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Abstract: Browning of white adipose tissue (WAT) is suggested as a promising therapeutic approach
to induce energy expenditure and counteract obesity and its associated complications. Systemic
depletion of spinophilin (SPL) increases metabolism and improves energy balance in mice. In this
study, we explored the mechanistic insight of SPL action in WAT browning. Gene expression and
mitochondria tracker staining showed that visceral white adipose tissue (vWAT) harvested from
SPL KO mice had a higher expression of classic browning-related genes, including uncoupling
protein 1 (UCP1), Cell death inducing DFFA like effector A (CIDEA) and PR domain containing 16
(PRDM16), as well as a higher mtDNA level compared to vWAT from wild type (WT) control mice.
When adipogenesis was induced in pre-adipocytes harvested from KO and WT mice ex vivo using
the PPAR-γ agonist rosiglitazone (Rosi), SPL KO cells showed increased browning marker gene
expression and mitochondria function compared to cells from WT mice. Increased PPAR-γ protein
expression and nucleus retention in vWAT from SPL KO mice after Rosi treatment were also observed.
The effect of SPL on vWAT browning was further confirmed in vivo when WT and KO mice were
treated with Rosi. As a result, SPL KO mice lost body weight, which was associated with increased
expression of browning maker genes in vWAT. In summary, our data demonstrate the critical role of
SPL in the regulation of WAT browning.
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1. Introduction

Obesity has doubled in global prevalence and is a major public health concern [1].
Furthermore, obesity is associated with an increased risk of diabetes, hypertension, cancer,
and cardiovascular disease, as well as a reduced quality of life and profound social and
economic costs [2]. Unfortunately, despite the urgent need to address the obesity epidemic,
there is a lack of effective and low-risk treatment strategies to counter this issue [3].

Adipose tissue, which may account for 80% of body weight in obese individuals, is
composed of both white adipose tissue (WAT) and brown adipose tissue (BAT) [4]. WAT
stores excess energy and functions as an endocrine organ, while BAT performs adaptive
thermogenesis to maintain homeostasis [5]. BAT is characterized by both increased numbers
of mitochondria and high expression levels of UCP1 [6]. UCP1 uncouples mitochondrial
respiration from adenosine-5′-triphosphate (ATP) production, erasing a negative feedback
loop, and thus allowing for high rates of fatty acid oxidation that produce heat [7]. Because
of its ability to dissipate energy through thermogenesis, BAT has strong anti-obesity and
anti-diabetic effects [8]. High BAT activity is correlated with a low body mass index and its
activation improves aspects of cardiovascular health [9]. Studies have shown that white
adipocytes can be converted into “beige cells” through a process known as “browning”,
which occurs in response to cold or exercise [4,10,11]. Beige cells demonstrate similar
characteristics to BAT, such as a high UCP1 expression [12]. In animal models, induction of
browning can successfully treat obesity and insulin resistance, and increased BAT mass
appears to reset metabolism and provide long-term control of body weight [13,14]. While
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the ability to induce browning is of great interest as a potential therapy for obesity and
associated diseases [3], the mechanism of browning is not fully understood.

Spinophilin (SPL) is a multidomain scaffolding protein that can modulate the activity
of various G-protein-coupled receptors in the central nervous system [15]. SPL interacts
with over 30 partner proteins to regulate neuronal signaling, G-protein signaling, membrane
receptors, and ion channels [16,17]. Its binding partners include protein phosphatase-1
(PP1), a ubiquitous serine/threonine phosphatase that modulates cell cycle progression,
protein synthesis, and transcription [16]. SPL additionally acts as a negative regulator
of β-cell M3 muscarinic receptors, which maintain glucose homeostasis throughout the
body [15]. SPL knockout mice showed reduced body weight associated with decreases
in percentages of body fat mass compared with wild-type mice [15]. A previous study
from our lab showed the importance of SPL in WAT browning as ablation of SPL in mice
promoted browning and provided protection from high-fat diet-induced obesity and insulin
resistance [18].

