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Abstract: JNK3, a member of the MAPK family, plays a pivotal role in mediating cellular responses
to stress signals, with its activation implicated in a myriad of inflammatory conditions. While JNK3
holds promise as a therapeutic target for neurodegenerative disorders such as Huntington’s, Parkin-
son’s, and Alzheimer’s diseases, there remains a gap in the market for effective JNK3 inhibitors.
Despite some pan-JNK inhibitors reaching clinical trials, no JNK-targeted therapies have achieved
market approval. To bridge this gap, our study introduces a sophisticated virtual screening approach.
We begin with an energy-based screening, subsequently integrating a variety of rescoring techniques.
These encompass glide docking scores, MM/GBSA, and artificial scoring mechanisms such as Deep-
Dock and advanced Graph Neural Networks. This virtual screening workflow is designed to evaluate
and identify potential small-molecule inhibitors with high binding affinity. We have implemented a
virtual screening workflow to identify potential candidate molecules. This process has resulted in
the selection of ten molecules. Subsequently, these ten molecules have undergone biological activity
evaluation to assess their potential efficacy. Impressively, molecule compound 6 surfaced as the most
promising, exhibiting a potent kinase inhibitory activity marked by an IC50 of 130.1 nM and a notable
reduction in TNF-α release within macrophages. This suggests that compound 6 could potentially
serve as an effective inhibitor for the treatment of neuroinflammation and neurodegenerative diseases.
The prospect of further medicinal modifications to optimize compound 6 presents a promising avenue
for future research and development in this field. Utilizing binding pose metadynamics coupled
with molecular dynamics simulations, we delved into the explicit binding mode of compound 6
to JNK3. Such insights pave the way for refined drug development strategies. Collectively, our
results underscore the efficacy of the hybrid virtual screening workflow in the identification of
robust JNK3 inhibitors, holding promise for innovative treatments against neuroinflammation and
neurodegenerative disorders.

Keywords: JNK3; hybrid virtual screening; binding pose metadynamics; molecular dynamics; bioactivity
evaluation

1. Introduction

JNK3, or c-Jun N-terminal kinase 3, is a member of the mitogen-activated protein
kinase (MAPK) family, which plays a crucial role in regulating cellular responses to various
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stress signals, including inflammation. JNK1 and JNK2 are ubiquitously expressed, while
JNK3 is predominantly expressed in the brain, and its activation has been implicated in
numerous inflammatory conditions. The activation of JNK3 is carried out by two MAP
kinases, MKK4 and MKK7. Upon activation, JNKs can interact with the pathway’s final
effectors, phosphorylate transcription factors, such as the transcription factor activator
protein-1 (AP1) family proteins, c-JUN, activating transcription factors (ATF), and (ETS
Like-1 protein) Elk1 [1]. Based on knockout experiments and its specific tissue expression,
JNK3 has emerged as a promising target for potential treatments of neuroinflammation and
neurodegenerative disorders like Huntington’s disease [2–4], Parkinson’s disease [5], and
Alzheimer’s disease [6–13].

Currently, pharmacologists have made many efforts in the field of JNK-targeted
therapy, and some pan-JNK inhibitors have already been discovered. Two molecules are
currently in clinical trials [14]. However, there are still no JNK inhibitors on the market.
Of note, SP600125 is a typical pan-JNK inhibitor and is widely used as a positive control
despite its poor selectivity [15]. As an ATP-competitive pan-JNK inhibitor, PGL5001 (also
known as AS602801) is currently in phase II clinical trials (NCT01630252) for the treatment
of inflammatory endometriosis [16,17]. Tanzisertib, a second-generation ATP-competitive
pan-JNK inhibitor, was discovered for the treatment of acute myeloid leukemia (AML) and
is in phase I clinical trials (NCT00126893) [18,19]. CC-930 was also discontinued in phase
II due to an increased risk of liver injury (NCT01203943) [20,21]. As far as we know, the
development of a JNK3 inhibitor is difficult and there are no drugs on the market. Therefore,
it is important to discover new JNK3 inhibitors with novel designs for the treatment of
relevant indications.

