URB937 Prevents the Development of Mechanical Allodynia in Male Rats with Trigeminal Neuralgia
Abstract
:1. Introduction
2. Results
2.1. Prevention of Mechanical Allodynia
2.1.1. Mechanical Stimulation Test (MST)
2.1.2. Gene Expression
2.2. Reversal of Mechanical Allodynia
2.2.1. Mechanical Stimulation Test (MST)
2.2.2. Gene Expression
3. Discussion
Limitations of This Study
4. Materials and Methods
4.1. Animals and Drugs
4.2. Surgery
4.3. Experimental Groups
4.3.1. Prevention of Mechanical Allodynia
4.3.2. Reversal of Mechanical Allodynia
4.4. Mechanical Stimulation Test (MST)
4.5. Real Time-PCR
4.6. Statistical Evaluation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cruccu, G. Trigeminal Neuralgia. Contin. Lifelong Learn. Neurol. 2017, 23, 396–420. [Google Scholar] [CrossRef]
- Guirguis-Blake, J.; Kelly, C. Are Opioids Effective in the Treatment of Neuropathic Pain? Am. Fam. Physician 2007, 75, 999–1001. [Google Scholar]
- Pergolizzi, J.V.; Gharibo, C.; Magnusson, P.; Breve, F.; LeQuang, J.A.; Varrassi, G. Pharmacotherapeutic Management of Trigeminal Neuropathic Pain: An Update. Expert. Opin. Pharmacother. 2022, 23, 1155–1164. [Google Scholar] [CrossRef]
- Al-Quliti, K.W. Update on Neuropathic Pain Treatment for Trigeminal Neuralgia. Neurosciences 2015, 20, 107–114. [Google Scholar] [CrossRef]
- Obermann, M.; Katsarava, Z. Update on Trigeminal Neuralgia. Expert Rev. Neurother. 2009, 9, 323–329. [Google Scholar] [CrossRef]
- Zakrzewska, J.M.; Akram, H. Neurosurgical Interventions for the Treatment of Classical Trigeminal Neuralgia. Cochrane Database Syst. Rev. 2011, 2011, CD007312. [Google Scholar] [CrossRef]
- Whiting, P.F.; Wolff, R.F.; Deshpande, S.; Di Nisio, M.; Duffy, S.; Hernandez, A.V.; Keurentjes, J.C.; Lang, S.; Misso, K.; Ryder, S.; et al. Cannabinoids for Medical Use. JAMA 2015, 313, 2456–2473. [Google Scholar] [CrossRef]
- Wallace, M.S.; Marcotte, T.D.; Umlauf, A.; Gouaux, B.; Atkinson, J.H. Efficacy of Inhaled Cannabis on Painful Diabetic Neuropathy. J. Pain 2015, 16, 616–627. [Google Scholar] [CrossRef]
- Wilsey, B.; Marcotte, T.; Deutsch, R.; Gouaux, B.; Sakai, S.; Donaghe, H. Low-Dose Vaporized Cannabis Significantly Improves Neuropathic Pain. J. Pain 2013, 14, 136–148. [Google Scholar] [CrossRef]
- Serpell, M.; Ratcliffe, S.; Hovorka, J.; Schofield, M.; Taylor, L.; Lauder, H.; Ehler, E. A Double-Blind, Randomized, Placebo-Controlled, Parallel Group Study of THC/CBD Spray in Peripheral Neuropathic Pain Treatment. Eur. J. Pain 2014, 18, 999–1012. [Google Scholar] [CrossRef]
- Sainsbury, B.; Bloxham, J.; Pour, M.H.; Padilla, M.; Enciso, R. Efficacy of Cannabis-Based Medications Compared to Placebo for the Treatment of Chronic Neuropathic Pain: A Systematic Review with Meta-Analysis. J. Dent. Anesth. Pain Med. 2021, 21, 479–506. [Google Scholar] [CrossRef]
- Liang, Y.C.; Huang, C.C.; Hsu, K.S. Therapeutic Potential of Cannabinoids in Trigeminal Neuralgia. Curr. Drug Target CNS Neurol. Disord. 2004, 3, 507–514. [Google Scholar] [CrossRef]
- McDonough, P.; McKenna, J.P.; McCreary, C.; Downer, E.J. Neuropathic Orofacial Pain: Cannabinoids as a Therapeutic Avenue. Int. J. Biochem. Cell Biol. 2014, 55, 72–78. [Google Scholar] [CrossRef]
