Preparation, Characterization, and In Vivo Evaluation of Gentiopicroside-Phospholipid Complex (GTP-PC) and Its Self-Nanoemulsion Drug Delivery System (GTP-PC-SNEDDS)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Factors Affecting the Formation of GTP-Phospholipid Complex
2.1.1. Different Type of Phospholipids
2.1.2. Dissolving Solvents
2.1.3. Molar Ratio of GTP to Phospholipid
2.1.4. Stirring Time
2.2. Characterization of GTP-PC
2.2.1. Differential Scanning Calorimetry (DSC)
2.2.2. X-ray Diffractometry (XRD)
2.2.3. Fourier Transform Infrared Spectra (FT-IR)
2.2.4. Thin-Layer Chromatography (TLC)
2.2.5. Ultraviolet (UV) Spectra
2.2.6. Dissolution Studies in Phosphate Buffer Saline (pH 6.8)
2.3. Preparation Process of GTP-PC-SNEDDS
2.3.1. Screening of Oils, Surfactants and Cosurfactant
2.3.2. Factors Affecting the Formation of GTP-PC-SNEDDS
2.4. Characterization of GTP-PC-SNEDDS
2.4.1. Transmittance Electron Microscope
2.4.2. Droplet Size and Zeta Potential
2.4.3. Stability of Microemulsion Particle Size after Microemulsification
2.5. Bioavailability Experiments in Rats
3. Materials and Methods
3.1. Material and Animals
3.2. Chromatography
3.3. Preparation of GTP-PC
3.3.1. Complexation Efficiency of GTP-PC
3.3.2. Measurement of Dissociation Rate of GTP-PC
3.3.3. Investigations of GTP-PC
3.4. Characterization of GTP-PC
3.4.1. Differential Scanning Calorimetry (DSC)
3.4.2. X-ray Diffractometry (XRD)
3.4.3. Fourier Transform Infrared Spectra (FT-IR)
3.4.4. Thin-Layer Chromatography (TLC)
3.4.5. Ultraviolet (UV) Spectra
3.4.6. Dissolution Studies in Phosphate Buffer Saline (pH 6.8)
3.5. Preparation of GTP-PC-SNEDDS
3.5.1. Solubility Studies
3.5.2. Construction of Pseudo-Ternary Phase Diagrams
3.5.3. Investigations of GTP-PC-SNEDDS
3.5.4. Characterization of GTP-PC-SNEDDS
Morphological Characterization
Droplet Size and Zeta Potential
Solubility
Self-Microemulsifying Time
3.6. Bioavailability Experiments in Rats
3.6.1. Plasma Sample Preparation and Validity
3.6.2. Pharmacokinetic Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.; Zhan, G.; Jin, M.; Zhang, H.; Dang, J.; Zhang, Y.; Guo, Z.; Ito, Y. Botany, traditional use, phytochemistry, pharmacology, quality control, and authentication of Radix Gentianae Macrophyllae-A traditional medicine: A review. Phytomedicine 2018, 46, 142–163. [Google Scholar] [CrossRef] [PubMed]
- Li, X.H.; Yang, C.L.; Shen, H. Gentiopicroside exerts convincing antitumor effects in human ovarian carcinoma cells (SKOV3) by inducing cell cycle arrest, mitochondrial mediated apoptosis and inhibition of cell migration. J. Buon. 2019, 24, 280–284. [Google Scholar] [PubMed]
- Mudrić, J.; Janković, T.; Šavikin, K.; Bigović, D.; Đukić-Ćosić, D.; Ibrić, S.; Đuriš, J. Optimization and modelling of gentiopicroside, isogentisin and total phenolics extraction from Gentiana lutea L. roots. Ind. Crops Prod. 2020, 155, 112767. [Google Scholar] [CrossRef]