In recent years, computational methods have been widely used to screen and design
new drug candidates for various targets. Despite their growing popularity, existing virtual
screening methods often suffer from limitations in accuracy [22]. It has been reported that
the hit rate of virtual screening can be significantly improved by combining AI methods [23].
For instance, in a study focused on human topoisomerase I inhibitors, researchers combined
machine learning models with virtual screening and molecular docking, successfully
enhancing the hit rate of virtual screening and providing novel insights for the development
of topoisomerase I inhibitors [24]. In another example, geometric deep learning-based
algorithms were utilized to predict the binding affinity of small molecules to their protein
targets, which significantly improved the performance of virtual screening campaigns and
led to the identification of novel bioactive compounds [25]. Virtual screening typically
operates in a hierarchical workflow, employing different methods in succession, each
acting as a filter to discard unwanted compounds. This allows the advantages of various
methods to be utilized while avoiding their limitations. However, research teams often
only use techniques with which they are familiar. The results of virtual screening require
experimental testing in the lab to confirm their biological activity. This can lead to false
positive results. And many software programs are used for virtual screening, and because
they use different algorithms, using the same input in different software can yield different
results. Despite this, virtual screening remains a crucial tool in the drug discovery process.
It significantly reduces the time and resources required for laboratory testing. This is
because it allows for the rapid and efficient identification of potential drug candidates from
large databases of compounds, thereby streamlining the initial stages of drug development.

In this study, we systematically applied a stepwise virtual screening methodology, first
utilizing an energy-based screening approach, followed by a data-driven rescoring process.
This intricate approach leveraged varying levels of glide docking accuracy, utilizing tools
such as MM/GBSA, Deepdock, and an advanced Graph Neural Network to rescore our
initial screening outcomes. Through this hybrid virtual screening workflow, we successfully
pinpointed several candidates with promising JNK3 inhibitory potential. Notably, our best-
performing molecule, boasting a kinase inhibition IC50 of 130.1 nM, underwent rigorous
testing to assess its impact on the secretion of inflammation-associated cytokines IL-6
and TNFα in macrophages. Encouragingly, experimental findings indicated a significant



Pharmaceuticals 2023, 16, 1459 3 of 13

reduction in TNF-α release, reinforcing the efficacy and dependability of our meticulously
designed screening workflow in isolating potent JNK3 inhibitors (refer to Figure 1 for a
visual representation) [26]. To deepen our understanding and provide a foundation for
future drug design, we employed binding pose metadynamics and molecular dynamics
simulations. This allowed us to elucidate the intricate binding dynamics between our top
molecule and its target, setting the stage for optimized molecule development.
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Figure 1. The signal transduction pathways and the hybrid virtual screening process of the
JNK3 target.

2. Results
2.1. Data Collection and “in-House” Database Construction

The datasets employed in this study consist of two parts: the JNK3 inhibitor activity
dataset, containing 1072 molecules which were obtained from the ChEMBL database,
is used for training, evaluation, and testing the performance of the rescoring module;
the “in-house” database, assembled using the MCE-like compound library and Chemdiv
compounds, which contains about 1,600,000 molecules, serves the screening task. The JNK3
inhibitor activity dataset has pIC50 as its label. Both datasets undergo preprocessing with
RDKit to eliminate duplicate molecular structures, while Schrödinger’s LigPrep module
generates the 3D structures of the molecules [27].

2.2. The Preparation of Protein and the Binding Pocket Determination

Initially, the protein structure of JNK3 (PDB ID: 7S1N) [28] was obtained from RCSB
(https://www.rcsb.org/) and well prepared with the Protein Preparation Wizard, Schrödinger
2021-suite. The binding pocket used for screening is determined by the location of the ligand
in the JNK3 complex (Figure 2). Receptor grid surface features in the energy-based virtual
screening and rescoring sessions were obtained from the Schrödinger suite of receptor grid
generation and deep learning algorithm Masif calculations, respectively [29].

https://www.rcsb.org/
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Figure 2. (A) The 3D binding mode of the JNK3 with its original ligand 4-[5-(2-chloro-6-fluoroanilino)-
6-methyl-1H-pyrazolo[3,4-b] pyridin-1-yl]-N-(oxetan-3-yl) thiophene-2-carboxamide (PDB ID: 7S1N).
(B) The binding conformation of the ligand in JNK3 complex. (C) The hydrophobicity of the binding
pocket. (D) The electricity of the binding pocket.