- Gajofatto, A. Refractory Trigeminal Neuralgia Responsive to Nabiximols in a Patient with Multiple Sclerosis. Mult. Scler. Relat. Disord. 2016, 8, 64–65. [Google Scholar] [CrossRef]
- Kalant, H. Adverse Effects of Cannabis on Health: An Update of the Literature since 1996. Prog. Neuropsychopharmacol. Biol. Psychiatry 2004, 28, 849–863. [Google Scholar] [CrossRef]
- Lafaye, G.; Karila, L.; Blecha, L.; Benyamina, A. Cannabis, Cannabinoids, and Health. Dialogues Clin. Neurosci. 2017, 19, 309–316. [Google Scholar] [CrossRef]
- Hossain, M.Z.; Ando, H.; Unno, S.; Kitagawa, J. Targeting Peripherally Restricted Cannabinoid Receptor 1, Cannabinoid Receptor 2, and Endocannabinoid-Degrading Enzymes for the Treatment of Neuropathic Pain Including Neuropathic Orofacial Pain. Int. J. Mol. Sci. 2020, 21, 1423. [Google Scholar] [CrossRef]
- Donvito, G.; Nass, S.R.; Wilkerson, J.L.; Curry, Z.A.; Schurman, L.D.; Kinsey, S.G.; Lichtman, A.H. The Endogenous Cannabinoid System: A Budding Source of Targets for Treating Inflammatory and Neuropathic Pain. Neuropsychopharmacology 2018, 43, 52–79. [Google Scholar] [CrossRef]
- O’Hearn, S.; Diaz, P.; Wan, B.A.; DeAngelis, C.; Lao, N.; Malek, L.; Chow, E.; Blake, A. Modulating the Endocannabinoid Pathway as Treatment for Peripheral Neuropathic Pain: A Selected Review of Preclinical Studies. Ann. Palliat. Med. 2017, 6, S209–S214. [Google Scholar] [CrossRef]
- Kamimura, R.; Hossain, M.Z.; Unno, S.; Ando, H.; Masuda, Y.; Takahashi, K.; Otake, M.; Saito, I.; Kitagawa, J. Inhibition of 2-Arachydonoylgycerol Degradation Attenuates Orofacial Neuropathic Pain in Trigeminal Nerve-Injured Mice. J. Oral. Sci. 2018, 60, 37–44. [Google Scholar] [CrossRef]
- Liang, Y.-C.; Huang, C.-C.; Hsu, K.-S. The Synthetic Cannabinoids Attenuate Allodynia and Hyperalgesia in a Rat Model of Trigeminal Neuropathic Pain. Neuropharmacology 2007, 53, 169–177. [Google Scholar] [CrossRef]
- Clapper, J.R.; Moreno-Sanz, G.; Russo, R.; Guijarro, A.; Vacondio, F.; Duranti, A.; Tontini, A.; Sanchini, S.; Sciolino, N.R.; Spradley, J.M.; et al. Anandamide Suppresses Pain Initiation through a Peripheral Endocannabinoid Mechanism. Nat. Neurosci. 2010, 13, 1265–1270. [Google Scholar] [CrossRef]
- Moreno-Sanz, G.; Barrera, B.; Guijarro, A.; d’Elia, I.; Otero, J.A.; Alvarez, A.I.; Bandiera, T.; Merino, G.; Piomelli, D. The ABC Membrane Transporter ABCG2 Prevents Access of FAAH Inhibitor URB937 to the Central Nervous System. Pharmacol. Res. 2011, 64, 359–363. [Google Scholar] [CrossRef]
- Demartini, C.; Greco, R.; Zanaboni, A.M.; Francesconi, O.; Nativi, C.; Tassorelli, C.; Deseure, K. Antagonism of Transient Receptor Potential Ankyrin Type-1 Channels as a Potential Target for the Treatment of Trigeminal Neuropathic Pain: Study in an Animal Model. Int. J. Mol. Sci. 2018, 19, 3320. [Google Scholar] [CrossRef]
- Deseure, K.; Hans, G.H. Chronic Constriction Injury of the Rat’s Infraorbital Nerve (IoN-CCI) to Study Trigeminal Neuropathic Pain. J. Vis. Exp. 2015, 103, 53167. [Google Scholar] [CrossRef]