- Zhang, Q.-L.; Zhang, J.; Xia, P.-F.; Peng, X.-J.; Li, H.-L.; Jin, H.; Li, Y.; Yang, J.; Zhao, L. Anti-inflammatory activities of gentiopicroside against iNOS and COX-2 targets. Chin. Herb. Med. 2019, 11, 108–112. [Google Scholar] [CrossRef]
- Chang, Y.; Tian, Y.; Zhou, D.; Yang, L.; Liu, T.-M.; Liu, Z.-G.; Wang, S.-W. Gentiopicroside ameliorates ethanol-induced gastritis via regulating MMP-10 and pERK1/2 signaling. Int. Immunopharmacol. 2021, 90, 107213. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, X.; Wang, S.; Song, S.; Yang, X. Gentiopicroside prevents alcoholic liver damage by improving mitochondrial dysfunction in the rat model. Phytotherapy Res. 2021, 35, 2230–2251. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, M.; Wang, Y.; Chen, R.; Xu, S.; Sun, X.; Yang, Y.; Lin, Z.; Wang, S.; Huang, H. Gentiopicroside Ameliorates Diabetic Renal Tubulointerstitial Fibrosis via Inhibiting the AT1R/CK2/NF-κB Pathway. Front. Pharmacol. 2022, 13, 848915. [Google Scholar] [CrossRef]
- Xiao, H.; Sun, X.; Lin, Z.; Yang, Y.; Zhang, M.; Xu, Z.; Liu, P.; Liu, Z.; Huang, H. Gentiopicroside targets PAQR3 to activate the PI3K/AKT signaling pathway and ameliorate disordered glucose and lipid metabolism. Acta Pharm. Sin. B 2022, 12, 2887–2904. [Google Scholar] [CrossRef]
- Jia, N.; Ma, H.; Zhang, T.; Wang, L.; Cui, J.; Zha, Y.; Ding, Y.; Wang, J. Gentiopicroside attenuates collagen-induced arthritis in mice via modulating the CD147/p38/NF-κB pathway. Int. Immunopharmacol. 2022, 108, 108854. [Google Scholar] [CrossRef]
- Wang, C.-H.; Wang, Z.-T.; Bligh, S.W.A.; White, K.N.; White, C.J.B. Pharmacokinetics and tissue distribution of Gentiopicroside following oral and intravenous administration in mice. Eur. J. Drug Metab. Pharmacokinet. 2004, 29, 199–203. [Google Scholar] [CrossRef]
- Wang, C.H.; Cheng, X.M.; He, Y.-Q.; White, K.N.; Bligh, S.W.A.; Branford-White, C.J.; Wang, Z.-T. Pharmacokinetic behavior of gentiopicroside from decoction of Radix Gentianae, Gentiana macrophylla after oral administration in rats: A pharmacokinetic comaprison with gentiopicroside after oral and intravenous administration alone. Arch. Pharmacal Res. 2007, 30, 1149–1154. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-H.; Cheng, X.-M.; Bligh, S.W.A.; White, K.N.; Branford-White, C.J.; Wang, Z.-T. Pharmacokinetics and bioavailability of gentiopicroside from decoctions of Gentianae and Longdan Xiegan Tang after oral administration in rats—Comparison with gentiopicroside alone. J. Pharm. Biomed. Anal. 2007, 44, 1113–1117. [Google Scholar] [CrossRef] [PubMed]