Peroxisome proliferator-activated receptor-gamma (PPAR-γ), a ligand-activated hor-
mone receptor, is necessary for adipocyte differentiation and is known to promote brown-
ing [19,20]. PPAR-γ is expressed selectively in adipose tissues of humans and rodents [20],
and it is a key regulator of fat storage and energy homeostasis [21]. PPAR-γ functions
by translocating to the nucleus, where it heterodimerizes with retinoid X receptors (RXR)
and alters the expression of specific genes. Increased PPAR-γ expression upregulates the
expression of BAT marker genes and protects against insulin resistance [19].

Here, we demonstrate that SPL ablation amplifies rosiglitazone, a PPAR-γ agonist,
and induced brown-like adipocyte generation in the visceral white adipose tissue (vWAT)
depots as identified by UCP1 expression both in vitro and in vivo. We further show that the
deletion of SPL led to increased protein expression and nuclear presence of PPAR-γ. SPL
negatively controls rosiglitazone-induced browning by blocking the nuclear translocation
of PPAR-γ and the consequent binding to the UCP1 promoter.

2. Results
2.1. Systemic Deletion of SPL Results in Dramatically Lower Body Weights and Lower White
Adipose Tissue Mass in Mice

First, we measured the body weights of standard chow-fed SPL KO mice and their
wild type (WT) littermate controls from 3 until 20 weeks of age. SPL KO mice exhibited
lower body weights compared to age-matched WT controls starting from 8 weeks of age
(n = 8–10, Figure 1A). At the age of 10 weeks, WT mice had an average body weight of
25.2 ± 0.5 g, while SPL KO mice had an average body weight of 22.6 ± 0.7 g (n = 19–21,
p = 0.01 vs. control, Figure 1B,C). The body weight difference was more dramatic at the
age of 20 weeks (Figure 1A). Next, we compared the BAT, visceral WAT (vWAT), and
inguinal WAT (iWAT) weights from KO and WT. The BAT mass and BAT weight/body
weights were similar between SPL KO and WT mice (Figure 1D,E). In contrast, SPL KO
mice had significantly smaller vWAT and iWAT weights and fat/body weights compared
to corresponding WAT from WT controls (Figure 1D,E). These results demonstrate that SPL
deletion reduces obesity and white adipose tissue masses.

2.2. Increased Browning Marker Genes Expression and Mitochondria Content in vWAT from SPL
KO Mice Compared to WT Controls

We suspect that WAT browning contributes to reduced white adipose mass. Due to the
large reduction in vWAT weight, and our previous study which showed that the expression
levels of browning markers were not significantly different in iWAT between SPL KO
and WT mice [18], we focused on investigating the browning marker gene expression,
mitochondria content number, and mitochondrial activity in vWAT from SPL KO and WT
mice. We measured the expression of several browning marker genes, including CIDEA,
PGC-1a, UCP1, PPAR-γ, FABP4, and PRDM16, in BAT and WAT from SPL KO and WT
mice at 10 weeks of age. Expression of UCP1, the typical marker of brown fat, showed
the highest expression level in brown adipose tissue, although there was no dramatic
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difference between BAT from SPL KO or WT mice (Figure 2A). vWAT from SPL KO mice
showed significantly increased mRNA expression levels of UCP1, FABP4, and PRDM16
(Figure 2B), compared to those from WT mice. In addition, compared to vWAT from WT
mice, vWAT from SPL KO mice contain significantly more mitochondria, as indicated by
increased mtDNA/nDNA levels (Figure 2C), a stronger fluorescent signal of MitoTracker
(Figure 2D), and a higher expression of the CIDEA gene (Figure 2E). This suggests increased
mitochondrial activity in vWAT from SPL KO mice compared to those from WT mice.
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weeks of age (E). Adipose tissue weight/body weights of SPL KO and WT mice. B & E: n = 19–21 per 
group. Unpaired Student’s t-test was performed to compare the difference between WT and KO. * p 
< 0.05, ** p < 0.01, and *** p < 0.001. All data are presented as means ± SEM. 
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Figure 1. SPL KO mice showed smaller body weights and WAT mass compared to littermate
controls. (A). Average body weights of SPL KO (KO, n = 8) and wild-type littermate controls (WT,
n = 10) at different ages. (B). Body weights and (C) representative photo of SPL KO and WT mice at
10 weeks of age. (D). Represent micrograph of BAT, vWAT, and iWAT of SPL KO and WT at 10 weeks
of age (E). Adipose tissue weight/body weights of SPL KO and WT mice. B & E: n = 19–21 per group.
Unpaired Student’s t-test was performed to compare the difference between WT and KO. * p < 0.05,
** p < 0.01, and *** p < 0.001. All data are presented as means ± SEM.

