Combined Lycium barbarum Polysaccharides with Plasmon-Activated Water Affect IFN-γ/TNF-α Induced Inflammation in Caco-2 Cells
Abstract
:1. Introduction
2. Results
2.1. LBP and Combination of PAW against IL-6 and IL-8 Secretion in Caco-2 Cells
2.2. Expression of Inflammatory Markers COX-2 and iNOS
2.3. Expression of NLRP3 Inflammasome and PYCARD
2.4. Expression of IκBα and ERK in Signaling Pathway
2.5. Expression of Apoptotic Related Markers
3. Discussion
4. Materials and Methods
4.1. Materials and Reagents
4.2. Inflammation Induction and Treatments in Caco-2 Cells
4.3. Measurements of IL-6 and IL-8
4.4. Western Blot for Inflammatory and Apoptotic Proteins
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVA | analysis of variance |
AuNPs | gold nanoparticles |
Bax | Bcl-2-associated X |
Bcl-2 | B-cell lymphoma 2 |
COX-2 | cyclooxygenase-2 |
DSS | dextran sulfate sodium |
ERK1/2 | extracellular signal-regulated kinase 1/2 |
IBD | inflammatory bowel diseases |
IFN-γ | interferon-γ |
IκBα | nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor |
IL | interleukin |
iNOS | inducible nitric oxide synthase |
LBP | Lycium barbarum polysaccharides |
MTS | 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium |
NF-κB | nuclear factor-κB |
NLRP3 | NOD-, LRR- and pyrin domain-containing protein 3 |
PAW | plasmon-activated water |
PYCARD | apoptosis-associated speck-like protein containing a CARD |
SEM | standard error of mean |
TNF-α | tumor necrosis factor-α |
References
- Chang, F.-Y.; Chen, P.-H.; Wu, T.-C.; Pan, W.-H.; Chang, H.-Y.; Wu, S.-J.; Yeh, N.-H.; Tang, R.-B.; Wu, L.; James, F.E. Prevalence of functional gastrointestinal disorders in Taiwan: Questionnaire-based survey for adults based on the Rome III criteria. Asia Pac. J. Clin. Nutr. 2012, 21, 594–600. [Google Scholar]
- Lai, L.J.; Shen, J.; Ran, Z.H. Natural killer t cells and ulcerative colitis. Cell. Immunol. 2019, 335, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Torres, J.; Billioud, V.; Sachar, D.B.; Peyrin-Biroulet, L.; Colombel, J.-F. Ulcerative colitis as a progressive disease: The forgotten evidence. Inflamm. Bowel Dis. 2011, 18, 1356–1363. [Google Scholar] [CrossRef] [PubMed]
- Gitter, A.H.; Wullstein, F.; Fromm, M.; Schulzke, J.D. Epithelial barrier defects in ulcerative colitis: Characterization and quantification by electrophysiological imaging. Gastroenterology 2001, 121, 1320–1328. [Google Scholar] [CrossRef] [PubMed]
- Amirshahrokhi, K. Febuxostat attenuates ulcerative colitis by the inhibition of NF-κB, proinflammatory cytokines, and oxidative stress in mice. Int. Immunopharmacol. 2019, 76, 105884. [Google Scholar] [CrossRef]
- Zhou, Y.; Dou, F.; Song, H.; Liu, T. Anti-ulcerative effects of wogonin on ulcerative colitis induced by dextran sulfate sodium via Nrf2/TLR4/NF-κB signaling pathway in BALB/c mice. Environ. Toxicol. 2022, 37, 954–963. [Google Scholar] [CrossRef]
- Zaki, M.H.; Lamkanfi, M.; Kanneganti, T.-D. The Nlrp3 inflammasome: Contributions to intestinal homeostasis. Trends Immunol. 2011, 32, 171–179. [Google Scholar] [CrossRef]
- Zhen, Y.; Zhang, H. Nlrp3 inflammasome and inflammatory bowel disease. Front. Immunol. 2019, 10, 276. [Google Scholar]
- Zhang, W.; Jia, L.; Zhao, B.; Xiong, Y.; Wang, Y.-N.; Liang, J.; Xu, X. Quercetin reverses TNF-α induced osteogenic damage to human periodontal ligament stem cells by suppressing the NF-κB/NLRP3 inflammasome pathway. Int. J. Mol. Med. 2021, 47, 39. [Google Scholar] [CrossRef]