- Xiong, K.; Gao, T.; Zhang, T.; Wang, Z.; Han, H. Simultaneous determination of gentiopicroside and its two active metabolites in rat plasma by LC–MS/MS and its application in pharmacokinetic studies. J. Chromatogr. B-Anal. Technol. Biomed. Life Sci. 2017, 1065, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.; Han, H.; Tao, Y.; Yang, L.; Wang, Z.; Chen, K. Identification of bio-active metabolites of gentiopicroside by UPLC/Q-TOF MS and NMR. Biomed. Chromatogr. 2013, 27, 1129–1136. [Google Scholar] [CrossRef] [PubMed]
- Chang-Liao, W.-L.; Chien, C.-F.; Lin, L.-C.; Tsai, T.-H. Isolation of gentiopicroside from Gentianae Radix and its pharmacokinetics on liver ischemia/reperfusion rats. J. Ethnopharmacol. 2012, 141, 668–673. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.-M.; Lin, L.-C.; Tsai, T.-H. Determination and Pharmacokinetic Study of Gentiopicroside, Geniposide, Baicalin, and Swertiamarin in Chinese Herbal Formulae after Oral Administration in Rats by LC-MS/MS. Molecules 2014, 19, 21560–21578. [Google Scholar] [CrossRef] [Green Version]
- Babazadeh, A.; Zeinali, M.; Hamishehkar, H. Nano-Phytosome: A Developing Platform for Herbal Anti-Cancer Agents in Cancer Therapy. Curr. Drug Targets 2018, 19, 170–180. [Google Scholar] [CrossRef]
- Salem, H.F.; Kharshoum, R.M.; Sayed, O.M.; Hakim, L.F.A. Formulation development of self-nanoemulsifying drug delivery system of celecoxib for the management of oral cavity inflammation. J. Liposome Res. 2019, 29, 195–205. [Google Scholar] [CrossRef]
- Patel, P.; Pailla, S.R.; Rangaraj, N.; Cheruvu, H.S.; Dodoala, S.; Sampathi, S. Quality by Design Approach for Developing Lipid-Based Nanoformulations of Gliclazide to Improve Oral Bioavailability and Anti-Diabetic Activity. AAPS PharmSciTech 2019, 20, 45. [Google Scholar] [CrossRef]
- Ashfaq, M.; Shah, S.; Rasul, A.; Hanif, M.; Khan, H.U.; Khames, A.; Abdelgawad, M.A.; Ghoneim, M.M.; Ali, M.Y.; Abourehab, M.A.S.; et al. Enhancement of the Solubility and Bioavailability of Pitavastatin through a Self-Nanoemulsifying Drug Delivery System (SNEDDS). Pharmaceutics 2022, 14, 482. [Google Scholar] [CrossRef]
- Kuche, K.; Bhargavi, N.; Dora, C.P.; Jain, S. Drug-Phospholipid Complex—A Go Through Strategy for Enhanced Oral Bioavailability. AAPS PharmSciTech 2019, 20, 43. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Peng, Q.; Shi, S.; Zhang, Q.; Sun, X.; Gong, T.; Zhang, Z. Preparation, characterization, and in vivo evaluation of a self-nanoemulsifying drug delivery system (SNEDDS) loaded with morin-phospholipid complex. Int. J. Nanomed. 2011, 6, 3405–3414. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Li, J.; Ju, Y.; Fu, Y.; Gong, T.; Zhang, Z. Mechanism of Enhanced Oral Absorption of Morin by Phospholipid Complex Based Self-Nanoemulsifying Drug Delivery System. Mol. Pharm. 2015, 12, 504–513. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Shuai, X.; Li, J.; Xiang, N.; Gong, T.; Zhang, Z. Biodistribution, hypouricemic efficacy and therapeutic mechanism of morin phospholipid complex loaded self-nanoemulsifying drug delivery systems in an experimental hyperuricemic model in rats. J. Pharm. Pharmacol. 2016, 68, 14–25. [Google Scholar] [CrossRef]