2.3. Ablation of SPL Potentiates the Differentiation of vWAT SVF toward Brown-like Adipocytes

We isolated primary SVF cells from vWAT from SPL KO or WT mice and induced
them into brown adipocytes in vitro by treatment with the browning induction media
and then measured the expression of browning maker genes. SVF-derived adipocytes
from SPL KO mice showed significantly higher mRNA levels of the browning genes
including CIDEA, UCP1. The adipocyte differentiation marker and PPAR-γ responsive
gene, FABP4 was increased as well. There was no significant difference in the expression of
PPAR-γ and PRDM16 (Figure 3A). SPL KO SVF-adipocytes stained with Oil Red appeared
to have more dense and smaller lipid droplets which are characteristics seen in brown
adipocyte staining (Figure 3B). Consistently, UCP1 protein was significantly increased in
fully differentiated SVF-adipocytes (Figure 3C). Furthermore, the basal and uncoupled
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OCR and the mitochondrial activity were significantly increased in the differentiated SVF
of SPL KO mice compared to those from the controls (Figure 3D,E), suggesting that vWAT
from SPL KO mice were more prone to being induced into brown-like adipocytes.
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Figure 2. WAT from SPL KO mice showed higher browning-related gene expression and in-
creased mt DNA level. (A) Expression of CIDEA, PGC-1a, UCP1, PPAR-γ, FABP4, and PRFM16
relative to beta-actin in brown adipose tissue (BAT) and vWAT (B). (C) Relative mitochondria DNA
(mtDNA/nDNA) levels in vWAT from WT and KO mice. (D) Mitochondria tracker staining of
mitochondria in vWAT from WT and KO mice. Green: mitochondria, blue: nuclei. (E) Relative
expression of CIDEA mRNA in vWAT from WT and KO mice. 10 weeks old animal experiments were
performed with n = 9–10 mice in each group. Unpaired Student’s t-test was performed to compare the
difference between WT and KO. * p < 0.05, ** p < 0.01. All data are presented as means ± SEM.

To confirm these data, we generated SPL knockdown cells by transfecting 3T3L1
cells with the shRNA for SPL. We then induced browning in 3T3L1 or control cells and
measured gene expression of UCP1, FABP4, and PPAR-γ. Like SVF-derived adipocytes,
there were significantly more browning maker gene expressions in SPL knockdown 3T3L1
cells (Figure 3F). These results support that the expression of SPL negatively regulates the
browning of vWAT.

