Isolation, Identification, Anti-Inflammatory, and In Silico Analysis of New Lignans from the Resin of Ferula sinkiangensis
Abstract
:1. Introduction
2. Results
2.1. Structural Elucidation
2.2. Anti-Inflammatory Activity
2.3. Molecular Docking Analysis
2.4. Cytotoxicity
2.5. Compound 6 Inhibits the Migration and Invasion of Gastric Cancer Cells
3. Discussion
4. Materials and Methods
4.1. Experimental
4.2. Material
4.3. Extraction and Isolation
4.4. ECD Simulation
4.5. Determination of NO Production by the Griess Assay
4.6. Enzyme-Linked Immunosorbent Assay (ELISA)
4.7. Molecular Docking
4.8. Cytotoxicity
4.9. Wound Healing Assay
4.10. Cell Migration and Invasion Assays
4.11. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Medzhitov, R. Origin and physiological roles of inflammation. Nature 2008, 454, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, O.; Akira, S. Pattern recognition receptors and inflammation. Cell 2010, 140, 805–820. [Google Scholar] [CrossRef] [PubMed]
- Häcker, G.; Redecke, V.; Häcker, H. Activation of the immune system by bacterial CpG-DNA. Immunology 2002, 105, 245–251. [Google Scholar] [CrossRef]
- Zong, M.; Bruton, J.D.; Grundtman, C.; Yang, H.; Li, J.H.; Alexanderson, H.; Palmblad, K.; Andersson, U.; Harris, H.E.; Lundberg, I.E.; et al. TLR4 as receptor for HMGB1 induced muscle dysfunction in myositis. Ann. Rheum. Dis. 2013, 72, 1390–1399. [Google Scholar] [CrossRef]
- Creagh, E.M.; O’Neill, L.A. TLRs, NLRs and RLRs: A trinity of pathogen sensors that co-operate in innate immunity. Trends Immunol. 2006, 27, 352–357. [Google Scholar] [CrossRef]
- Kawai, T.; Akira, S. TLR signaling. Cell Death Differ. 2006, 13, 816–825. [Google Scholar] [CrossRef]
- Cushing, K.; Higgins, P.D.R. Management of Crohn Disease: A Review. JAMA 2021, 325, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Mendiola, A.S.; Cardona, A.E. The IL-1β phenomena in neuroinflammatory diseases. J. Neural Transm. 2018, 125, 781–795. [Google Scholar] [CrossRef]
- Del Giudice, M.; Gangestad, S.W. Rethinking IL-6 and CRP: Why they are more than inflammatory biomarkers, and why it matters. Brain Behav. Immun. 2018, 70, 61–75. [Google Scholar] [CrossRef]
- Patil, K.R.; Mahajan, U.B.; Unger, B.S.; Goyal, S.N.; Belemkar, S.; Surana, S.J.; Ojha, S.; Patil, C.R. Animal Models of Inflammation for Screening of Anti-inflammatory Drugs: Implications for the Discovery and Development of Phytopharmaceuticals. Int. J. Mol. Sci. 2019, 20, 4367. [Google Scholar] [CrossRef]
- Katz, J.N.; Arant, K.R.; Loeser, R.F. Diagnosis and Treatment of Hip and Knee Osteoarthritis: A Review. JAMA 2021, 325, 568–578. [Google Scholar] [CrossRef] [PubMed]
- Sonigra, P.; Meena, M. Metabolic Profile, Bioactivities, and Variations in the Chemical Constituents of Essential Oils of the Ferula Genus (Apiaceae). Front. Pharmacol. 2020, 11, 608649. [Google Scholar] [CrossRef]