2.3. The Hybrid Virtual Screening Workflow

For our primary screening, the in-house database serving as our library undergoes a
meticulous screening using the HTVS precision, all under the guidance of the OPLS_2005
force field [30]. Next, 500,000 molecules with docking scores smaller than −6.532 kcal/mol
are selected for further accurate screening with SP precision under the OPLS4 force field.
After this process, 200,000 molecules with scores ≤ −8.689 kcal/mol are retained. The final
round of docking is performed with XP precision using the OPLS4 force field, resulting
in 9000 molecules with scores ≤ −8.101 kcal/mol that are ultimately selected for the
subsequent data-driven rescoring stage [31–37] (Table 1).

Table 1. Each stage score and the inhibition rate of the final selected 10 small molecules.

Entry
Docking Score

(HTVS)
(kcal/mol)

Docking Score
(SP)

(kcal/mol)

Docking Score
(XP)

(kcal/mol)

MM-GBSA
dG Bind

(kcal/mol)
Deepdockscore pIC50

Predicted
Inhibition
Rate (%)

Compound 1 −11.107 −11.896 −13.871 −86.10 −185.12 6.25 17.50 ± 0.55
Compound 2 −9.373 −10.870 −11.918 −80.93 −169.34 5.89 43.24 ± 5.36
Compound 3 −9.190 −8.696 −10.808 −85.84 −154.42 6.84 5.70 ± 1.02
Compound 4 −9.023 −10.094 −8.959 −76.28 −90.94 5.34 7.77 ± 0.43
Compound 5 −8.941 −9.200 −8.537 −83.07 −140.73 5.35 16.58 ± 0.34
Compound 6 −8.401 −11.535 −13.065 −82.05 −173.73 5.82 99.73 ± 0.44
Compound 7 −8.147 −10.439 −10.690 −78.60 −172.77 6.20 26.88 ± 3.29
Compound 8 −7.853 −10.406 −8.840 −80.03 −116.72 5.30 16.76 ± 0.56
Compound 9 −6.757 −11.754 −13.694 −87.01 −183.26 6.34 34.81 ± 0.23
Compound 10 −8.571 −9.496 −9.765 −75.76 −97.41 5.33 43.76 ± 1.92

In the second part of the hybrid screening workflow, we initially docked and rescaled
the characterized JNK3 pocket with the JNK3 inhibitor molecular dataset on ChEMBL using
the Deepdock algorithm. Subsequently, the inhibitor molecular dataset was transformed
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into a graph, and the results of Deepdock’s scoring were normalized with molecular
properties described by RDKit, such as TPSA, MW, and rotatable bonds, which were
incorporated into the nodes as additional features. These node features were then fed into
the GNN scoring model we developed, which consists of multiple GAT layers and a single
MLP (Multilayer Perceptron) layer.

By utilizing the pIC50 data corresponding to each molecule as labels, the dataset was
divided into training, validation, and test sets in a ratio of 8:1:1, allowing for the training of
a regression task on the GNN model. The performance of the model was promising, with
an R2 of 0.9617 on the training set, 0.7866 on the validation set, and 0.7228 on the test set,
demonstrating its strong predictive capabilities (Figure 3).
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To aid in decision-making, we also employed the energy-based rescoring method,
MM/GBSA, which was conducted using the Schrödinger Suite’s Prime module. In the
final analysis, we took into account the drug-like properties of the molecules, the binding
conformations of the ligands to their respective targets, and the diverse scoring outcomes.
Significantly, the selection methodology employed a meticulous assessment of both scor-
ing metrics and molecular interactions to eliminate erroneous binding mode candidates.
Additionally, leveraging the expertise of medicinal chemists, an estimation was made to
identify molecules with superior binding affinities, a process that may have led to the exclu-
sion of compounds not meeting drug-like criteria. Ultimately, ten molecules were chosen
from the scoring results for subsequent biological experimental validation. (Tables 1 and 2,
Figure 3C).
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Table 2. Physicochemical characteristics of investigated compounds.