2.4. SPL Ablation Favors vWAT Browning through Promoting Nuclear Translocation/Presence
of PPAR-γ

To explore the potential mechanism of SPL ablation in vWAT browning, we measured
the expression and cellular distribution of PPAR-γ, a ligand-dependent transcription factor
that regulates UCP1 expression in SVF-derived pre-adipocytes from SPL KO or WT mice
treated with rosiglitazone (2 µM). Cells were cultured for 2 days with an induction medium
followed by high doses of rosiglitazone at 2 µM for another 48 h for further browning
induction. We measured the cytosolic and nuclear presence of PPAR-γ at 1 h, 2 h, and
48 h after incubation with 2 µM rosiglitazone. In both the WT and KO cells, increased
PPAR-γ was present in both the nucleus and cytosol. PPAR-γ expression levels were
slightly increased in both nucleus and cytosol for WT cells at 1 h and 2 h after treatment
and decreased at 48 hours after treatment (Figure 4A). In contrast, there was a much higher
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PPAR-γ level in both the nucleus and cytoplasm fraction in SPL KO cells compared to WT
cells. Furthermore, higher levels of PPAR-γ were detected in the nuclear portion of the
SPL KO cells at all the time points measured (Figure 4A). PPAR-γ nucleus retention was
further confirmed by immunofluorescence staining, in which more PPAR-γ was present in
the nucleus of KO cells (Figure 4B). Consequently, the blockage of PPAR-γ activity using
GW9662 led to the reduced expression of UCP1, but not FABP4 (Figure 5A,B), suggesting
that PPAR-γ activity is required for UCP1 activation. In conclusion, this data suggests that
SPL is a potential regulator for PPAR-γ nuclear translocation, and SPL ablation retains
PPAR-γ in the nucleus and further promotes the white-to-brown fat conversion.
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Figure 3. In vitro browning induction showed increased browning gene expression in SVF-
derived adipocytes from WT and KO mice. vWAT were harvested from WT and KO mice, cultured,
and treated with a full browning induction medium to induce browning, and expression of mark-
ers was measured. (A) mRNA expression of CIDEA, PGC1, UCP1, PPAR-γ, and FABP4 relative to
beta-actin in SPL KO and WT adipocytes. (B) Oil-red staining of SVF after full browning induced.
(C) UCP1 protein expression level in vWAT cells from WT or KO mice after full browning induced.
Relative protein expression of UCP1 compared to the expression of Histone 3 in vWAT induced.
(D) Oxygen consumption rate (OCR) and (E) mitochondria tracker in WT and KO mitochondria
function after browning induction. (F) Relative mRNA levels of UCP1, FABP4, and PPAR-γ in control
or SPL shRNA transfected 3T3L1 cells after browning induction. Data were from at least three
individual experiments. Two-way ANOVA with Tukey-Kramer post hoc test was used to compare
the difference in (A,C). Unpaired Student’s t-test was performed to compare the difference between
WT and KO in (F). * p < 0.05, ** p < 0.01, and *** p < 0.001. All data are presented as means ± SEM.
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Figure 4. SPL KO vWAT adipocytes promoted/retained more PPAR-γ in the nuclear after Rosigli-
tazone stimulation. Browning was induced in SVF vWAT adipocytes for 2 days and then treated
with rosiglitazone at 2µM for another 48 h. (A) Western blot of PPAR-γ, GAPDH, Histone 3, and
Lamin A in the nuclear fraction or cytosol fraction of vWAT harvested from WT and SPL KO mice
before (0 h) and at 1 h, 2 h, and 48 h post-rosiglitazone treatment. (B). Immunofluorescent staining of
PPAR-γ in WT and KO mice before (0 h) and 1 h, 2 h, and 48 h post Rosiglitazone treatment. Data
were from at least three individual experiments. Scale bar = 20 µm.
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Figure 5. Blocking PPAR-γ activity reduces rosiglitazone-induced UCP-1 expression in SPL KO
adipocytes. Relative expression of UCP1 (A), and FABP4 (B) in the presence or absence of rosigli-
tazone (induction) and/or GW9662. SVF cells were pre-treated with 0.2 µM GW9662 for 6 h, then
cultured in browning induction media. Two-way ANOVA with Tukey-Kramer post hoc test was
performed to compare differences. * p < 0.05, ** p < 0.01. All data are presented as means ± SEM.
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2.5. Ablation of SPL Promotes vWAT Browning Induced by PPAR-γ Agonist In Vivo

To further assess the impact of SPL on WAT browning in vivo, WT and SPL KO mice
were treated with rosiglitazone (10 mg/kg daily for 10 days, i.p.). Mice from both groups
showed reduced body weight gain after receiving rosiglitazone. In contrast to WT, SPL
KO mice had body weight loss compared to before treatment (Figure 6A). Like the in vitro
condition, treatment with rosiglitazone led to an increase in browning as indicated by
enhanced expression of UCP1 in the vWAT of both WT and SPL KO mice. Furthermore,
there were significantly more expressions of CIDEA, PRDM16, and UCP1 in vWAT from
SPL KO mice compared to vWAT from WT mice after rosiglitazone treatment (Figure 6B).
Increased UCP1 gene expression was further demonstrated by immunofluorescent staining
of UCP1 in vWAT tissue section (Figure 6C). These data indicate that robust browning
occurred in vWAT from SPL KO mice after rosiglitazone treatment, which might have
contributed to reduced body weights.
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effects of PPAR-γ. As a transcription factor, nucleus translocation and retaining of PPAR-
γ is critical for its function in promoting UCP1 gene transcription [22]. SPL knock-out 