- Jhaveri, M.D.; Richardson, D.; Chapman, V. Endocannabinoid Metabolism and Uptake: Novel Targets for Neuropathic and Inflammatory Pain. Br. J. Pharmacol. 2007, 152, 624–632. [Google Scholar] [CrossRef]
- Jiang, H.; Ke, B.; Liu, J.; Ma, G.; Hai, K.; Gong, D.; Yang, Z.; Zhou, C. Inhibition of Fatty Acid Amide Hydrolase Improves Depressive-Like Behaviors Independent of Its Peripheral Antinociceptive Effects in a Rat Model of Neuropathic Pain. Anesth. Analg. 2019, 129, 587–597. [Google Scholar] [CrossRef]
- Sasso, O.; Bertorelli, R.; Bandiera, T.; Scarpelli, R.; Colombano, G.; Armirotti, A.; Moreno-Sanz, G.; Reggiani, A.; Piomelli, D. Peripheral FAAH Inhibition Causes Profound Antinociception and Protects against Indomethacin-Induced Gastric Lesions. Pharmacol. Res. 2012, 65, 553–563. [Google Scholar] [CrossRef]
- Guindon, J.; Lai, Y.; Takacs, S.M.; Bradshaw, H.B.; Hohmann, A.G. Alterations in Endocannabinoid Tone Following Chemotherapy-Induced Peripheral Neuropathy: Effects of Endocannabinoid Deactivation Inhibitors Targeting Fatty-Acid Amide Hydrolase and Monoacylglycerol Lipase in Comparison to Reference Analgesics Following Cisplatin Treatment. Pharmacol. Res. 2013, 67, 94–109. [Google Scholar] [CrossRef]
- Thompson, J.M.; Blanton, H.L.; Pietrzak, A.; Little, W.; Sherfey, C.; Guindon, J. Front and Hind Paw Differential Analgesic Effects of Amitriptyline, Gabapentin, Ibuprofen, and URB937 on Mechanical and Cold Sensitivity in Cisplatin-Induced Neuropathy. Mol. Pain 2019, 15, 1744806919874192. [Google Scholar] [CrossRef]
- Slivicki, R.A.; Saberi, S.A.; Iyer, V.; Vemuri, V.K.; Makriyannis, A.; Hohmann, A.G. Brain-Permeant and -Impermeant Inhibitors of Fatty Acid Amide Hydrolase Synergize with the Opioid Analgesic Morphine to Suppress Chemotherapy-Induced Neuropathic Nociception Without Enhancing Effects of Morphine on Gastrointestinal Transit. J. Pharmacol. Exp. Ther. 2018, 367, 551–563. [Google Scholar] [CrossRef]
- Sasso, O.; Wagner, K.; Morisseau, C.; Inceoglu, B.; Hammock, B.D.; Piomelli, D. Peripheral FAAH and Soluble Epoxide Hydrolase Inhibitors Are Synergistically Antinociceptive. Pharmacol. Res. 2015, 97, 7–15. [Google Scholar] [CrossRef]
- Greco, R.; Demartini, C.; Zanaboni, A.; Casini, I.; De Icco, R.; Reggiani, A.; Misto, A.; Piomelli, D.; Tassorelli, C. Characterization of the Peripheral FAAH Inhibitor, URB937, in Animal Models of Acute and Chronic Migraine. Neurobiol. Dis. 2021, 147, 105157. [Google Scholar] [CrossRef] [PubMed]
- Greco, R.; Demartini, C.; Zanaboni, A.M.; Tumelero, E.; Reggiani, A.; Misto, A.; Piomelli, D.; Tassorelli, C. FAAH Inhibition as a Preventive Treatment for Migraine: A Pre-Clinical Study. Neurobiol. Dis. 2020, 134, 104624. [Google Scholar] [CrossRef] [PubMed]
- Greco, R.; Francavilla, M.; Demartini, C.; Zanaboni, A.M.; Facchetti, S.; Palmisani, M.; Franco, V.; Tassorelli, C. Activity of FAAH-Inhibitor JZP327A in an Experimental Rat Model of Migraine. Int. J. Mol. Sci. 2023, 24, 10102. [Google Scholar] [CrossRef] [PubMed]