- Wortzel, I.; Seger, R. The ERK cascade: Distinct functions within various subcellular organelles. Genes Cancer 2011, 2, 195–209. [Google Scholar] [CrossRef]
- Naeem, M.; Bae, J.; Oshi, M.A.; Kim, M.-S.; Moon, H.R.; Lee, B.L.; Im, E.; Jung, Y.; Yoo, J.-W. Colon-targeted delivery of cyclosporine A using dual-functional Eudragit® FS30D/PLGA nanoparticles ameliorates murine experimental colitis. Int. J. Nanomed. 2018, 13, 1225–1240. [Google Scholar] [CrossRef] [PubMed]
- Iacucci, M.; de Silva, S.; Ghosh, S. Mesalazine in inflammatory bowel disease: A trendy topic once again? Can. J. Gastroenterol. Hepatol. 2010, 24, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.F.; Zhang, H.; Teh, S.S.; Wang, C.W.; Zhang, Y.; Hayford, F.; Wang, L.; Ma, T.; Dong, Z.; Zhang, Y. Goji berries as a potential natural antioxidant medicine: An insight into their molecular mechanisms of action. Oxid. Med. Cell. Longev. 2019, 2019, 2437397. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Wang, M. Studies on extraction, isolation and composition of Lycium barbarum polysaccharides. Zhongguo Zhongyao Zazhi 2006, 31, 1603–1607. [Google Scholar]
- Deng, X.; Luo, S.; Luo, X.; Hu, M.; Ma, F.; Wang, Y.; Zhou, L.; Huang, R. Fraction from Lycium barbarum polysaccharides reduces immunotoxicity and enhances antitumor activity of doxorubicin in mice. Integr. Cancer Ther. 2018, 17, 860–866. [Google Scholar] [CrossRef]
- Yu, S.-H.; Chang, C.-C.; Mai, F.-D.; Yang, C.-P.; Liu, Y.-C. Plasmon-activated water can form stronger intermolecular hydrogen bonding with water-soluble alcohols and dissolve more hydrophobic solutes. Chem. Eng. J. 2022, 427, 131949. [Google Scholar] [CrossRef]
- Chen, H.-C.; Cheng, C.-Y.; Chen, L.-Y.; Chang, C.-C.; Yang, C.-P.; Mai, F.-D.; Liao, W.-C.; Chang, H.-M.; Liu, Y.-C. Plasmon-activated water effectively relieves hepatic oxidative damage resulting from chronic sleep deprivation. RSC Adv. 2018, 8, 9618–9626. [Google Scholar] [CrossRef]
- Wang, C.-K.; Chen, H.-C.; Fang, S.-U.; Ho, C.-W.; Tai, C.-J.; Yang, C.-P.; Liu, Y.-C. Innovatively therapeutic strategy on lung cancer by daily drinking antioxidative plasmon-induced activated water. Sci. Rep. 2018, 8, 6316. [Google Scholar] [CrossRef]
- Chen, Y.-S.; Lian, Y.Z.; Chen, W.-C.; Chang, C.-C.; Tinkov, A.A.; Skalny, A.V.; Chao, J.C.-J. Lycium barbarum polysaccharides and capsaicin inhibit oxidative stress, inflammatory responses, and pain signaling in rats with dextran sulfate sodium-induced colitis. Int. J. Mol. Sci. 2022, 23, 2423. [Google Scholar] [CrossRef]
- Hsieh, S.-Y.; Lian, Y.Z.; Lin, I.H.; Yang, Y.-C.; Tinkov, A.A.; Skalny, A.V.; Chao, J.C.J. Combined Lycium barbarum polysaccharides and c-phycocyanin increase gastric Bifidobacterium relative abundance and protect against gastric ulcer caused by aspirin in rats. Nutr. Metab. 2021, 18, 4. [Google Scholar] [CrossRef]
- Wang, X.; Zeng, X.; Zhang, X.; Wei, J.; Zhang, Y.; Long, F.; Yue, T.; Yuan, Y. Aspergillus cristatus attenuates DSS-induced intestinal barrier damage through reducing the oxidative stress, regulating short-chain fatty acid and inhibiting MAPK signaling pathways. J. Sci. Food Agric. 2023, 103, 1736–1748. [Google Scholar] [CrossRef]
