybin-magic-mushroom-fda-breakthrough-depression/ (accessed on 26 November 1999).
- Nichols, D.E.; Johnson, M.W.; Nichols, C.D. Psychedelics as Medicines: An Emerging New Paradigm. Clin. Pharmacol. Ther. 2017, 101, 209–219. [Google Scholar] [CrossRef]
- Johnson, M.W.; Griffiths, R.R. Potential Therapeutic Effects of Psilocybin. Neurotherapeutics 2017, 14, 734–740. [Google Scholar] [CrossRef] [Green Version]
- Carhart-Harris, R.L.; Goodwin, G.M. The therapeutic potential of psychedelic drugs: Past, present, and future. Neuropsychopharmacology 2017, 42, 2105–2113. [Google Scholar] [CrossRef] [Green Version]
- Summergrad, P. Psilocybin in end of life care: Implications for further research. J. Psychopharmacol. 2016, 30, 1203–1204. [Google Scholar] [CrossRef] [PubMed]
- Moreno, F.A.; Wiegand, C.B.; Taitano, E.K.; Delgado, P.L. Safety, tolerability, and efficacy of psilocybin in 9 patients with obsessive-compulsive disorder. J. Clin. Psychiatry 2006, 67, 1735–1740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bogenschutz, M.P.; Forcehimes, A.A.; Pommy, J.A.; Wilcox, C.E.; Barbosa, P.; Strassman, R.J. Psilocybin-assisted treatment for alcohol dependence: A proof-of-concept study. J. Psychopharmacol. 2015, 29, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.W.; Garcia-Romeu, A.; Cosimano, M.P.; Griffiths, R.R. Pilot study of the 5-HT2AR agonist psilocybin in the treatment of tobacco addiction. J. Psychopharmacol. 2014, 28, 983–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Romeu, A.; Griffiths, R.; Johnson, M. Psilocybin-occasioned mystical experiences in the treatment of tobacco addiction. Curr. Drug Abuse Rev. 2015, 7, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Giordana, J.Y.; Porteaux, C. Mental Health of elderly people: The prevalence and representations of psychiatric disorders. L’éncephale 2010, 36, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Chadeayne, A.R.; Pham, D.N.K.; Reid, B.G.; Golen, J.A.; Manke, D.R. Active metabolite of aeruginascin (4-hydroxy-N,N,N-trimethylamine): Synthesis, structure and serotoninergic binding affinity. ACS Omega 2020, 5, 16940–16943. [Google Scholar] [CrossRef]
- Troxler, F.; Seemann, F.; Hofmann, L.A. Abwandlungsprodukte von Psilocybin und Psilocin. 2. Mitteilung über synthetische Indolverbindungen. Helv. Chim. Acta 1959, 42, 2073–2103. [Google Scholar] [CrossRef]
- Nichols, D.; Frescas, S. Improvements to the Synthesis of Psilocybin and a Facile Method for Preparing the O-Acetyl Prodrug of Psilocin. Synthesis 1999, 6, 935–938. [Google Scholar] [CrossRef] [Green Version]
- Shirota, O.; Hakamata, W.; Goda, Y. Concise Large-Scale Synthesis of Psilocin and Psilocybin, Principal Hallucino- genic Constituents of “Magic Mushroom”. J. Nat. Prod. 2003, 66, 885–887. [Google Scholar] [CrossRef] [Green Version]
- Sherwood, A.M.; Meisenheimer, P.; Tarpley, G.; Kargbo, R.B. An Improved, Practical, and Scalable Five-Step Synthesis of Psilocybin. Synthesis 2020, 52, 688–694. [Google Scholar] [CrossRef]