Entry Molecular
Weight XLogP3-AA

Hydrogen
Bond Donor

Count

Hydrogen
Bond

Acceptor
Count

Rotatable
Bond Count

Heavy
Atom
Count

Topological
Polar

Surface Area

Compound 1 468.6 5.3 2 6 9 35 59.1
Compound 2 476.0 5.3 2 7 7 34 83.4
Compound 3 435.5 2.1 2 7 7 32 94.3
Compound 4 461.0 4.6 2 6 8 31 108.0
Compound 5 453.6 4.60 1 5 7 34 69.2
Compound 6 399.5 5.6 1 4 5 29 83.1
Compound 7 442.5 3.1 2 6 5 33 82.6
Compound 8 495.5 5.6 0 6 4 36 132.0
Compound 9 568.7 5.9 1 9 9 42 92.3

Compound 10 401.0 4.3 1 4 5 27 52.0

2.4. Inhibitory Activity Assay

Based on the hybrid virtual screening result, the inhibitory activity of the 10 selected
compounds was further assessed at a concentration of 25 µM. As depicted in Figure 4A,
compound 6 demonstrated the highest inhibition rate in comparison to the other com-
pounds. We proceeded to determine the IC50 value of compound 6 (Figure 4B), which
exhibited potent inhibitory activity against JNK3 (IC50: 130.1 nM). This finding suggests
that compound 6 possesses significant activity against JNK3.
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2.5. Pro-Inflammatory Factor Release Inhibition Assay for Compound 6

Based on the results of the kinase activity, the secretion of TNF-α and IL-6 was further
studied for compound 6. As shown in Figure 4C, compound 6 exhibited stronger inhibition
of TNF-α secretion and slight inhibition of IL-6 secretion compared to the positive control
(JNK inhibitor VIII). The combined experimental results suggest that compound 6 could
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be an ideal and popular compound for the design of novel JNK3 inhibitors with high
biological activity.

2.6. Elucidating the Initial Binding Conformation of JNK3 and Compound 6 through Binding
Pose Metadynamics

In this experiment, our objective was to identify the most stable initial conformation
of JNK3 bound to compound 6 by employing a combination of various docking software
and metadynamics simulations. We generated a diverse set of initial conformations using
AutodockGPU, Autodock Vina, LeDock, and Glide_SP, incorporating both the OPLS2005
and OPLS4 force fields (Figure 5A). To further refine these conformations, we utilized
Schrödinger’s binding pose metadynamics, conducting short metadynamics simulations
in parallel for ten distinct groups of each complex. Our analysis revealed that the second
conformation produced by Glide_SP, employing the OPLS2005 force field, demonstrated
the greatest stability among all conformations. This determination considered its RMSD
value, PersScore, and PoseScore, as shown in Figure 5B.

Pharmaceuticals 2023, 16, 1459 8 of 14 
 

 

 
Figure 5. Schematics and results of metadynamics simulations. (A) Workflow of the metadynamics 
simulation. (B) The RMSD plot from diverse initial conformations of compound 6. 

2.7. Structural Insight into the Precision Binding Mode between JNK3 and Compound 6 through 
Molecular Dynamics 

We performed three parallel sets of 100 ns molecular dynamics simulations on the most 
stable docked conformation, based on the results of binding pose metadynamics, using the 
Amber dynamics module. As depicted in Figure 6A,B, the RMSD of both the protein and 
ligand reached a steady state during the final 20 ns. We analyzed the conformations from 
the last 1 ns of the three trajectories and employed MM/GBSA to compute the contribution 
of different amino acids to the binding energy under free energy decomposition. This anal-
ysis aimed to explore the explicit binding mode of compound 6 to JNK3 (Figure 6C). Our 
findings revealed that the N atoms of pyridine and amide can form two strong H-bond in-
teractions with Met149. Additionally, the nitrogen atom of thiazolyl can generate an extra 
hydrogen bonding interaction with Lys93, facilitated by a water molecule. Simultaneously, 
the tolyl group of compound 6 can insert into specific hydrophobic pockets surrounded by 
Ala91, Ile92, Leu144, Val145, and Met146, resulting in robust hydrophobic interactions (Fig-
ure 6D). These specific interactions contribute to the high inhibitory activity of compound 6 
against JNK3. 