- Greco, R.; Demartini, C.; Zanaboni, A.M.; Francavilla, M.; Reggiani, A.; Realini, N.; Scarpelli, R.; Piomelli, D.; Tassorelli, C. Potentiation of Endocannabinoids and Other Lipid Amides Prevents Hyperalgesia and Inflammation in a Pre-Clinical Model of Migraine. J. Headache Pain 2022, 23, 79. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Sackett, S.; Tanaka, M.; Zhang, Y. Therapeutic Effects of Combined Treatment with the AEA Hydrolysis Inhibitor PF04457845 and the Substrate Selective COX-2 Inhibitor LM4131 in the Mouse Model of Neuropathic Pain. Cells 2023, 12, 1275. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Yagyu, K.; Sackett, S.; Zhang, Y. Anti-Inflammatory Effects by Pharmacological Inhibition or Knockdown of Fatty Acid Amide Hydrolase in BV2 Microglial Cells. Cells 2019, 8, 491. [Google Scholar] [CrossRef] [PubMed]
- Rock, E.M.; Moreno-Sanz, G.; Limebeer, C.L.; Petrie, G.N.; Angelini, R.; Piomelli, D.; Parker, L.A. Suppression of Acute and Anticipatory Nausea by Peripherally Restricted Fatty Acid Amide Hydrolase Inhibitor in Animal Models: Role of PPARα and CB 1 Receptors. Br. J. Pharmacol. 2017, 174, 3837–3847. [Google Scholar] [CrossRef] [PubMed]
- Echeverry, S.; Shi, X.Q.; Rivest, S.; Zhang, J. Peripheral Nerve Injury Alters Blood-Spinal Cord Barrier Functional and Molecular Integrity through a Selective Inflammatory Pathway. J. Neurosci. 2011, 31, 10819–10828. [Google Scholar] [CrossRef]
- Fried, N.T.; Maxwell, C.R.; Elliott, M.B.; Oshinsky, M.L. Region-Specific Disruption of the Blood-Brain Barrier Following Repeated Inflammatory Dural Stimulation in a Rat Model of Chronic Trigeminal Allodynia. Cephalalgia 2018, 38, 674–689. [Google Scholar] [CrossRef]
- DosSantos, M.F.; Holanda-Afonso, R.C.; Lima, R.L.; DaSilva, A.F.; Moura-Neto, V. The Role of the Blood Brain Barrier in the Development and Treatment of Migraine and Other Pain Disorders. Front. Cell Neurosci. 2014, 8, 302. [Google Scholar] [CrossRef] [PubMed]
- Mitrirattanakul, S.; Ramakul, N.; Guerrero, A.V.; Matsuka, Y.; Ono, T.; Iwase, H.; Mackie, K.; Faull, K.F.; Spigelman, I. Site-Specific Increases in Peripheral Cannabinoid Receptors and Their Endogenous Ligands in a Model of Neuropathic Pain. Pain 2006, 126, 102–114. [Google Scholar] [CrossRef]
- Lim, G.; Sung, B.; Ji, R.-R.; Mao, J. Upregulation of Spinal Cannabinoid-1-Receptors Following Nerve Injury Enhances the Effects of Win 55,212-2 on Neuropathic Pain Behaviors in Rats. Pain 2003, 105, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Petrosino, S.; Palazzo, E.; de Novellis, V.; Bisogno, T.; Rossi, F.; Maione, S.; Di Marzo, V. Changes in Spinal and Supraspinal Endocannabinoid Levels in Neuropathic Rats. Neuropharmacology 2007, 52, 415–422. [Google Scholar] [CrossRef]
- Starowicz, K.; Makuch, W.; Korostynski, M.; Malek, N.; Slezak, M.; Zychowska, M.; Petrosino, S.; De Petrocellis, L.; Cristino, L.; Przewlocka, B.; et al. Full Inhibition of Spinal FAAH Leads to TRPV1-Mediated Analgesic Effects in Neuropathic Rats and Possible Lipoxygenase-Mediated Remodeling of Anandamide Metabolism. PLoS ONE 2013, 8, e60040. [Google Scholar] [CrossRef]
- Barrie, N.; Manolios, N. The Endocannabinoid System in Pain and Inflammation: Its Relevance to Rheumatic Disease. Eur. J. Rheumatol. 2017, 4, 210–218. [Google Scholar] [CrossRef]