- Özek, G.; Schepetkin, I.A.; Utegenova, G.A.; Kirpotina, L.N.; Andrei, S.R.; Özek, T.; Başer, K.H.C.; Abidkulova, K.T.; Kushnarenko, S.V.; Khlebnikov, A.I.; et al. Chemical composition and phagocyte immunomodulatory activity of Ferula iliensis essential oils. J. Leukoc. Biol. 2017, 101, 1361–1371. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Takaishi, Y.; Tori, M.; Takaoka, S.; Honda, G.; Ito, M.; Takeda, Y.; Kodzhimatov, O.K.; Kodzhimatov, K.; Ashurmetov, O. Polysulfide derivatives from Ferula foetida. J. Nat. Prod. 2002, 65, 1667–1669. [Google Scholar] [CrossRef] [PubMed]
- Khayat, M.T.; Alharbi, M.; Ghazawi, K.F.; Mohamed, G.A.; Ibrahim, S.R.M. Ferula sinkiangensis (Chou-AWei, Chinese Ferula): Traditional Uses, Phytoconstituents, Biosynthesis, and Pharmacological Activities. Plants 2023, 12, 902. [Google Scholar] [CrossRef]
- Eruçar, F.M.; Kuran, F.K.; Altıparmak Ülbegi, G.; Özbey, S.; Karavuş, Ş.N.; Arcan, G.G.; Yazıcı Tütüniş, S.; Tan, N.; Aksoy Sağırlı, P.; Miski, M. Sesquiterpene Coumarin Ethers with Selective Cytotoxic Activities from the Roots of Ferula huber-morathii Peşmen (Apiaceae) and Unequivocal Determination of the Absolute Stereochemistry of Samarcandin. Pharmaceuticals 2023, 16, 792. [Google Scholar] [CrossRef]
- Kamoldinov, K.; Li, J.; Eshbakova, K.; Sagdullaev, S.; Xu, G.; Zhou, Y.; Li, J.; Aisa, H.A. Sesquiterpene coumarins from Ferula samarkandica Korovin and their bioactivity. Phytochemistry 2021, 187, 112705. [Google Scholar] [CrossRef]
- Guo, T.; Dang, W.; Zhou, Y.; Zhou, D.; Meng, Q.; Xu, L.; Chen, G.; Lin, B.; Qing, D.; Sun, Y.; et al. Sesquiterpene coumarins isolated from Ferula bungeana and their anti-neuroinflammatory activities. Bioorg. Chem. 2022, 128, 106102. [Google Scholar] [CrossRef]
- Dastan, D.; Salehi, P.; Reza Gohari, A.; Ebrahimi, S.N.; Aliahmadi, A.; Hamburger, M. Bioactive sesquiterpene coumarins from Ferula pseudalliacea. Planta Med. 2014, 80, 1118–1123. [Google Scholar] [CrossRef]
- Li, G.Z.; Wang, J.C.; Li, X.J.; Cao, L.; Gao, L.; Lv, N.; Si, J.Y. An unusual sesquiterpene coumarin from the seeds of Ferula sinkiangensis. J. Asian Nat. Prod. Res. 2016, 18, 891–896. [Google Scholar] [CrossRef]
- Kogure, K.; Yamauchi, I.; Tokumura, A.; Kondou, K.; Tanaka, N.; Takaishi, Y.; Fukuzawa, K. Novel antioxidants isolated from plants of the genera Ferula, Inula, Prangos and Rheum collected in Uzbekistan. Phytomedicine 2004, 11, 645–651. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, M.I.; Baig, I.; Nur-e-Alam, M.; Shahzad-ul-Hussan, S.; Öndognii, P.; Bunderya, M.; Oyun, Z.; Atta-ur-Rahman. New α-Glucosidase Inhibitors from the Mongolian Medicinal Plant Ferula mongolica. Helv. Chim. Acta 2001, 84, 2409–2416. [Google Scholar] [CrossRef]