 
Figure 6. (A) RMSD value of JNK3; (B) RMSD value of compound 6; (C) the contribution of com-
pound 6-JNK3 complex; (D) the 3D diagram of protein–ligand interaction. 

Figure 5. Schematics and results of metadynamics simulations. (A) Workflow of the metadynamics
simulation. (B) The RMSD plot from diverse initial conformations of compound 6.

2.7. Structural Insight into the Precision Binding Mode between JNK3 and Compound 6 through
Molecular Dynamics

We performed three parallel sets of 100 ns molecular dynamics simulations on the
most stable docked conformation, based on the results of binding pose metadynamics,
using the Amber dynamics module. As depicted in Figure 6A,B, the RMSD of both
the protein and ligand reached a steady state during the final 20 ns. We analyzed the
conformations from the last 1 ns of the three trajectories and employed MM/GBSA to
compute the contribution of different amino acids to the binding energy under free energy
decomposition. This analysis aimed to explore the explicit binding mode of compound 6
to JNK3 (Figure 6C). Our findings revealed that the N atoms of pyridine and amide can
form two strong H-bond interactions with Met149. Additionally, the nitrogen atom of
thiazolyl can generate an extra hydrogen bonding interaction with Lys93, facilitated by
a water molecule. Simultaneously, the tolyl group of compound 6 can insert into specific
hydrophobic pockets surrounded by Ala91, Ile92, Leu144, Val145, and Met146, resulting in
robust hydrophobic interactions (Figure 6D). These specific interactions contribute to the
high inhibitory activity of compound 6 against JNK3.
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3. Discussion

The JNK3 pathway is a prominent druggable target that has received extensive research
attention, with some inhibitors currently undergoing clinical investigation. Importantly,
JNK3 has been established as a promising therapeutic target for addressing neurodegenera-
tive disorders, signifying its substantial therapeutic potential. In line with contemporary
trends in drug discovery, virtual screening coupled with artificial intelligence has emerged
as a widely embraced method due to its cost-effectiveness and high efficiency. Accordingly,
we have incorporated this innovative approach into our study.

In this study, we employed a multistage screening workflow aimed at identifying
potential inhibitors. To assess the binding affinities of the compounds, we also implemented
advanced scoring methodologies. This approach integrates energy-based screening meth-
ods, including the Glide docking tool, MM/GBSA, and data-driven rescoring techniques
such as Deepdock and the advanced Graph Attention Networks mode. Our comprehensive
approach, complemented by drug–target interaction analysis and an assessment of drug-
like properties, led to the successful discovery of several potent JNK3 inhibitors. Among
them, the standout inhibitor, compound 6 (N-(4-(2-ethyl-4-(m-tolyl)thiazol-5-yl)pyridin-
2-yl)benzamide), displayed an impressive IC50 of 130.1 nM. Furthermore, it significantly
curtailed the release of both IL-6 and TNFα, reinforcing the reliability and efficacy of our
screening approach.

In a subsequent phase, we turned to binding pose metadynamics and molecular
dynamics simulations to elucidate the intricate binding dynamics of compound 6 with
JNK3. Our analyses spotlighted that the N atoms of pyridine and amide in the compound
forged two potent H-bond interactions with Met149. Concurrently, the nitrogen atom of
thiazolyl set up an additional hydrogen bond interaction with Lys93, a process facilitated
by a water molecule. Notably, compound 6’s tolyl group adeptly nestled itself into specific
hydrophobic pockets, defined by residues such as Ala91, Ile92, Leu144, Val145, and Met146,
culminating in sturdy hydrophobic interactions. These nuanced interactions underscore
the heightened inhibitory prowess of compound 6 against JNK3.