- Latremoliere, A.; Woolf, C.J. Central Sensitization: A Generator of Pain Hypersensitivity by Central Neural Plasticity. J. Pain 2009, 10, 895–926. [Google Scholar] [CrossRef] [PubMed]
- Price, T.J.; Helesic, G.; Parghi, D.; Hargreaves, K.M.; Flores, C.M. The Neuronal Distribution of Cannabinoid Receptor Type 1 in the Trigeminal Ganglion of the Rat. Neuroscience 2003, 120, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Tsou, K.; Brown, S.; Sañudo-Peña, M.C.; Mackie, K.; Walker, J.M. Immunohistochemical Distribution of Cannabinoid CB1 Receptors in the Rat Central Nervous System. Neuroscience 1998, 83, 393–411. [Google Scholar] [CrossRef] [PubMed]
- Ellis, A.; Bennett, D.L.H. Neuroinflammation and the Generation of Neuropathic Pain. Br. J. Anaesth. 2013, 111, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Z.-Y.; Wen, Y.-R.; Zhang, D.-R.; Borsello, T.; Bonny, C.; Strichartz, G.R.; Decosterd, I.; Ji, R.-R. A Peptide C-Jun N-Terminal Kinase (JNK) Inhibitor Blocks Mechanical Allodynia after Spinal Nerve Ligation: Respective Roles of JNK Activation in Primary Sensory Neurons and Spinal Astrocytes for Neuropathic Pain Development and Maintenance. J. Neurosci. 2006, 26, 3551–3560. [Google Scholar] [CrossRef] [PubMed]
- Costa, B.; Comelli, F.; Bettoni, I.; Colleoni, M.; Giagnoni, G. The Endogenous Fatty Acid Amide, Palmitoylethanolamide, Has Anti-Allodynic and Anti-Hyperalgesic Effects in a Murine Model of Neuropathic Pain: Involvement of CB(1), TRPV1 and PPARgamma Receptors and Neurotrophic Factors. Pain 2008, 139, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Lo Verme, J.; Fu, J.; Astarita, G.; La Rana, G.; Russo, R.; Calignano, A.; Piomelli, D. The Nuclear Receptor Peroxisome Proliferator-Activated Receptor-Alpha Mediates the Anti-Inflammatory Actions of Palmitoylethanolamide. Mol. Pharmacol. 2005, 67, 15–19. [Google Scholar] [CrossRef]
- Seol, T.-K.; Lee, W.; Park, S.; Kim, K.N.; Kim, T.Y.; Oh, Y.N.; Jun, J.H. Effect of Palmitoylethanolamide on Inflammatory and Neuropathic Pain in Rats. Korean J. Anesth. 2017, 70, 561–566. [Google Scholar] [CrossRef]
- Kamper, D. Palmitoylethanolamide (PEA) in the Treatment of Neuropathic Pain: A Case Study. Nutr. Health 2022, 28, 265–269. [Google Scholar] [CrossRef]
- Lang-Illievich, K.; Klivinyi, C.; Lasser, C.; Brenna, C.T.A.; Szilagyi, I.S.; Bornemann-Cimenti, H. Palmitoylethanolamide in the Treatment of Chronic Pain: A Systematic Review and Meta-Analysis of Double-Blind Randomized Controlled Trials. Nutrients 2023, 15, 1350. [Google Scholar] [CrossRef]
- Muccioli, G.G.; Stella, N. Microglia Produce and Hydrolyze Palmitoylethanolamide. Neuropharmacology 2008, 54, 16–22. [Google Scholar] [CrossRef]
- Núñez, E.; Benito, C.; Tolón, R.M.; Hillard, C.J.; Griffin, W.S.T.; Romero, J. Glial Expression of Cannabinoid CB2 Receptors and Fatty Acid Amide Hydrolase Are Beta Amyloid–Linked Events in Down’s Syndrome. Neuroscience 2008, 151, 104–110. [Google Scholar] [CrossRef]
- Benito, C.; Núñez, E.; Tolón, R.M.; Carrier, E.J.; Rábano, A.; Hillard, C.J.; Romero, J. Cannabinoid CB2 Receptors and Fatty Acid Amide Hydrolase Are Selectively Overexpressed in Neuritic Plaque-Associated Glia in Alzheimer’s Disease Brains. J. Neurosci. 2003, 23, 11136–11141. [Google Scholar] [CrossRef]