- Li, Q.; Li, J.J.; Bao, X.H.; Zhang, S.Y.; Luo, Q.; Li, K.M.; Jiao, Y.B.; Cheng, Y.X.; Yan, Y.M. Unusual sesquilignans with anti-inflammatory activities from the resin of Ferula sinkiangensis. Bioorg. Chem. 2022, 127, 105986. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Huo, X.; Wang, H.; Dong, A.; Zheng, Q.; Si, J. Undescribed sesquiterpene coumarins from the aerial parts of Ferula sinkiangensis and their anti-inflammatory activities in lipopolysaccharide-stimulated RAW 264.7 macrophages. Phytochemistry 2023, 210, 113664. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Zhou, D.; Yang, Y.; Zhang, X.; Chen, G.; Lin, B.; Sun, Y.; Ni, H.; Liu, J.; Hou, Y.; et al. Bioactive sesquiterpene coumarins from the resin of Ferula sinkiangensis targeted on over-activation of microglia. Bioorg. Chem. 2020, 104, 104338. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.L.; Sang, C.Y.; Wang, J.; Li, P.L.; Chai, T.; Naghavi, M.R.; Zhao, Y.M.; Yang, J.L. Sesquiterpene coumarins from Ferula sinkiangensis and their anti-pancreatic cancer effects. Phytochemistry 2023, 214, 113824. [Google Scholar] [CrossRef]
- Wang, J.; Yan, H.; Huo, X.; Li, L.; Wang, H.; Zhang, M.; Li, X.; Zhao, Y.; Chen, G.; Si, J. New Sulfoxide-Containing Derivatives from the Resin of Ferula sinkiangensis. Planta Med. 2022, 88, 420–428. [Google Scholar] [CrossRef]
- Yi, X.; Li, Z.; Zheng, Q.; Sang, R.; Li, H.; Gao, G.; Qin, Q.; Zhu, N. Three new tetrahydrobenzofuran derivatives from Ferula sinkiangensis K.M. Shen and their cytotoxic activities. Nat. Prod. Res. 2023, 37, 3369–3373. [Google Scholar] [CrossRef]
- Li, G.; Li, X.; Cao, L.; Shen, L.; Zhu, J.; Zhang, J.; Wang, J.; Zhang, L.; Si, J. Steroidal esters from Ferula sinkiangensis. Fitoterapia 2014, 97, 247–252. [Google Scholar] [CrossRef]
- Wang, J.; Gao, Y.; Wang, H.; Chen, L.; Cao, L.; Xu, J.; Li, X.; Zhao, Y.; Zhu, J.; Si, J. Apoptosis induction and cell cycle arrest induced by Sinkiangenone B, a novel phenylpropanoid derivative from the resin of Ferula sinkiangensis K. M. Shen. RSC Adv. 2018, 8, 4093–4103. [Google Scholar] [CrossRef]
- Bao, X.H.; Li, Y.P.; Li, Q.; Cheng, Y.X.; Jiao, Y.B.; Zhang, H.X.; Yan, Y.M. Racemic norneolignans from the resin of Ferula sinkiangensis and their COX-2 inhibitory activity. Fitoterapia 2023, 164, 105341. [Google Scholar] [CrossRef] [PubMed]
- Tokoroyama, T.; Nakamura, M. Novel decarboxylative reaction of the substituted cinnamyl cinnamates (styracins) mediated by transition metals. Chem. Lett. 1977, 6, 659–662. [Google Scholar] [CrossRef]
- Tomofumi, M.; Ryo, Y. Novel Compound. Patent WO2014136786A1, 12 September 2014. [Google Scholar]
- Adhami, H.R.; Lutz, J.; Kählig, H.; Zehl, M.; Krenn, L. Compounds from gum ammoniacum with acetylcholinesterase inhibitory activity. Sci. Pharm. 2013, 81, 793–805. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Ying, Z.; Wei, W.; Hao, D.; Wang, H.; Zhang, W.; Li, C.; Jiang, M.; Ying, X.; Liu, J. A novel alkaloid from Portulaca oleracea L. Nat. Prod. Res. 2017, 31, 902–908. [Google Scholar] [CrossRef] [PubMed]