Figure 6. Treatment with rosiglitazone led to bodyweight reduction and vWAT browning in SPL
KO compared to WT mice. WT and KO mice were treated with rosiglitazone at 10 mg/kg daily for
10 days. (A) Body weight changes in WT mice receiving vehicle (CWT), rosiglitazone (RWT), or SPL
KO mice receiving vehicle (CKO) or rosiglitazone (RKO). N = 6 mice per group. (B) Expression of
browning marker genes at mRNA levels in vWAT tissues from SPL KO and WT mice. (C) Immunoflu-
orescent staining of UCP1 in vWAT from rosiglitazone treated WT or SPL KO mice. UCP1: green.
Scale bar = 50 µm. 2-way ANOVA with Tukey-Kramer post hoc test was performed to compare
differences. * p < 0.05, ** p < 0.01. All data are presented as means ± SEM.
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3. Discussion

We have shown in our previous study that SPL knockout mice are protected from
diet-induced obesity and insulin resistance, at least in part, by promoting the browning of
white adipocytes [18]. This was associated with increased browning in vWAT from SPL KO
mice compared to WT littermate controls. Our current study further deciphered the role of
SPL in vWAT browning and explored the molecular mechanisms of how ablation of SPL
leads to increased browning.

Our results show that the deletion of SPL leads to the induction of expressions of
brown adipocyte-related genes, including UCP1, FABP4, and CIDEA, specifically in vWAT
collected from SPL KO mice. In vitro, we showed that SVF-derived adipocytes from SPL KO
mice or SPL knockdown 3T3L1 cells were prone to browning induction when stimulated
with rosiglitazone. Further mechanistic studies demonstrated that higher UCP1 expression
in SPL KO cells was associated with the induction and nuclear tentation of PPAR-γ after
rosiglitazone treatment. These data suggest that SPL negatively controls UCP1 expression
via PPAR-γ, CIDEA, PRDM16.

One mechanism of increased UCP1 in SPL KO adipocytes is through potentiating
the effects of PPAR-γ. As a transcription factor, nucleus translocation and retaining of
PPAR-γ is critical for its function in promoting UCP1 gene transcription [22]. SPL knock-out
vWAT stimulated with rosiglitazone ex vivo showed higher expressions of several key
feature molecules involved in PPAR-γ-mediated WAT browning, including CIDEA, PGC-1a,
and PRMD16, compared to WAT from control mice. Studies have shown that PPAR-γ
dynamically shuttles between the nucleus and cytoplasm, although they constitutively
and predominantly appear in the nucleus [23]. Treatment with PPAR-γ agonist improve
human adipocyte metabolism [24]. For example, rosiglitazone has been proven to remodel
the lipid droplet and “brown” human visceral and subcutaneous adipocytes ex vivo by
coordinating structural and metabolic remodeling in adipocytes [25]. When rosiglitazone,
a PPAR-γ agonist, was used to induce PPAR-γ activation in white adipocyte browning in
this study, not only sustained PPAR-γ expression was observed, but also it remained in
the nucleus for a longer time, which indicates that SPL controls the nuclear-cytoplasmic
transport regulation of PPAR-γ. When SPL is deleted, PPAR-γ expression is increased and
it remains in the nucleus, constantly inducing UCP1 gene expression.

Based on our data, the loss of SPL leads to an increased expression of PPAR-γ in
both the cytosol and nuclei of vWAT adipocytes. This was the case in the quiescent stage
as well as after treatment with Rosi, suggesting that SPL itself negatively regulates the
expression level of PPAR-γ. The degradation of PPAR-γ after ligand activation is achieved
via the ubiquitination-proteasome pathways [26]. Our data also showed that there was
much more PPAR-γ remaining inside the nucleus of SPL KO cells at 48 hours after Rosi
treatment compared to WT cells, indicating that SPL is required for PPAR-γ degradation.
Indeed, SPL was shown to directly regulate protein stability and/or ubiquitination in a
cyclin-dependent kinase 5 (Cdk5)-dependent manner in Parkinson’s disease [27]. The
ERK/Cdk5 axis also controls PPAR-γ function in type 2 diabetes [28]. Therefore, the loss
of SPL preserved PPAR-γ protein stability and blocked its ubiquitination/degradation in
the KO cells, likely in a Cdk5-dependent manner. However, further studies are needed to
definitively reveal this mechanism.