- Li, J.; Yang, Y.; Ning, E.; Peng, Y.; Zhang, J. Mechanisms of poor oral bioavailability of flavonoid Morin in rats: From physicochemical to biopharmaceutical evaluations. Eur. J. Pharm. Sci. 2019, 128, 290–298. [Google Scholar] [CrossRef]
- Li, F.; Shen, J.; Bi, J.; Tian, H.; Jin, Y.; Wang, Y.; Yang, X.; Yang, Z.; Kou, J. Preparation and evaluation of a self-nanoemulsifying drug delivery system loaded with Akebia saponin D–phospholipid complex. Int. J. Nanomed. 2016, 11, 4919–4929. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Shen, J.; Yang, X.; Jin, Y.; Yang, Z.; Wang, R.; Zhang, F.; Linhardt, R.J. Mechanism of enhanced oral absorption of akebia saponin D by a self-nanoemulsifying drug delivery system loaded with phospholipid complex. Drug Dev. Ind. Pharm. 2019, 45, 124–129. [Google Scholar] [CrossRef]
- Beg, S.; Alam, M.N.; Ahmad, F.J.; Singh, B. Chylomicron mimicking nanocolloidal carriers of rosuvastatin calcium for lymphatic drug targeting and management of hyperlipidemia. Colloids Surf. B Biointerfaces 2019, 177, 541–549. [Google Scholar] [CrossRef]
- Ding, D.; Sun, B.; Cui, W.; Chen, Q.; Zhang, X.; Zhang, H.; He, Z.; Sun, J.; Luo, C. Integration of phospholipid-drug complex into self-nanoemulsifying drug delivery system to facilitate oral delivery of paclitaxel. Asian J. Pharm. Sci. 2019, 14, 552–558. [Google Scholar] [CrossRef]
- Shukla, M.; Jaiswal, S.; Sharma, A.; Srivastava, P.K.; Arya, A.; Dwivedi, A.K.; Lal, J. A combination of complexation and self-nanoemulsifying drug delivery system for enhancing oral bioavailability and anticancer efficacy of curcumin. Drug Dev. Ind. Pharm. 2017, 43, 847–861. [Google Scholar] [CrossRef]
- Avachat, A.M.; Patel, V.G. Self nanoemulsifying drug delivery system of stabilized ellagic acid–phospholipid complex with improved dissolution and permeability. Saudi Pharm. J. 2015, 23, 276–289. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Long, X.; Yuan, F.; Chen, L.; Pan, S.; Liu, Y.; Stowell, Y.; Li, X. Combined use of phospholipid complexes and self-emulsifying microemulsions for improving the oral absorption of a BCS class IV compound, baicalin. Acta Pharm. Sin. B 2014, 4, 217–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruan, J.; Liu, J.; Zhu, D.; Gong, T.; Yang, F.; Hao, X.; Zhang, Z. Preparation and evaluation of self-nanoemulsified drug delivery systems (SNEDDSs) of matrine based on drug–phospholipid complex technique. Int. J. Pharm. 2010, 386, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Phan, T.N.Q.; Shahzadi, I.; Bernkop-Schnürch, A. Hydrophobic ion-pairs and lipid-based nanocarrier systems: The perfect match for delivery of BCS class 3 drugs. J. Control. Release 2019, 304, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.-N.; Shang, P.-P.; Sun, W.-J. HPLC determination of apparent n-octanol/water partition coefficient of gentiopicroside. Chin. J. Pharm. Anal. 2009, 7, 1093–1095. [Google Scholar]