- Grieco, M.; De Caris, M.G.; Maggi, E.; Armeli, F.; Coccurello, R.; Bisogno, T.; D’Erme, M.; Maccarrone, M.; Mancini, P.; Businaro, R. Fatty Acid Amide Hydrolase (FAAH) Inhibition Modulates Amyloid-Beta-Induced Microglia Polarization. Int. J. Mol. Sci. 2021, 22, 7711. [Google Scholar] [CrossRef] [PubMed]
- Takeda, M.; Matsumoto, S.; Sessle, B.J.; Shinoda, M.; Iwata, K. Peripheral and Central Mechanisms of Trigeminal Neuropathic and Inflammatory Pain. J. Oral Biosci. 2011, 53, 318–329. [Google Scholar] [CrossRef]
- Bista, P.; Imlach, W.L. Pathological Mechanisms and Therapeutic Targets for Trigeminal Neuropathic Pain. Medicines 2019, 6, 91. [Google Scholar] [CrossRef]
- Shinoda, M.; Imamura, Y.; Hayashi, Y.; Noma, N.; Okada-Ogawa, A.; Hitomi, S.; Iwata, K. Orofacial Neuropathic Pain-Basic Research and Their Clinical Relevancies. Front. Mol. Neurosci. 2021, 14, 691396. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, W.; Mei, X.; Huang, J.; Wei, Y.; Wang, Y.; Wu, S.; Li, Y. Crosstalk between Spinal Astrocytes and Neurons in Nerve Injury-Induced Neuropathic Pain. PLoS ONE 2009, 4, e6973. [Google Scholar] [CrossRef]
- Hossain, M.; Unno, S.; Ando, H.; Masuda, Y.; Kitagawa, J. Neuron–Glia Crosstalk and Neuropathic Pain: Involvement in the Modulation of Motor Activity in the Orofacial Region. Int. J. Mol. Sci. 2017, 18, 2051. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, M.; Cui, S.; Liang, W.; Jia, Z.; Guo, F.; Ou, W.; Wu, Y.; Zhang, S. The Core of Maintaining Neuropathic Pain: Crosstalk between Glial Cells and Neurons (Neural Cell Crosstalk at Spinal Cord). Brain Behav. 2023, 13, e2868. [Google Scholar] [CrossRef]
- Matejuk, A.; Ransohoff, R.M. Crosstalk Between Astrocytes and Microglia: An Overview. Front. Immunol. 2020, 11, 1416. [Google Scholar] [CrossRef]
- Qi, J.; Chen, C.; Meng, Q.-X.; Wu, Y.; Wu, H.; Zhao, T.-B. Crosstalk between Activated Microglia and Neurons in the Spinal Dorsal Horn Contributes to Stress-Induced Hyperalgesia. Sci. Rep. 2016, 6, 39442. [Google Scholar] [CrossRef]
- Guo, W.; Wang, H.; Watanabe, M.; Shimizu, K.; Zou, S.; LaGraize, S.C.; Wei, F.; Dubner, R.; Ren, K. Glial–Cytokine–Neuronal Interactions Underlying the Mechanisms of Persistent Pain. J. Neurosci. 2007, 27, 6006–6018. [Google Scholar] [CrossRef]
- Stella, N. Cannabinoid and Cannabinoid-like Receptors in Microglia, Astrocytes, and Astrocytomas. Glia 2010, 58, 1017–1030. [Google Scholar] [CrossRef]
- Meza, R.C.; Ancatén-González, C.; Chiu, C.Q.; Chávez, A.E. Transient Receptor Potential Vanilloid 1 Function at Central Synapses in Health and Disease. Front. Cell Neurosci. 2022, 16, 864828. [Google Scholar] [CrossRef]
- Chistyakov, D.V.; Aleshin, S.E.; Astakhova, A.A.; Sergeeva, M.G.; Reiser, G. Regulation of Peroxisome Proliferator-Activated Receptors (PPAR) α and -γ of Rat Brain Astrocytes in the Course of Activation by Toll-like Receptor Agonists. J. Neurochem. 2015, 134, 113–124. [Google Scholar] [CrossRef]
- Keppel Hesselink, J.M.; Kopsky, D.J.; Witkamp, R.F. Palmitoylethanolamide (PEA)—‘Promiscuous’ Anti-Inflammatory and Analgesic Molecule at the Interface between Nutrition and Pharma. PharmaNutrition 2014, 2, 19–25. [Google Scholar] [CrossRef]