We also show that PPAR-γ activity is required for UCP1 induction. Blocking PPAR-γ
activity by GW9662 partially reduced UCP1 expression, suggesting that PPAR-γ indepen-
dent effects also mediate browning of beige adipocytes from white adipose pre-adipocytes
and even from most developmentally epididymal WAT depot. This has been confirmed
in vivo as SPL KO mice treated with rosiglitazone showed more browning gene expression
and body weight loss.

CIDEA is also a potential downstream target of SPL action on browning. For example,
KO of SPL likely leads to upregulated UCP1 expression through the upregulation of
CIDEA. CIDEA, a lipid-droplet-associated protein enriched in brown adipocytes promoting
the enlargement of lipid droplets, has been shown to maintain the capability of human
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adipocytes britening/beiging in thermogenesis [25,29], and knockout of CIDEA suppresses
UCP1 expression [30]. During browning/beiging induction, CIDEA shuttles from lipid
droplets to the nucleus and specifically inhibits LXRα repression of UCP1 enhancer activity
and strengthens PPAR-γ binding to UCP1 enhancer, hence driving UCP1 transcription.
Therefore, SPL ablation likely enhanced UCP1 expression via the upregulation of CIDEA.

Another potential mechanism of SPL action in vWAT is through the regulation of
PRDM16. PPAR-γ ligands require the expression of PRDM16, a factor that controls the
development of classical brown fat for white adipose browning [31,32]. PRDM16 and
rosiglitazone synergistically activate the brown fat gene program in vivo [33]. PRDM16
stimulates brown adipogenesis by binding to PPAR-γ and activating its transcriptional
function [34]. An increase in PRDM16 expression in SPL KO cells might lead to an increase
in the transcriptional function of PPAR-γ, and consequently, increased UCP1 expression.

SPL systemic KO mice were used for the study. To avoid the systemic effects, we
isolated vWAT and tested the effect ex vivo. Therefore, the effects we observed in vWAT
seemed to be tissue-specific effects. However, the obesity reduction effects induced by
rosiglitazone in SPL KO mice were likely not only caused by vWAT browning, since mice
had reduced whole body weight after treatment. Further mechanistic studies using tissue-
specific knockout mice are needed to define the role of SPL in controlling WAT browning
and may help explain the phenomenon observed. Additionally, whether SPL plays a role
in thermogenesis is also an interesting topic for future studies.

One limitation of this study is that SPL is highly enriched in dendritic spines, whether
it functions via neuroendocrine signaling and has potential secondary effects on browning
has not been studied in this paper. In summary, our data support that the depletion of SPL
in vWAT leads to increased white adipocyte browning in vitro and in vivo. Targeting SPL
may be used to promote WAT browning and reduce obesity. Another limitation is that we
did not test whether overexpression of SPL would impact rosiglitazone-induced browning.

4. Materials and Methods
4.1. Animal

Whole-body SPL KO mice were originally obtained from Dr. Ning Wang’s lab at the
University of Alabama at Birmingham and mouse genotyping was performed as described
previously [18]. Mice were maintained under a standard 12:12 h light-dark cycle. Food and
water were available ad libitum. Only male mice were used in the study since females did
not show differences in body weight when fed a high-fat diet [18]. All animal experiments
were approved by the Animal Care Committee at the Medical University of South Carolina
(IACUC, protocol #: 200972).

Tissue Collection and Stromal Vascular Fraction (SVF) Pre-Adipocyte Isolation

BAT, visceral WAT (vWAT), and inguinal WAT (iWAT) were dissected and weighted.
To collect SVF-derived pre-adipocytes, adipose tissue was digested with a mixture of
1.5 U/mL of collagenase D (Roche), 2.4 U/mL of Dispase II (Roche), and 10 mM of CaCl2
at 37 ◦C for 40–50 min. Cells were washed, seeded on a collagen-coated dish, and then
cultured in a medium including DMEM/F12 supplemented with 10% fetal bovine serum
(FBS), 1% penicillin, and streptomycin (complete medium) in 5% CO2 at 37 ◦C before
further differentiation [35].