- Schlemmer, W.; Nothdurft, P.; Petzold, A.; Riess, G.; Frühwirt, P.; Schmallegger, M.; Gescheidt-Demner, G.; Fischer, R.; Freunberger, S.A.; Kern, W.; et al. 2-Methoxyhydroquinone from Vanillin for Aqueous Redox-Flow Batteries. Angew. Chem. Int. Ed. 2020, 59, 22943–22946. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Gao, W.; He, C.; Tong, J. Chemical Constituents from the Aerial Part of Medicago sativa L. Nat. Prod. Res. Dev. 2008, 20, 1005–1007, 1011. [Google Scholar] [CrossRef]
- Peng, X.; Wu, G.; Zhao, A.; Huang, K.; Chai, L.; Natarajan, B.; Yang, S.; Chen, H.; Lin, C. Synthesis of novel caffeic acid derivatives and their protective effect against hydrogen peroxide induced oxidative stress via Nrf2 pathway. Life Sci. 2020, 247, 117439. [Google Scholar] [CrossRef]
- Krikštaponis, A.; Meškys, R. Biodegradation of 7-Hydroxycoumarin in Pseudomonas mandelii 7HK4 via ipso-Hydroxylation of 3-(2,4-Dihydroxyphenyl)-propionic Acid. Molecules 2018, 23, 2613. [Google Scholar] [CrossRef]
- Tabanca, N.; Wang, M.; Avonto, C.; Chittiboyina, A.G.; Parcher, J.F.; Carroll, J.F.; Kramer, M.; Khan, I.A. Bioactivity-guided investigation of geranium essential oils as natural tick repellents. J. Agric. Food Chem. 2013, 61, 4101–4107. [Google Scholar] [CrossRef]
- Adio, A.M.; Paul, C.; Tesso, H.; Kloth, P.; KöNig, W.A. Absolute configuration of helminthogermacrene. Tetrahedron Asymmetry 2004, 15, 1631–1635. [Google Scholar] [CrossRef]
- Panidthananon, W.; Chaowasku, T.; Sritularak, B.; Likhitwitayawuid, K. A New Benzophenone C-Glucoside and Other Constituents of Pseuduvaria fragrans and Their α-Glucosidase Inhibitory Activity. Molecules 2018, 23, 1600. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.D.; Vieira, I.J.; Braz-Filho, R.; Branco, A. Chemicals from Agave sisalana biomass: Isolation and identification. Int. J. Mol. Sci. 2015, 16, 8761–8771. [Google Scholar] [CrossRef] [PubMed]
- Shi, T.; Zhu, M.; Zhou, X.; Huo, X.; Long, Y.; Zeng, X.; Chen, Y. 1H NMR combined with PLS for the rapid determination of squalene and sterols in vegetable oils. Food Chem. 2019, 287, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Matsumori, N.; Kaneno, D.; Murata, M.; Nakamura, H.; Tachibana, K. Stereochemical Determination of Acyclic Structures Based on Carbon-Proton Spin-Coupling Constants. A Method of Configuration Analysis for Natural Products. J. Org. Chem. 1999, 64, 866–876. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Kong, F.; Wei, J.; Wang, Y.; Wang, W.; Hong, K.; Zhu, W. Alkaloids from the mangrove-derived actinomycete Jishengella endophytica 161111. Mar. Drugs 2014, 12, 477–490. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Jamal, J.; Delker, S.; Plaza, C.; Ji, H.; Jing, Q.; Huang, H.; Kang, S.; Silverman, R.B.; Poulos, T.L. The mobility of a conserved tyrosine residue controls isoform-dependent enzyme-inhibitor interactions in nitric oxide synthases. Biochemistry 2014, 53, 5272–5279. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, M.; Mukosera, G.T.; Borchardt, D.; Li, Q.; Tipple, T.E.; Ishtiaq Ahmed, A.S.; Power, G.G.; Blood, A.B. L-NAME releases nitric oxide and potentiates subsequent nitroglycerin-mediated vasodilation. Redox Biol. 2019, 26, 101238. [Google Scholar] [CrossRef]