- Cui, L.; Guan, X.; Ding, W.; Luo, Y.; Wang, W.; Bu, W.; Song, J.; Tan, X.; Sun, E.; Ning, Q.; et al. Scutellaria baicalensis Georgi polysaccharide ameliorates DSS-induced ulcerative colitis by improving intestinal barrier function and modulating gut microbiota. Int. J. Biol. Macromol. 2021, 166, 1035–1045. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.-B.; Luo, M.-M.; Chen, Z.-Y.; He, B.-H. The function and role of the Th17/Treg cell balance in inflammatory bowel disease. J. Immunol. Res. 2020, 2020, 8813558. [Google Scholar] [CrossRef]
- Pugliese, D.; Felice, C.; Papa, A.; Gasbarrini, A.; Rapaccini, G.L.; Guidi, L.; Armuzzi, A. Anti TNF-α therapy for ulcerative colitis: Current status and prospects for the future. Expert Rev. Clin. Immunol. 2017, 13, 223–233. [Google Scholar] [CrossRef]
- Ma, T.Y.; Iwamoto, G.K.; Hoa, N.T.; Akotia, V.; Pedram, A.; Boivin, M.A.; Said, H.M. TNF-α-induced increase in intestinal epithelial tight junction permeability requires NF-κB activation. Am. J. Physiol. Gastrointest. Liver Physiol. 2004, 286, G367–G376. [Google Scholar] [CrossRef] [PubMed]
- Al-Sadi, R.; Guo, S.; Ye, D.; Ma, T.Y. TNF-α modulation of intestinal epithelial tight junction barrier is regulated by ERK1/2 activation of Elk-1. Am. J. Pathol. 2013, 183, 1871–1884. [Google Scholar] [CrossRef]
- Li, W.; Gao, M.; Han, T. Lycium barbarum polysaccharides ameliorate intestinal barrier dysfunction and inflammation through the MLCK-MLC signaling pathway in Caco-2 cells. Food Funct. 2020, 11, 3741–3748. [Google Scholar] [CrossRef]
- Nieto-Veloza, A.; Wang, Z.; Zhong, Q.; D’Souza, D.; Krishnan, H.B.; Dia, V.P. Lunasin protease inhibitor concentrate decreases pro-inflammatory cytokines and improves histopathological markers in dextran sodium sulfate-induced ulcerative colitis. Food Sci. Hum. Wellness 2022, 11, 1508–1514. [Google Scholar] [CrossRef]
- Ahmedy, O.A.; Ibrahim, S.M.; Salem, H.H.; Kandil, E.A. Antiulcerogenic effect of melittin via mitigating TLR4/TRAF6 mediated NF-κB and p38MAPK pathways in acetic acid-induced ulcerative colitis in mice. Chem. Biol. Interact. 2020, 331, 109276. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.-C.; Cho, W.-K.; Im, G.Y.; Jeong, Y.H.; Hwang, Y.-H.; Liang, C.; Ma, J.Y. Anti-inflammatory effect of Lycium fruit water extract in lipopolysaccharide-stimulated RAW 264.7 macrophage cells. Int. Immunopharmacol. 2012, 13, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Kinra, M.; Nampoothiri, M.; Arora, D.; Mudgal, J. Reviewing the importance of TLR-NLRP3-pyroptosis pathway and mechanism of experimental NLRP3 inflammasome inhibitors. Scand. J. Immunol. 2022, 95, e13124. [Google Scholar] [CrossRef] [PubMed]
- Shao, B.-Z.; Wang, S.-L.; Pan, P.; Yao, J.; Wu, K.; Li, Z.-S.; Bai, Y.; Linghu, E.-Q. Targeting NLRP3 inflammasome in inflammatory bowel disease: Putting out the fire of inflammation. Inflammation 2019, 42, 1147–1159. [Google Scholar] [CrossRef]
- Chei, S.; Oh, H.-J.; Song, J.-H.; Seo, Y.-J.; Lee, K.; Kim, K.-J.; Lee, B.-Y. Spirulina maxima extract prevents activation of the NLRP3 inflammasome by inhibiting ERK signaling. Sci. Rep. 2020, 10, 2075. [Google Scholar] [CrossRef] [PubMed]
- He, R.; Li, Y.; Han, C.; Lin, R.; Qian, W.; Hou, X. L-Fucose ameliorates DSS-induced acute colitis via inhibiting macrophage M1 polarization and inhibiting NLRP3 inflammasome and NF-kB activation. Int. Immunopharmacol. 2019, 73, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Tao, Z.; Zhou, X.; Zhang, Y.; Pu, W.; Yang, Y.; Wei, F.; Zhou, Q.; Zhang, L.; Du, Z.; Wu, J. Xi Lei San attenuates dextran sulfate sodium-induced colitis in rats and TNF-α-stimulated colitis in Caco2 cells: Involvement of the NLRP3 inflammasome and autophagy. Mediators Inflamm. 2021, 2021, 1610251. [Google Scholar] [CrossRef] [PubMed]