- Speeter, M.E.; Anthony, W.C. The action of oxalyl chloride on indoles: A new approach to tryptamines. J. Am. Chem. Soc. 1954, 76, 6208–6210. [Google Scholar] [CrossRef]
- Kargbo, R.B.; Sherwood, A.M.; Walker, A.; Cozzi, N.V.; Dagger, R.E.; Sable, J.; O’Hern, K.; Kaylo, K.; Patterson, T.; Tarpley, G.; et al. Direct phosphorylation of psilocin enables optimized cGMP kilogram-scale manufacture od psilocybin. ACS Omega 2020, 5, 16959–16966. [Google Scholar] [CrossRef]
- Stoll, A.; Troxler, F.; Peyer, J.; Hofmann, A. Eine neue synthese von Bufotenin und verwandten Oxy-tryptaminen. Helv. Chim. Acta 1955, 38, 1452–1472. [Google Scholar] [CrossRef]
- Hamlin, K.E.; Fischer, F.E. The synthesis of 5-hydroxytryptamine. J. Am. Chem. Soc. 1951, 73, 5007–5008. [Google Scholar] [CrossRef]
- Poon, G.; Chui, Y.C.; Law, F.C.P. Synthesis of psilocin labelled with 14C and 3H. J. Label. Compd. Radiopharm. 1985, 23, 167–174. [Google Scholar] [CrossRef]
- Kruse, L.I. Synthesis of 4-Substituted Indoles from o-Nitrotoluenes. Heterocycles 1981, 16, 1119–1124. [Google Scholar] [CrossRef]
- Repke, D.B.; Ferguson, W.J.; Bates, D.K. Psilocin Analogs. I. Synthesis of 3[2-(dialkylamino(ethyl]- and 3[2-(cycloalkylamino(ethyl]-indol-4-ols. J. Heterocyclic. Chem. 1977, 14, 71–74. [Google Scholar] [CrossRef]
- Repke, D.B.; Ferguson, W.J.; Bates, D.K. Psilocin Analogs. II. Synthesis of 3[2-(dialkylamino(ethyl]-, 3[2-(N-methyl-N-alkylamino(ethyl]- and 3[2-(cycloalkylamino(ethyl]-indol-4-ols. J. Heterocyclic. Chem. 1981, 18, 175–179. [Google Scholar] [CrossRef]
- Repke, D.B.; Ferguson, W.J. Psilocin Analogs. III. Synthesis of 5-Methoxy- and 5-Hydroxy-1,2,3,4-tetrahydro-9H-pyrido[3,4-b]indoles. J. Heterocyclic. Chem. 1982, 19, 845–848. [Google Scholar] [CrossRef]
- Leimgruber, W.; Batcho, A.D. Batcho-Leimgruber indole synthesis. In Name Reactions; Springer: Berlin/Heidelberg, Germany, 2006; pp. 36–38. [Google Scholar] [CrossRef]
- Spenser, I.D. A synthesis of Harmaline. Can. J. Chem. 1959, 37, 1851–1858. [Google Scholar] [CrossRef]
- Yamada, F.; Tamura, M.; Somei, M. A five-step synthesis of psilocin from indole-3-carbaldehyde. Heterocycles 1998, 49, 451–457. [Google Scholar] [CrossRef] [Green Version]
- Yamada, F.; Tamura, M.; Hasegawa, A.; Somei, M. Synthetic Studies of Psilocin Analogs Having Either a Formyl Group or Bromine Atom at the 5- or 7-Position. Chem. Pharm. Bull. 2002, 50, 92–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakagami, H.; Ogasawara, K. A New Synthesis of Psilocin. Heterocycles 1999, 51, 1131–1135. [Google Scholar] [CrossRef]
- Basha, A.; Lipton, M.; Weinreb, S.M. A mild, general method for conversion of esters to amides. Tetrahedron Lett. 1977, 18, 4171–4172. [Google Scholar] [CrossRef]
- Gathergood, N.; Scammells, P.J. Preparation of 4-hydroxytryptamine scaffold via palladium-catalyzed cyclisation: Apractical and versatile synthesis of psilocin. Org. Lett. 2003, 5, 921–923. [Google Scholar] [CrossRef]