4.2. Adipocyte Differentiation and Browning Induction

Pre-adipocytes from SVF or 3T3L1 cells (ATCC) were cultured in the complete medium
until 80% confluence. Cells were induced to differentiate into beige/brite cells using a three-
step protocol as reported [35,36]. First, cells were cultured in an induction medium that con-
tained DMEM/F12 base media and 125 µM indomethacin (Sigma-Aldrich, St. Louis, MO,
USA-Aldrich, St. Louis, MO, USA), 2 µg/mL dexamethasone (Sigma-Aldrich, St. Louis,
MO, USA), 0.5 mM IBMX (Sigma-Aldrich, St. Louis, MO, USA), 5 µg/mL Insulin, 1 nM
triiodothyronine (T3; Sigma-Aldrich, St. Louis, MO, USA), and 0.5 µM rosiglitazone
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(Sigma-Aldrich, St. Louis, MO, USA) for 48 h (days 1–2). Second, cells were switched to a
maintenance medium I that contained 5 µg/mL of insulin, 1 nM thyroid hormone (T3), and
0.5 µM rosiglitazone for another 48 h (days 3–4). Third, cells were cultured into the mainte-
nance medium II, which contained 5 µg/mL Insulin, 1 nM T3, and 1 µM rosiglitazone for
48–72 h (days 5–7) [35]. After full differentiation, cells were collected for RNA extraction
and gene expression analysis. Oil Red O (Sigma-Aldrich, St. Louis, MO, USA-O0625)
staining was used to identify oil drops in cells according to the manufacturer’s instructions.

4.3. Real-Time PCR Analysis

Total RNA was extracted using a Qiagen, Hilden, Germany RNA kit (Qiagen, Hilden,
Germany). Samples were treated with DNase (Sigma-Aldrich, St. Louis, MO, USA) to
exclude DNA contamination. The concentration and quality of RNA were determined
according to optical density (OD) measurement. mRNA was reverse transcribed into
cDNA using an RT-PCR kit (Bio-Rad, Hercules, CA, USA). Advanced Universal SYBR
Green Supermix was used for quantitative RT-PCR in a CFX96 real-time thermocycler (Bio-
Rad, Hercules, CA, USA) to determine gene expression levels of UCP1, PGC-1a, PRDM16,
FABP4, CIDEA, PPAR-γ. The primer sequences are listed in Table 1. Fold changes in
gene expression was normalized to β-actin expression and were plotted and compared
between groups.

Table 1. Primer sequences used for RT-PCR analysis.

UCP1 forward: 5′-CTTTGCCTCACTCAGGATTGG-3′

UCP1 reverse: 5′-ACTGCCACACCTCCAGTCATT-3′

PCG-1a forward: 5′-AGCCGTGACCACTGACAACGAG-3′

PCG-1a reverse: 5′-GCTGCATGGTTCTGAGTGCTAAG-3′

PRDM16 forward: 5′-CCACCAGCGAGGACTTCAC-3′

PRDM16 reverse: 5′-GGAGGACTCTCGTAGCTCGAA-3′;

FABP4 forward: 5′-ACACCGAGATTTCCTTCAAACTG-3′

FABP4 reverse: 5′-CCATCTAGGGTTATGATGCTCTTCA-3′;

CIDEA forward: 5’-TGCTCTTCTGTATCGCCCAGT-3’

CIDEA reverse: 5’-GCCGTGTTAAGGAATCTGCTG-3’

PPAR-γ forward: 5′-CTGTCGGTTTCAGAAGTGCC-3′

PPAR-γ reverse: 5′-ATGGTGATTTGTCCGTTGTC-3′

4.4. Mitochondrial DNA Content

Total DNA was extracted using the DNeasy mini kit (Qiagen, Hilden, Germany)
and was then quantified using the Pico green dsDNA quantification kit (Invitrogen,
Waltham, MA, USA). The mitochondrial genome (mtDNA) and nuclear DNA (nDNA)
Ct levels were obtained from RT-PCR and the relative mtDNA content was calculated as
2 × 2 ∆(nDNA Ct −mtDNA Ct) [37,38].