- Mebratu, Y.; Tesfaigzi, Y. How ERK1/2 activation controls cell proliferation and cell death: Is subcellular localization the answer? Cell Cycle 2009, 8, 1168–1175. [Google Scholar] [CrossRef] [PubMed]
- Lavoie, H.; Gagnon, J.; Therrien, M. ERK signalling: A master regulator of cell behaviour, life and fate. Nat. Rev. Mol. Cell Biol. 2020, 21, 607–632. [Google Scholar] [CrossRef]
- Kou, L.; Du, M.; Zhang, C.; Dai, Z.; Li, X.; Zhang, B.; Hu, X. Polysaccharide purified from Lycium barbarum protects differentiated PC12 cells against L-Glu-induced toxicity via the mitochondria-associated pathway. Mol. Med. Rep. 2017, 16, 5533–5540. [Google Scholar] [CrossRef]
- Liu, Y.-C.; Chang, C.-C.; Matsui, H.; Chao, J.C.-J. C-Phycocyanin and Lycium barbarum polysaccharides protect against aspirin-induced inflammation and apoptosis in gastric RGM-1 cells. Nutrients 2022, 14, 5113. [Google Scholar] [CrossRef]
- Souza, H.S.P.; Tortori, C.J.A.; Castelo-Branco, M.T.L.; Carvalho, A.T.P.; Margallo, V.S.; Delgado, C.F.S.; Elia, C.C.S. Apoptosis in the intestinal mucosa of patients with inflammatory bowel disease: Evidence of altered expression of FasL and perforin cytotoxic pathways. Int. J. Colorectal Dis. 2005, 20, 277–285. [Google Scholar] [CrossRef]
- Wan, Y.; Yang, L.; Jiang, S.; Qian, D.; Duan, J. Excessive apoptosis in ulcerative colitis: Crosstalk between apoptosis, ROS, ER stress, and intestinal homeostasis. Inflamm. Bowel Dis. 2022, 28, 639–648. [Google Scholar] [CrossRef]
- Yin, S.; Yang, H.; Tao, Y.; Wei, S.; Li, L.; Liu, M.; Li, J. Artesunate ameliorates DSS-induced ulcerative colitis by protecting intestinal barrier and inhibiting inflammatory response. Inflammation 2020, 43, 765–776. [Google Scholar] [CrossRef]
- Fu, Y.P.; Yuan, H.; Xu, Y.; Liu, R.M.; Luo, Y.; Xiao, J.H. Protective effects of Ligularia fischeri root extracts against ulcerative colitis in mice through activation of Bcl-2/Bax signalings. Phytomedicine 2022, 99, 154006. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Zhu, H.; Zhao, J.; Wu, X.; Lu, X.; Xu, T.; Yang, Z. Lycium barbarum polysaccharide inhibits E. coli-induced inflammation and oxidative stress in mammary epithelial cells of dairy cows via SOCS3 activation and MAPK suppression. Agriculture 2022, 12, 598. [Google Scholar] [CrossRef]
- Zhou, W.; Kan, X.; Chen, G.; Sun, Y.; Ran, L.; Yan, Y.; Mi, J.; Lu, L.; Zeng, X.; Cao, Y. The polysaccharides from the fruits of Lycium barbarum L. modify the gut community profile and alleviate dextran sulfate sodium-induced colitis in mice. Int. J. Biol. Macromol. 2022, 222, 2244–2257. [Google Scholar] [CrossRef]
- Liang, B.; Peng, L.; Li, R.; Li, H.; Mo, Z.; Dai, X.; Jiang, N.; Liu, Q.; Zhang, E.; Deng, H.; et al. Lycium barbarum polysaccharide protects HSF cells against ultraviolet-induced damage through the activation of Nrf2. Cell. Mol. Biol. Lett. 2018, 23, 18. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, Z.; Peng, L.; Jiang, N.; Liu, Q.; Zhang, E.; Liang, B.; Li, R.; Zhu, H. Lycium barbarum polysaccharide protects human keratinocytes against UVB-induced photo-damage. Free Radic. Res. 2017, 51, 200–210. [Google Scholar] [CrossRef] [PubMed]