- Nagarkatti, P.; Pandey, R.; Rieder, S.A.; Hegde, V.L.; Nagarkatti, M. Cannabinoids as Novel Anti-Inflammatory Drugs. Future Med. Chem. 2009, 1, 1333–1349. [Google Scholar] [CrossRef] [PubMed]
- Sancho, R.; Calzado, M.A.; Di Marzo, V.; Appendino, G.; Muñoz, E. Anandamide Inhibits Nuclear Factor-KappaB Activation through a Cannabinoid Receptor-Independent Pathway. Mol. Pharmacol. 2003, 63, 429–438. [Google Scholar] [CrossRef]
- Klein, T.W.; Cabral, G.A. Cannabinoid-Induced Immune Suppression and Modulation of Antigen-Presenting Cells. J. Neuroimmune Pharmacol. 2006, 1, 50–64. [Google Scholar] [CrossRef]
- Costa, B.; Siniscalco, D.; Trovato, A.E.; Comelli, F.; Sotgiu, M.L.; Colleoni, M.; Maione, S.; Rossi, F.; Giagnoni, G. AM404, an Inhibitor of Anandamide Uptake, Prevents Pain Behaviour and Modulates Cytokine and Apoptotic Pathways in a Rat Model of Neuropathic Pain. Br. J. Pharmacol. 2006, 148, 1022–1032. [Google Scholar] [CrossRef] [PubMed]
- Paszcuk, A.F.; Dutra, R.C.; da Silva, K.A.B.S.; Quintão, N.L.M.; Campos, M.M.; Calixto, J.B. Cannabinoid Agonists Inhibit Neuropathic Pain Induced by Brachial Plexus Avulsion in Mice by Affecting Glial Cells and MAP Kinases. PLoS ONE 2011, 6, e24034. [Google Scholar] [CrossRef]
- Justinova, Z.; Mangieri, R.A.; Bortolato, M.; Chefer, S.I.; Mukhin, A.G.; Clapper, J.R.; King, A.R.; Redhi, G.H.; Yasar, S.; Piomelli, D.; et al. Fatty Acid Amide Hydrolase Inhibition Heightens Anandamide Signaling without Producing Reinforcing Effects in Primates. Biol. Psychiatry 2008, 64, 930–937. [Google Scholar] [CrossRef]
- Gobbi, G.; Bambico, F.R.; Mangieri, R.; Bortolato, M.; Campolongo, P.; Solinas, M.; Cassano, T.; Morgese, M.G.; Debonnel, G.; Duranti, A.; et al. Antidepressant-like Activity and Modulation of Brain Monoaminergic Transmission by Blockade of Anandamide Hydrolysis. Proc. Natl. Acad. Sci. USA 2005, 102, 18620–18625. [Google Scholar] [CrossRef] [PubMed]
- Jayamanne, A.; Greenwood, R.; Mitchell, V.A.; Aslan, S.; Piomelli, D.; Vaughan, C.W. Actions of the FAAH Inhibitor URB597 in Neuropathic and Inflammatory Chronic Pain Models. Br. J. Pharmacol. 2006, 147, 281–288. [Google Scholar] [CrossRef]
- Hama, A.T.; Germano, P.; Varghese, M.S.; Cravatt, B.F.; Milne, G.T.; Pearson, J.P.; Sagen, J. Fatty Acid Amide Hydrolase (FAAH) Inhibitors Exert Pharmacological Effects, but Lack Antinociceptive Efficacy in Rats with Neuropathic Spinal Cord Injury Pain. PLoS ONE 2014, 9, e96396. [Google Scholar] [CrossRef]
- Vozella, V.; Ahmed, F.; Choobchian, P.; Merrill, C.B.; Zibardi, C.; Tarzia, G.; Mor, M.; Duranti, A.; Tontini, A.; Rivara, S.; et al. Pharmacokinetics, Pharmacodynamics and Safety Studies on URB937, a Peripherally Restricted Fatty Acid Amide Hydrolase Inhibitor, in Rats. J. Pharm. Pharmacol. 2019, 71, 1762–1773. [Google Scholar] [CrossRef]
- Hurley, R.W.; Adams, M.C.B. Sex, Gender, and Pain: An Overview of a Complex Field. Anesth. Analg. 2008, 107, 309–317. [Google Scholar] [CrossRef]
- Vos, B.P.; Strassman, A.M.; Maciewicz, R.J. Behavioral Evidence of Trigeminal Neuropathic Pain Following Chronic Constriction Injury to the Rat’s Infraorbital Nerve. J. Neurosci. 1994, 14, 2708–2723. [Google Scholar] [CrossRef]