4.5. Mitochondria Membrane Potentials (MMP)

Mitochondrial membrane potentials were analyzed using the tetramethylrhodamine
ethyl ester (TMRE) Mitochondrial Membrane Potential Assay Kit (Cell Signaling Tech-
nology, Danvers, MA, USA). In brief, 200 nM of TMRE was added to the medium of the
differentiated SVF-derived adipocytes and incubated at 37 ◦C for 20 min. After washing
with PBS twice, the confocal images of cells were captured by the Leica TCS SP5 confocal
laser scanning microscope.
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4.6. Oxygen Consumption Rates (OCR)

OCR for fully differentiated SVF-derived adipocytes was assessed with a Seahorse
XFe96 analyzer (Agilent Technologies, Santa Clara, CA, USA). Cells were washed and main-
tained with the XF assay media in a non-CO2 incubator at 37 ◦C for 1 h. During the incuba-
tion time, 25 µL of 10 µM oligomycin, 9 µM carbonyl cyanide-p-trifluoromethoxyphenyl-
hydrazone (FCCP), 10 µM rotenone, and 10 µM antimycin A were added to the injection
ports of the XFe96 sensor cartridge. Seventy minutes after starting the experiment, the
instrument injected the inhibitors into the cells. OCR was measured continuously.

4.7. Deletion of SPL Gene in 3T3L1 Cells by shRNA Transfection

3T3L1 cells were cultured in a complete medium until 80% confluence. shRNA for
SPL or a control shRNA was mixed with plasmid transfection reagent and incubated at
room temperature for 45 min according to the manufacturer’s instruction (Santa Cruz
Biotechnology, Dallas, TX, USA). The mixture was added dropwise into 3T3L1 cells and
incubated in the 37 ◦C CO2 incubator for 8 h. Complete medium was added and cultured
for another 24 h. Transfected cells were then selected using media containing puromycin
for 3 days. Surviving cells were used for further experiments.

4.8. Western Blot Analysis

Cytosolic and nuclear fractions of cells were separated using the Cell Fraction Kit
(Abcam, Cambridge, UK). Nuclear or cytosolic proteins were separated by SDS-PAGE,
transferred to polyvinylidene difluoride membranes, and incubated with primary anti-
bodies against UCP1 (Sigma-Aldrich, St. Louis, MO, USA, cat# U6382), PPAR-γ (Thermo
Fisher, Waltham, MA, USA, cat# ma5-14889), GAPDH (Sigma-Aldrich, St. Louis, MO, USA,
cat# G8795), Histone H3 (Cell Signaling Technology, Danvers, MA, USA, cat# 4499P) or
Lamin A (Abcam, Cambridge, UK, cat# ab8980). The membrane was then washed and
incubated with the corresponding horseradish peroxidase-conjugated secondary antibodies
(Cell Signaling Technology, Danvers, MA, USA Technology). Signals were visualized using
an ECL detection kit (Thermo Scientific, cat# 34096). The relative expression of proteins
was quantified using the ImageJ software.

4.9. Immunofluorescence Staining

Mouse adipose tissues were fixed in 10% neutral buffered formalin overnight, embed-
ded in paraffin, and then sectioned with a thickness of 5 µm each. Sections were stained
with the rabbit anti-UCP1 antibody (Sigma-Aldrich, St. Louis, MO, USA, cat# U6382, 1:200
in dilution). SVF-derived adipocytes or 3T3-L1 cells were cultured on a coverslip and
fixed in cold acetone for 10 min. Sections were stained with a rabbit anti-PPAR-γ antibody
(Thermo Fisher, Waltham, MA, USA, cat# ma5-14889, 1:200 in dilution) overnight at 4 ◦C.
Slides were washed with PBS, stained with Alexa Flour 488 goat anti-rabbit (Life Tech,
cat#A11008, 1:500 dilution) secondary antibody, washed, covered with a coverslip, and
observed under a fluorescence microscope.

4.10. Statistical Analysis

Data were expressed as mean ± standard error of the mean (SEM). Differences between
groups were compared for statistical significance by one-way or two-way ANOVA with Tukey-
Kramer post hoc test or Student’s t-test using GraphPad Prism 8.0 (GraphPad Inc, CA, USA).
Other specific tests used are referenced in figure legends with p < 0.05 denoting significance.
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