- Larock, R.C.; Yum, E.K. Synthesis of indoles via palladium-catalyzed heteroannulation of internal alkynes. J. Am. Chem. Soc. 1991, 113, 6689–6690. [Google Scholar] [CrossRef]
- Smith, A.L. Traceless Solid Phase Synthesis of Indole Derivatives. British UK Patent Applications GB2328941A, 3 October 1999. [Google Scholar]
- Hu, C.; Qin, H.; Cui, C.; Jia, Y. Palladium-catalyzed synthesis of tryptamines and tryptamine homologues: Synthesis of psilocin. Tetrahedron 2009, 65, 9075–9080. [Google Scholar] [CrossRef]
- Bartolucci, S.; Mari, M.; Di Gregorio, G.; Piersanti, G. Observations concerning the synthesis of tryptamine homologues and branched tryptamine derivatives via the borrowing hydrogen process: Synthesis of psilocin, bufotenin and serotonin. Tetrahedron 2016, 72, 2233–2238. [Google Scholar] [CrossRef] [Green Version]
- Fricke, J.; Kargbo, R.; Regestein, L.; Lenz, C.; Peschel, G.; Rosenbaum, M.A.; Sherwood, A.; Hoffmeister, D. Scalable hybrid synthetic/biocatalytic route to psilocybin. Chem. Eur. J. 2020, 26, 8281–8285. [Google Scholar] [CrossRef]
- Fricke, J.; Lenz, C.; Wick, J.; Blei, D.; Hoffmeister, D. Production options for Psilocybin: Making of the magic. Chem. Eur. J 2019, 25, 897–903. [Google Scholar] [CrossRef] [PubMed]
- Blei, D.; Baldeweg, F.; Fricke, J.; Hoffmeister, D. Biocatalytic production of psilocybin and derivatives in tryptophan synthase-enhanced reactions. Chem. Eur. J. 2018, 24, 10028–10031. [Google Scholar] [CrossRef] [PubMed]
- Hoefgen, S.; Lin, J.; Fricke, J.; Stroe, M.; Mattern, D.J.; Kufs, J.E.; Hortschansky, P.; Brakhage, A.A.; Hoffmeister, D.; Valiante, V. Facile assembly and fluorescence-based screening method for heterologous expression of biosynthetic pathways in fungi. Metab. Eng. 2018, 48, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Adams, A.M.; Kaplan, N.A.; Wei, Z.; Brinton, J.D.; Monnier, C.S.; Enacopol, A.L.; Ramelot, T.A.; Jones, J.A. In vivo production of psilocybin in E. coli. Metab. Eng. 2019, 56, 111–119. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serreau, R.; Amirouche, A.; Benyamina, A.; Berteina-Raboin, S. A Review of Synthetic Access to Therapeutic Compounds Extracted from Psilocybe. Pharmaceuticals 2023, 16, 40. https://doi.org/10.3390/ph16010040
Serreau R, Amirouche A, Benyamina A, Berteina-Raboin S. A Review of Synthetic Access to Therapeutic Compounds Extracted from Psilocybe. Pharmaceuticals. 2023; 16(1):40. https://doi.org/10.3390/ph16010040
Chicago/Turabian StyleSerreau, Raphaël, Ammar Amirouche, Amine Benyamina, and Sabine Berteina-Raboin. 2023. "A Review of Synthetic Access to Therapeutic Compounds Extracted from Psilocybe" Pharmaceuticals 16, no. 1: 40. https://doi.org/10.3390/ph16010040
APA StyleSerreau, R., Amirouche, A., Benyamina, A., & Berteina-Raboin, S. (2023). A Review of Synthetic Access to Therapeutic Compounds Extracted from Psilocybe. Pharmaceuticals, 16(1), 40. https://doi.org/10.3390/ph16010040