- Pop, C.; Berce, C.; Ghibu, S.; Scurtu, I.; Sorițău, O.; Login, C.; Kiss, B.; Ștefan, M.G.; Fizeșan, I.; Silaghi, H.; et al. Effects of Lycium barbarum L. polysaccharides on inflammation and oxidative stress markers in a pressure overload-induced heart failure rat model. Molecules 2020, 25, 466. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, J.; Bi, F.; Li, Y.; Xiao, J.; Chai, Z.; Li, Y.; Miao, Z.; Wang, Y. Protective effects of Lycium barbarum polysaccharide on ovariectomy-induced cognition reduction in aging mice. Int. J. Mol. Med. 2021, 48, 121. [Google Scholar] [CrossRef]
- Zheng, G.; Ren, H.; Li, H.; Li, X.; Dong, T.; Xu, S.; Yan, Y.; Sun, B.; Bai, J.; Li, Y. Lycium barbarum polysaccharide reduces hyperoxic acute lung injury in mice through Nrf2 pathway. Biomed. Pharmacother. 2019, 111, 733–739. [Google Scholar] [CrossRef]
- Rivard, U.; Thomas, V.; Bruhacs, A.; Siwick, B.; Iftimie, R. Donor–bridge–acceptor proton transfer in aqueous solution. J. Phys. Chem. Lett. 2014, 5, 3200–3205. [Google Scholar] [CrossRef]
- Ricci, M.; Spijker, P.; Voïtchovsky, K. Water-induced correlation between single ions imaged at the solid–liquid interface. Nat. Commun. 2014, 5, 4400. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.-H.; Kao, W.-Y.; Mai, F.-D.; Tsai, H.-Y.; Liu, Y.-C. Comprehensively active condensed water from vapors of plasmon-activated water. J. Chem. Eng. 2021, 426, 130875. [Google Scholar] [CrossRef]
- Chang, C.-C.; Liu, C.-Y.; Su, I.-C.; Lee, Y.-J.; Yeh, H.-J.; Chen, W.-C.; Yu, C.-J.; Kao, W.-Y.; Liu, Y.-C.; Huang, C.-J. Functional plasmon-activated water increases Akkermansia muciniphila abundance in gut microbiota to ameliorate inflammatory bowel disease. Int. J. Mol. Sci. 2022, 23, 11422. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, D.E.; Cremonini, E.; Fraga, C.G.; Oteiza, P.I. Ellagic acid protects Caco-2 cell monolayers against inflammation-induced permeabilization. Free Radic. Biol. Med. 2020, 152, 776–786. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.-C. Effects of Lycium barbarum Polysaccharides and Capsaicin on Lipopolysaccharide-Induced Inflammation, Oxidative Stress and Apoptosis in Human Colon Adenocarcinoma C2BBe1 Cells. Master’s Thesis, Taipei Medical University, Taipei, Taiwan, July 2022. [Google Scholar]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lian, Y.Z.; Liu, Y.-C.; Chang, C.-C.; Nochi, T.; Chao, J.C.-J. Combined Lycium barbarum Polysaccharides with Plasmon-Activated Water Affect IFN-γ/TNF-α Induced Inflammation in Caco-2 Cells. Pharmaceuticals 2023, 16, 1455. https://doi.org/10.3390/ph16101455
Lian YZ, Liu Y-C, Chang C-C, Nochi T, Chao JC-J. Combined Lycium barbarum Polysaccharides with Plasmon-Activated Water Affect IFN-γ/TNF-α Induced Inflammation in Caco-2 Cells. Pharmaceuticals. 2023; 16(10):1455. https://doi.org/10.3390/ph16101455
Chicago/Turabian StyleLian, Yu Zhi, Yu-Chuan Liu, Chun-Chao Chang, Tomonori Nochi, and Jane C.-J. Chao. 2023. "Combined Lycium barbarum Polysaccharides with Plasmon-Activated Water Affect IFN-γ/TNF-α Induced Inflammation in Caco-2 Cells" Pharmaceuticals 16, no. 10: 1455. https://doi.org/10.3390/ph16101455
APA StyleLian, Y. Z., Liu, Y. -C., Chang, C. -C., Nochi, T., & Chao, J. C. -J. (2023). Combined Lycium barbarum Polysaccharides with Plasmon-Activated Water Affect IFN-γ/TNF-α Induced Inflammation in Caco-2 Cells. Pharmaceuticals, 16(10), 1455. https://doi.org/10.3390/ph16101455