- Xiao, H.Y.; Li, N.; Duan, J.J.; Jiang, B.; Lu, Z.; Ngu, K.; Tino, J.; Kopcho, L.M.; Lu, H.; Chen, J.; et al. Biologic-like In Vivo Efficacy with Small Molecule Inhibitors of TNFα Identified Using Scaffold Hopping and Structure-Based Drug Design Approaches. J. Med. Chem. 2020, 63, 15050–15071. [Google Scholar] [CrossRef]
- Saddala, M.S.; Huang, H. Identification of novel inhibitors for TNFα, TNFR1 and TNFα-TNFR1 complex using pharmacophore-based approaches. J. Trans. Med. 2019, 17, 215. [Google Scholar] [CrossRef]
- Nichols, C.; Ng, J.; Keshu, A.; Kelly, G.; Conte, M.R.; Marber, M.S.; Fraternali, F.; De Nicola, G.F. Mining the PDB for Tractable Cases Where X-ray Crystallography Combined with Fragment Screens Can Be Used to Systematically Design Protein-Protein Inhibitors: Two Test Cases Illustrated by IL1β-IL1R and p38α-TAB1 Complexes. J. Med. Chem. 2020, 63, 7559–7568. [Google Scholar] [CrossRef]
- JPR, E.S.; Pereira, L.C.O.; Abreu, L.S.; Lins, F.S.V.; de Souza, T.A.; do Espírito-Santo, R.F.; Barros, R.P.C.; Villarreal, C.F.; de Melo, J.I.M.; Scotti, M.T.; et al. Targeted Isolation of Anti-inflammatory Lignans from Justicia aequilabris by Molecular Networking Approach. J. Nat. Prod. 2022, 85, 2184–2191. [Google Scholar] [CrossRef]
- Adams, R.; Burnley, R.J.; Valenzano, C.R.; Qureshi, O.; Doyle, C.; Lumb, S.; Del Carmen Lopez, M.; Griffin, R.; McMillan, D.; Taylor, R.D.; et al. Discovery of a junctional epitope antibody that stabilizes IL-6 and gp80 protein:protein interaction and modulates its downstream signaling. Sci. Rep. 2017, 7, 37716. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.S.; Choi, J.H.; Lee, S.Y.; Park, Y.H.; Park, K.Y.; Lee, J.Y.; Kim, J.; Gajulapati, V.; Goo, J.I.; Singh, S.; et al. A Novel Small-Molecule Inhibitor Targeting the IL-6 Receptor β Subunit, Glycoprotein 130. J. Immunol. 2015, 195, 237–245. [Google Scholar] [CrossRef]
- Jang, W.Y.; Kim, M.Y.; Cho, J.Y. Antioxidant, Anti-Inflammatory, Anti-Menopausal, and Anti-Cancer Effects of Lignans and Their Metabolites. Int. J. Mol. Sci. 2022, 23, 15482. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Hu, X. Advances in the Synthesis of Lignan Natural Products. Molecules 2018, 23, 3385. [Google Scholar] [CrossRef] [PubMed]
- Higham, A.; Singh, D. Dexamethasone and p38 MAPK inhibition of cytokine production from human lung fibroblasts. Fundam. Clin. Pharmacol. 2021, 35, 714–724. [Google Scholar] [CrossRef]