- Deseure, K.; Koek, W.; Colpaert, F.C.; Adriaensen, H. The 5-HT1A Receptor Agonist F 13640 Attenuates Mechanical Allodynia in a Rat Model of Trigeminal Neuropathic Pain. Eur. J. Pharmacol. 2002, 456, 51–57. [Google Scholar] [CrossRef]
- Waite, P.M.E.; Ashwell, K.W.S. Trigeminal Sensory System. In The Human Nervous System; Elsevier: Amsterdam, The Netherlands, 2004; pp. 1093–1124. [Google Scholar]
- Terayama, R.; Nagamatsu, N.; Ikeda, T.; Nakamura, T.; Rahman, O.I.F.; Sakoda, S.; Shiba, R.; Nishimori, T. Differential Expression of Fos Protein after Transection of the Rat Infraorbital Nerve in the Trigeminal Nucleus Caudalis. Brain Res. 1997, 768, 135–146. [Google Scholar] [CrossRef]
- Panneton, W.M.; Pan, B.; Gan, Q. Somatotopy in the Medullary Dorsal Horn as a Basis for Orofacial Reflex Behavior. Front. Neurol. 2017, 8, 522. [Google Scholar] [CrossRef]
- Demartini, C.; Greco, R.; Magni, G.; Zanaboni, A.M.; Riboldi, B.; Francavilla, M.; Nativi, C.; Ceruti, S.; Tassorelli, C. Modulation of Glia Activation by TRPA1 Antagonism in Preclinical Models of Migraine. Int. J. Mol. Sci. 2022, 23, 14085. [Google Scholar] [CrossRef]
Score | Type of Response |
---|---|
0 | no response |
1 | detection: the rat turns its head towards the stimulus object, and the stimulus object is then explored |
2 | withdrawal reaction: the rat turns its head slowly away or pulls it briskly backwards when the stimulation is applied; sometimes, a single face wipe ipsilateral to the stimulated area occurs |
3 | escape/attack: the rat avoids further contact with the stimulus object, either passively by moving its body away from the stimulus object to assume a crouching position against the cage wall or actively by attacking the stimulus object, making biting and grabbing movements |
4 | asymmetric face grooming: the rat displays an uninterrupted series of at least three face-wash strokes directed towards the stimulated facial area |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demartini, C.; Greco, R.; Zanaboni, A.M.; Francavilla, M.; Facchetti, S.; Tassorelli, C. URB937 Prevents the Development of Mechanical Allodynia in Male Rats with Trigeminal Neuralgia. Pharmaceuticals 2023, 16, 1626. https://doi.org/10.3390/ph16111626
Demartini C, Greco R, Zanaboni AM, Francavilla M, Facchetti S, Tassorelli C. URB937 Prevents the Development of Mechanical Allodynia in Male Rats with Trigeminal Neuralgia. Pharmaceuticals. 2023; 16(11):1626. https://doi.org/10.3390/ph16111626
Chicago/Turabian StyleDemartini, Chiara, Rosaria Greco, Anna Maria Zanaboni, Miriam Francavilla, Sara Facchetti, and Cristina Tassorelli. 2023. "URB937 Prevents the Development of Mechanical Allodynia in Male Rats with Trigeminal Neuralgia" Pharmaceuticals 16, no. 11: 1626. https://doi.org/10.3390/ph16111626
APA StyleDemartini, C., Greco, R., Zanaboni, A. M., Francavilla, M., Facchetti, S., & Tassorelli, C. (2023). URB937 Prevents the Development of Mechanical Allodynia in Male Rats with Trigeminal Neuralgia. Pharmaceuticals, 16(11), 1626. https://doi.org/10.3390/ph16111626