- Shi, W.; Gao, D.-Y.; Wang, J.-X.; Han, L.-M. Analysis method of gentiopicroside in rat plasma and its application in investigation of preparation technology of phytosome. Fudan Univ. J. Med. Sci. 2009, 3, 342–345. [Google Scholar]
- Maiti, K.; Mukherjee, K.; Gantait, A.; Saha, B.P.; Mukherjee, P.K. Curcumin–phospholipid complex: Preparation, therapeutic evaluation and pharmacokinetic study in rats. Int. J. Pharm. 2007, 330, 155–163. [Google Scholar] [CrossRef]
- Yanyu, X.; Yunmei, S.; Zhipeng, C.; Qineng, P. The preparation of silybin–phospholipid complex and the study on its pharmacokinetics in rats. Int. J. Pharm. 2006, 307, 77–82. [Google Scholar] [CrossRef]
- Azadbakht, M.; Nayebi, E.; Fard, R.E.; Khaleghi, F. Standardization and formulation of an herbal appetite-stimulating drug from Gentiana olivieri. J. Herb. Med. 2020, 19, 100306. [Google Scholar] [CrossRef]
- Koo, S.I.; Noh, S.K. Phosphatidylcholine Inhibits and Lysophosphatidylcholine Enhances the Lymphatic Absorption of α-Tocopherol in Adult Rats. J. Nutr. 2001, 131, 717–722. [Google Scholar] [CrossRef] [Green Version]
- Tso, P.; Lam, J.; Simmonds, W.J. The importance of the lysophosphatidylcholine and choline moiety of bile phosphatidylcholine in lymphatic transport of fat. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 1978, 528, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Trevaskis, N.L.; Porter, C.J.H.; Charman, W.N. The Lymph Lipid Precursor Pool Is a Key Determinant of Intestinal Lymphatic Drug Transport. J. Pharmacol. Exp. Ther. 2006, 316, 881–891. [Google Scholar] [CrossRef] [PubMed]
- Yue, P.-F.; Yuan, H.-L.; Li, X.-Y.; Yang, M.; Zhu, W.-F. Process optimization, characterization and evaluation in vivo of oxymatrine–phospholipid complex. Int. J. Pharm. 2010, 387, 139–146. [Google Scholar] [CrossRef]
- Kidd, P.; Head, K. A review of the bioavailability and clinical efficacy of milk thistle phytosome: A silybin-phosphatidylcholine complex (Siliphos). Altern. Med. Rev. 2005, 10, 193–203. [Google Scholar]
- Bombardelli, E.; Della Loggia, R.; Sosa, S.; Spelta, M.; Tubaro, A. Aging skin: Protective effect of Silymarin-Phytosome (R). Fitoterapia 1991, 62, 115–122. [Google Scholar]
- Kumar, P.; Yadav, S.; Agarwal, A.; Kumar, N. Phytosomes: A noval phyto-phospholipid carriers: An overview. Int. J. Pharm. Res. Dev. 2010, 2, 1–7. [Google Scholar]
- Committee of the Chinese Pharmacopoeia. Pharmacopoeia of the People’s Republic of China; China Medical Science Press: Beijing, China, 2020; Volume 4. [Google Scholar]