- Son, M.; Wang, A.G.; Tu, H.L.; Metzig, M.O.; Patel, P.; Husain, K.; Lin, J.; Murugan, A.; Hoffmann, A.; Tay, S. NF-κB responds to absolute differences in cytokine concentrations. Sci. Signal. 2021, 14, eaaz4382. [Google Scholar] [CrossRef]
- Wang, H.-Q.; Wan, Z.; Zhang, Q.; Su, T.; Yu, D.; Wang, F.; Zhang, C.; Li, W.; Xu, D.; Zhang, H. Schisandrin B targets cannabinoid 2 receptor in Kupffer cell to ameliorate CCl4-induced liver fibrosis by suppressing NF-κB and p38 MAPK pathway. Phytomedicine 2022, 98, 153960. [Google Scholar] [CrossRef]
- Sultane, P.R.; Ahumada, G.; Janssen-Müller, D.; Bielawski, C.W. Cyclic (Aryl)(Amido)Carbenes: NHCs with Triplet-like Reactivity. Angew. Chem. Int. Ed. 2019, 58, 16320–16325. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, B.; Yang, J.; Zhang, R.; Liu, N.; Wang, X.; Yu, C.; Rong, Z.; Zhang, H.; Long, Q. Chemical investigation and anti-inflammatory activities of the aerial part of Filipendula palmata. J. Ethnopharmacol. 2022, 287, 114959. [Google Scholar] [CrossRef]
- Millan-Linares, M.C.; Martin, M.E.; Rodriguez, N.M.; Toscano, R.; Claro, C.; Bermudez, B.; Pedroche, J.; Millan, F.; Montserrat-de la Paz, S. Nutraceutical Extract from Dulse (Palmaria palmata L.) Inhibits Primary Human Neutrophil Activation. Mar. Drugs 2019, 17, 610. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.H.; Ma, W.T.; Zhou, Z.K.; Huang, X.; Jiang, X.R.; Du, K.J.; Sun, M.Z.; Zhang, H.; Fang, H.; Zhao, Y.; et al. Synthesis of 8-Fluoroneocryptolepine and Evaluation for Cytotoxic Activity against AGS Cancer Cells. J. Nat. Prod. 2022, 85, 963–971. [Google Scholar] [CrossRef] [PubMed]
No. | Compound 1 | Compound 2 | Compound 3 | |||
---|---|---|---|---|---|---|
δC | δH (J in Hz) | δC | δH (J in Hz) | δC | δH (J in Hz) | |
1 | 132.6 | - | 132.7 | - | 134.2 | - |
2 | 111.7 | 6.89 (d, 1.8) | 111.6 | 6.86 (d, 1.8) | 111.7 | 6.97 (d, 1.8) |
3 | 147.0 | - | 147.0 | - | 148.9 | - |
4 | 149.0 | - | 149.0 | - | 147.3 | - |
5 | 116.1 | 6.64 (d, 8.4) | 116.1 | 6.66 (d, 8.4) | 115.8 | 6.71 (d, 8.4) |
6 | 121.7 | 6.77 (dd, 8.4, 1.8) | 121.2 | 6.74 (dd, 8.4, 1.8) | 121.0 | 6.81 (dd, 8.4, 1.8) |
7 | 85.1 | 4.11 (d, 7.8) | 85.2 | 4.15 (d, 7.8) | 78.1 | 4.56 (d, 6.6) |
8 | 46.3 | 2.19 (m) | 46.4 | 2.16 (m) | 83.9 | 4.35 (dt, 9.0, 6.6) |
9 | 65.2 | 4.35 (d, 4.8) | 65.4 | 4.09 (dd, 10.8, 4.8) 3.90 (dd, 10.8, 4.8) | 37.7 | 1.86 (ddd, 13.2, 9.0, 6.6) 1.51 (ddd, 13.2, 6.0, 3.0) |
1′ | 131.3 | - | 131.4 | - | 133.9 | - |
2′ | 110.0 | 6.83 (d, 1.8) | 110.1 | 6.89 (d, 1.8) | 110.7 | 6.94 (d, 1.8) |
3′ | 147.4 | - | 147.3 | - | 148.9 | - |
4′ | 149.2 | - | 149.2 | - | 147.0 | - |
5′ | 116.0 | 6.80 (d, 8.4) | 116.1 | 6.78 (d, 8.4) | 115.9 | 6.73 (d, 8.4) |
6′ | 120.4 | 6.70 (dd, 8.4, 1.8) | 120.4 | 6.76 (dd, 8.4, 1.8) | 119.8 | 6.78 (dd, 8.4, 1.8) |
7′ | 132.9 | 6.16 (d, 15.6) | 133.0 | 6.27 (d, 15.6) | 89.9 | 4.64 (d, 3.6) |
8′ | 126.2 | 5.89 (m) | 126.4 | 6.05 (m) | 79.3 | 3.98 (dt, 6.0, 3.6) |
9′ | 33.2 | 2.16 (m), 2.10 (m) | 32.7 | 2.60 (m), 2.39 (m) | ||