This study has successfully identified a novel JNK3 inhibitor with a distinctive molec-
ular scaffold, thereby establishing a valuable foundation for the design and development of
JAK3 inhibitors. However, as a lead compound, it holds the potential for further structural
modification and selectivity enhancement. To fully validate their therapeutic potential,
it is imperative to pursue further optimization and conduct rigorous in vivo and in vitro
testing.
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4. Materials and Methods
4.1. Protein Preparation

The protein structure (PDB ID: 7S1N) was obtained from RCSB protein database and
given further preparation. The protein preparation steps were performed through the
Protein Preparation Wizard module [38,39] in the Schrödinger Suite including the Import
and Process, Review and Modify, and Refine steps. In the “Import and Process” step,
problems in the structure were checked and fixed according to the default parameters,
and the missing side chains and loops of the protein were filled in. In the “Review and
Modify” step, we removed the water molecules and dealt with the incorrect information in
the structure. Finally, we performed hydrogen bond optimization and energy minimization
for the structure.

4.2. Database Preparation

The ligand database used for screening consists of two components, including the
commercial compound library ChemDiv and MCE’s drug-like compound library. The
LigPrep module, Schrödinger 2021-2 suit, was adopted to handle these molecules, including
hydrogenation, salt removal, tautomer generation, and ionization states calculation at pH
7.0 ± 2.0, under the OPLS4 force field. Furthermore, under the computation condition of
retaining specific chirality, each ligand can generate up to 32 stereoisomers.

4.3. Receptor Grid Generation

This step was to create [40] the corresponding file for further docking work based on
the center coordinates of the protein pocket. In the Glide_SP step, the Schrödinger’s receptor
grid generation module was invoked for this process, by taking the center coordinates of
the original ligand as the center coordinates for the docking process and generating the
corresponding grid file after removing the original ligand.

4.4. The Hybrid Virtual Screening Workflow

Our study’s hybrid virtual screening workflow is structured into two distinct phases:
an initial energy-based screening followed by a data-driven rescoring. In the energy-based
phase, we employ the Glide docking tool from the Schrödinger suite, which provides three
precision levels: HTVS, SP, and XP. In the energy-based virtual screening phase, all docking
was performed using the Glide_SP tool, with the maximum output conformations set to
5 for HTVS precision and 20 for both SP and XP. In the data-driven rescoring phase, the
Deepdock scoring stage first utilized all ligand poses derived from the previous screening
round. The binding energy between ligands and targets was evaluated using a pan-
density hybrid network calculation and characterized into atomic nodes. The Graph Neural
Network (GNN) model consists of multiple Graph Attention Network (GAT) layers and a
single Multilayer Perceptron (MLP) layer, implemented using the DGL packages. Parameter
optimization was performed using the Optuna tool.

4.5. IC50 Assay

Initially, the tested compound was dissolved in DMSO to make a 10 mM stock solution,
and the stock solution was then diluted to a drug solution with 50× test concentrations
for later use, wherein the test concentrations were reached through dilution at a 10-fold
gradient and were 0.1 nM, 1 nM, 10 nM, 100 nM, 1000 nM, 10,000 nM, respectively. Firstly,
2× ATP and substrate solution and 2× kinase and metal solution was prepared using
assay buffer (MgCl2 2 mM, MnCl2 1 mM, SEB 12.5 nM, DTT 0.5 mM). From each well of
the 96-well plate, 25 µL of the drug solution was taken and then transferred to a 384-well
plate which was provided with 2 duplicate wells. Then, 2.5 µL of 2× kinase and metal
solution was mixed and incubated in a polystyrene-coated 384-assay plate for 10 min at
25 ◦C. Then, 2× XL665 and antibody solution was prepared with detection buffer. An
amount of 5 µL of Kinase Detection Reagent was added to the well, and incubated for
60 min at 25 ◦C. The fluorescence signals of 620 nm (Cryptate) and 665 nm (XL665) were
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read by a microtiter-plate reader. At last, the IC50 value of JNK3 kinase was calculated with
the following equations.