- Telange, D.R.; Nirgulkar, S.B.; Umekar, M.J.; Patil, A.T.; Pethe, A.M.; Bali, N.R. Enhanced transdermal permeation and anti-inflammatory potential of phospholipids complex-loaded matrix film of umbelliferone: Formulation development, physico-chemical and functional characterization. Eur. J. Pharm. Sci. 2019, 131, 23–38. [Google Scholar] [CrossRef]
Type of Phospholipids | Complexation Efficiency (%) | K (h−1) |
---|---|---|
soybean phospholipid | 97.15 ± 3.27 | 1.60 |
egg yolk phospholipid | 100 ± 4.92 | 2.49 |
hydrogenated phospholipid | 88.20 ± 4.74 | 8.52 |
Solvents | Soybean Phospholipid | GTP | GTP-PC |
---|---|---|---|
Water | ※ | ++ | ※ |
Methanol | + | ++ | + |
Ethanol | - | - | ※ |
Acetone | ++ | - | - |
Dichloromethane | ++ | - | ++ |
Tetrahydrofuran | ++ | - | ++ |
Ethyl Acetate | ++ | - | ++ |
Trichloromethane | ++ | + | ++ |
Ethyl Ether | - | - | - |
n-hexane | ++ | - | - |
Type of Solvent | Complexation Efficiency (%) | K (h−1) |
---|---|---|
trichloromethane | 61.71 ± 5.38 | 3.17 |
tetrahydrofuran | 97.15 ± 3.31 | 1.99 |
ethyl acetate | 86.77 ± 4.24 | 2.53 |
Molar Ratio of GTP and Phospholipids | Complexation Efficiency (%) | K (h−1) |
---|---|---|
2:1 | 86.82 ± 6.53 | 5.21 |
1:1 | 97.15 ± 3.31 | 3.72 |
1:2 | 99.87 ± 3.21 | 2.39 |
1:3 | 99.66 ± 1.14 | 0.72 |
1:4 | 99.79 ± 2.23 | 0.55 |
Vehicle | Solubility of GTP-PC (g/g) |
---|---|
Oils | |
Imwitor742 | 0.146 ± 0.028 |
Maisin 35-1 | 0.037 ± 0.016 |
Miglycol 812N | - |
Maisin 35-1:Miglycol 812N = 1:2 | 0.095 ± 0.016 |
Maisin 35-1:Miglycol 812N = 1:1 | 0.105 ± 0.013 |
Maisin 35-1:Miglycol 812N = 2:1 | 0.065 ± 0.009 |
Labrafill M 1994 CS | 0.074 ± 0.019 |
Imwitor742:Miglycol 812N = 2:1 | 0.127 ± 0.013 |
Imwitor742:Miglycol 812N = 1:2 | 0.132 ± 0.011 |
Imwitor742:Miglycol 812N = 1:1 | 0.138 ± 0.038 |
Plurol Qleique CC 497 | 0.016 ± 0.006 |
Surfactant | |
Labrasol | 0.107 ± 0.011 |
Cremophor EL | 0.025 ± 0.005 |
Labrasol:Cremophor EL = 1:1 | 0.058 ± 0.005 |
Labrasol:Cremophor EL = 1:2 | 0.070 ± 0.009 |
Labrasol:Cremophor EL = 1:3 | 0.069 ± 0.014 |
Labrasol:Cremophor EL = 1:4 | 0.060 ± 0.009 |
Tween 80 | 0.012 ± 0.004 |
Co-surfactant | |
Transcutol P | 0.315 ± 0.012 |
PEG400 | - |
Absolute ethanol | - |
95% ethanol | - |
GTP-PC/Blank Formula (w/w) | 0.1 M HCl Particle Size (nm) | pH 6.8 PBS Particle Size (nm) | Water Particle Size (nm) |
---|---|---|---|
1:5 | 190.0 ± 23.5 | 527.5 ± 34.7 | 205.6 ± 38.1 |
1:7 | 47.5 ± 15.2 | 150.1 ± 21.1 | 44.6 ± 12.8 |
1:10 | 27.8 ± 3.9 | 52.7 ± 8.4 | 24.6 ± 3.4 |
Preparation Technology | Particle Size (nm) | Time (s) | Appearance | Appearance after Dilution |
---|---|---|---|---|
Ultrasonic | 31.2 ± 0.6 | 69 ± 15 | Clear liquid | Turbid, clear after 30 min |
Stirring (at room temperature, 25 °C) | 27.8 ± 3.9 | 21 ± 6 | Clear liquid | Clear liquid |
Volution | 32.6 ± 3.0 | 47 ± 12 | Clear liquid | Turbid, clear after 30 min |