1″ | 127.6 | - | 127.6 | - | ||
2″ | 111.6 | 7.13 (d, 1.8) | 111.5 | 7.12 (d, 1.8) | ||
3″ | 149.3 | - | 149.4 | - | ||
4″ | 150.6 | - | 150.7 | - | ||
5″ | 116.4 | 6.78 (d, 8.4) | 116.4 | 6.75 (d, 8.4) | ||
6″ | 124.2 | 7.00 (dd, 8.4, 1.8) | 124.2 | 6.98 (dd, 8.4, 1.8) | ||
7″ | 115.5 | 6.33 (d, 15.6) | 115.4 | 6.30 (d, 15.6) | ||
8″ | 146.8 | 7.53 (d, 15.6) | 146.8 | 7.48 (d, 15.6) | ||
9″ | 169.4 | - | 169.2 | - | ||
3-OCH3 | 56.3 | 3.76 (s) | 56.3 | 3.77 (s) | 56.3 | 3.80 (s) |
7-OCH3 | 56.9 | 3.17 (s) | 57.1 | 3.21 (s) | ||
3′-OCH3 | 56.4 | 3.83 (s) | 56.3 | 3.80 (s) | 56.4 | 3.81 (s) |
3″-OCH3 | 56.4 | 3.87 (s) | 56.4 | 3.87 (s) |
Protein | Affinity Score (Kcal/mol) | Conventional Hydrogen Bond | Hydrophobic Interactions |
---|---|---|---|
iNOS (PDB ID: 4CX7) | −9.42 | Ser 118, Thr 121, Tyr 373, Arg 388 | Trp 90, Met 120, Arg 381, Trp 461, Trp 463 |
TNF-α (PDB ID: 7JRA) | −10.79 | Gly 197, Gly 198, Tyr 227 | Leu 133, Tyr 135, Tyr 195, Ile231, Leu 233 |
IL-1β (PDB ID: 5R85) | −7.81 | Tyr 24, Leu 26, Leu 80 | Tyr 24 |
IL-6 (PDB ID: 5FUC) | −5.84 | Glu 99, Lys 120, Gln 127 | Leu 92, Ile 123, Ala 145, Leu 148 |
MGC-803 | AGS | HeLa | |
---|---|---|---|
1 | >100 | 63.0 ± 1.8 | 41.9 ± 1.7 |
2 | >100 | 61.5 ± 1.5 | 45.9 ± 0.6 |
3 | >100 | >100 | >100 |
4 | >100 | >100 | >100 |
5 | >100 | >100 | >100 |
6 | 30.5 ± 1.3 | 15.2 ± 0.9 | 30.2 ± 0.4 |
7 | >100 | >100 | >100 |
8 | >100 | >100 | >100 |
9 | >100 | >100 | >100 |
10 | >100 | >100 | >100 |
11 | >100 | >100 | >100 |
12 | 47.9 ± 1.8 | >100 | 92.0 ± 12.3 |
13 | >100 | >100 | >100 |
14 | >100 | >100 | >100 |
15 | >100 | >100 | >100 |
16 | >100 | >100 | >100 |
Taxol b | 3.4 ± 0.1 | 1.8 ± 0.1 | 7.5 ± 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Zheng, Q.; Shi, M.; Wang, H.; Fan, C.; Wang, G.; Zhao, Y.; Si, J. Isolation, Identification, Anti-Inflammatory, and In Silico Analysis of New Lignans from the Resin of Ferula sinkiangensis. Pharmaceuticals 2023, 16, 1351. https://doi.org/10.3390/ph16101351
Wang J, Zheng Q, Shi M, Wang H, Fan C, Wang G, Zhao Y, Si J. Isolation, Identification, Anti-Inflammatory, and In Silico Analysis of New Lignans from the Resin of Ferula sinkiangensis. Pharmaceuticals. 2023; 16(10):1351. https://doi.org/10.3390/ph16101351
Chicago/Turabian StyleWang, Junchi, Qi Zheng, Minghui Shi, Huaxiang Wang, Congzhao Fan, Guoping Wang, Yaqin Zhao, and Jianyong Si. 2023. "Isolation, Identification, Anti-Inflammatory, and In Silico Analysis of New Lignans from the Resin of Ferula sinkiangensis" Pharmaceuticals 16, no. 10: 1351. https://doi.org/10.3390/ph16101351
APA StyleWang, J., Zheng, Q., Shi, M., Wang, H., Fan, C., Wang, G., Zhao, Y., & Si, J. (2023). Isolation, Identification, Anti-Inflammatory, and In Silico Analysis of New Lignans from the Resin of Ferula sinkiangensis. Pharmaceuticals, 16(10), 1351. https://doi.org/10.3390/ph16101351