Y = Bottom + (Top-Bottom)/(1 + 10ˆ((LogIC50-X) * hillslope)) (1)

4.6. Pro-Inflammatory Factor Release Inhibition Assay in LPS-Induced RAW264.7

RAW264.7 cells were cultivated with DMEM supplemented with 10% FBS at 37 ◦C in
a 5% CO2 incubator. Then, cells with a density of 2 × 105 cells/mL were seeded in 24-well
plates and incubated for 12 h. Subsequently, the cells were treated with tested compound
(5 µM and 10 µM) for 24 h and exposed to LPS (10 ng/mL) for another 24 h. After 24 h,
the supernatant was collected, and the levels of IL-6 and TNF-α in the supernatant were
measured using an ELISA kit. Then, cover each ELISA plate with 100 µL/well of capture
antibody in Coating Buffer(1X), seal the plate and incubate overnight at 4 ◦C. The next
day, remove the primary antibody and wash 3 times with >500 µL/well Wash Buffer (1X
PBS, 0.05% Tween). Block wells with 200 µL of ELISA/ELISPOT Diluent (1X), incubate at
room temperature for 1 h. Following incubation, discard the blocking solution and wash at
least once with Wash Buffer. Then, configure the standard curve and add 100 µL/well of
samples to the appropriate wells, incubate at room temperature for 2 h or overnight at 4 ◦C.
After that, remove the samples and wash 3 times with Wash Buffer, and add 100 µL/well
diluted Detection Antibody to all wells. Incubate the plate at room temperature for 1h.
Next, remove the secondary antibody and wash the wells with Wash Buffer, followed by
the addition of 100 µL/well of Streptavidin-HRP(1X), incubate the plate for 30 min at room
temperature, and then wash the wells with double-distilled water; next, add 80 µL/well
of 1X TMB solution, incubate at room temperature for 15 min, and then, stop the reaction
by adding 1 M H2SO4. Finally, wipe the bottom of the plate and measure the absorbance
values at 450 nm (reference wavelength: 570 nm) using a microplate reader. Calculate
cytokine concentrations based on the absorbance values and compare the cytokine changes
with the control group.

4.7. Binding Pose Metadynamics

The binding pose metadynamics (BPMD) is an automated, metadynamics-based
method that ensures the ligand maintains its binding pose during simulation. Ten indi-
vidual 10 ns simulations are performed, using the root-mean-square deviation (RMSD) of
the ligand’s heavy atoms relative to their starting positions as the collective variable (CV).
Before metadynamics runs, the system is solvated and gradually heated to 300 K, removing
poor contacts and strain in the initial structure.

Ligand stability is assessed by two main scores: PoseScore, which represents the
average RMSD from the starting pose, and PersistenceScore (PersScore), measuring the
persistence of hydrogen bonds in the final 2 ns of the simulation. PersScore ranges from 0
to 1, where a higher value indicates preserved interactions between the initial ligand pose
and the final 2 ns of the simulations.

4.8. Molecular Dynamics

The compound 6 with the highest score was utilized for further molecular dynamics
simulations to investigate the interactions. All operations were performed under the
AMBER force field: the ff19SB force field for the protein and GAFF for the ligand.

The complexes of JNK3 and compound 6 charge were neutralized with Na+ counteri-
ons. The system was then soaked in a truncated octahedral box of TIP3P water molecules
extending to at least 15 Å from the protein atoms. The ff19SB force field was used to
describe the protein, together with the general Amber force field (GAFF) [41] parameters
for the ligand. The simulation was carried out using the Amber 19 Molecular Dynamics
package [42]. The system, prepared as described above, was first subjected to 500 steps of
steepest descent and 500 steps of conjugate gradient minimization. This was followed by an
additional 2500 steps of steepest descent and 2500 steps of conjugate gradient minimization.
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The system was then heated to the target temperature of 300 K for a period of 20 ps under
constant volume periodic boundary conditions (NVT). Subsequently, approximately 40 ns
of constant pressure and temperature simulation (NPT) was carried out to equilibrate the
system, which was followed by 30 ns of production simulation performed under the same
conditions. An average pressure of 1 atm was maintained by using isotropic position scaling
with a relaxation time of 2 ps. Temperature was controlled via Langevin dynamics. A cutoff
of 10 Å was used for nonbonded interactions and long-range electrostatic interactions were
treated by means of the Particle Mesh Ewald (PME) method. All bonds involving hydrogen
were constrained by the SHAKE method and the time step for numerical integration was 1
fs. The simulation results were analyzed using the ptraj program in the Amber19 package.
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