Placed at 4 °C | 26.2 ± 2.0 | 32 ± 9 | Layering | Clear liquid |
Placed at 25 °C | 31.7 ± 2.4 | 26 ± 5 | Layering | Clear liquid |
Placed at 30 °C | 31.3 ± 0.4 | 23 ± 7 | Layering | Clear liquid |
Placed at 40 °C | 27.7 ± 0.1 | 29 ± 3 | Layering | Clear liquid |
Different Media | Particle Size (nm) |
---|---|
0.1 M HCl | 27.8 ± 3.9 |
pH 6.8 PBS | 46.7 ± 2.1 |
Distilled Water | 24.6 ± 3.4 |
Diluted Multi | Particle Size (nm) |
---|---|
100 | 29.7 ± 4.4 |
250 | 27.8 ± 3.9 |
500 | 27.5 ± 4.5 |
1000 | 3.2 ± 0.6 |
Time (h) | HCl Particle Size (nm) | pH 6.8 PBS Particle Size (nm) | Distilled Water Particle Size (nm) |
---|---|---|---|
0 | 27.8 ± 3.9 | 46.7 ± 2.1 | 24.6 ± 3.4 |
1 | 30.5 ± 5.0 | 56.7 ± 8.5 | 28.2 ± 4.1 |
2 | 31.5 ± 4.4 | 62.7 ± 8.4 | 30.8 ± 4.8 |
4 | 32.7 ± 4.3 | 61.6 ± 5.7 | 31.4 ± 3.9 |
8 | 35.4 ± 5.7 | 65.3 ± 6.2 | 34.6 ± 2.5 |
Parameter | GTP | GTP: Phospholipids = 1:2 (Suspension) | GTP: Phospholipids = 1:2 (Oil Solution) | GTP-PCSMEDDS |
---|---|---|---|---|
A | 3.486 ± 1.391 | 8.961 ± 2.677 | 4.666 ± 0.904 | 3.954 ± 0.554 |
Ka/h−1 | 5.362 ± 3.319 | 2.275 ± 0.411 | 6.303 ± 3.873 | 18.123 ± 15.921 |
Ke/h−1 | 0.550 ± 0.295 | 0.338 ± 0.059 | 0.115 ± 0.038 | 0.086 ± 0.045 |
T1/2Ka/h | 0.160 ± 0.099 | 0.310 ± 0.056 | 0.110 ± 0.061 | 0.061 ± 0.042 |
T1/2Ke/h | 1.473 ± 0.790 | 2.085 ± 0.364 | 6.049 ± 1.351 | 10.233 ± 6.400 |
Tmax/h | 0.604 ± 0.138 | 1.001 ± 0.070 * | 0.665 ± 0.388 | 0.452 ± 0.306 * |
Cmax/μg·mL−1 | 2.417 ± 0.227 | 7.365 ± 0.760 ** | 4.682 ± 1.645 * | 4.369 ± 1.503 * |
AUC0–∞/μg·mL−1·h | 6.273 ± 2.123 | 23.375 ± 10.665 ** | 47.009 ± 20.532 ** | 60.749 ± 33.759 ** |
Fr (%) | - | 372.65 | 749.45 | 968.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, Y.; Shi, W.; Zhang, Q.; Wang, J. Preparation, Characterization, and In Vivo Evaluation of Gentiopicroside-Phospholipid Complex (GTP-PC) and Its Self-Nanoemulsion Drug Delivery System (GTP-PC-SNEDDS). Pharmaceuticals 2023, 16, 99. https://doi.org/10.3390/ph16010099
Tong Y, Shi W, Zhang Q, Wang J. Preparation, Characterization, and In Vivo Evaluation of Gentiopicroside-Phospholipid Complex (GTP-PC) and Its Self-Nanoemulsion Drug Delivery System (GTP-PC-SNEDDS). Pharmaceuticals. 2023; 16(1):99. https://doi.org/10.3390/ph16010099
Chicago/Turabian StyleTong, Yingpeng, Wen Shi, Qin Zhang, and Jianxin Wang. 2023. "Preparation, Characterization, and In Vivo Evaluation of Gentiopicroside-Phospholipid Complex (GTP-PC) and Its Self-Nanoemulsion Drug Delivery System (GTP-PC-SNEDDS)" Pharmaceuticals 16, no. 1: 99. https://doi.org/10.3390/ph16010099
APA StyleTong, Y., Shi, W., Zhang, Q., & Wang, J. (2023). Preparation, Characterization, and In Vivo Evaluation of Gentiopicroside-Phospholipid Complex (GTP-PC) and Its Self-Nanoemulsion Drug Delivery System (GTP-PC-SNEDDS). Pharmaceuticals, 16(1), 99. https://doi.org/10.3390/ph16010099