Novel Immunotherapies and Combinations: The Future Landscape of Multiple Myeloma Treatment
Abstract
:1. Introduction
2. Mechanisms of Action of Antibody-Drug Conjugates and Bispecific Antibodies
3. Belantamab Mafodotin
3.1. DREAMM Trials
3.2. ALGONQUIN Study
4. Teclistamab
4.1. MajesTEC-1 Trial
4.2. Teclistamab-Based Combinations: MajesTEC-2 Study
5. Elranatamab
MagnetisMM-1 and MagnetisMM-3 Trials
6. Linvoseltamab: LINKER-MM Trials
7. Talquetamab
7.1. MonumenTAL-1 Trial
7.2. Talquetamab-Based Combinations: TRIMM-2 Study
7.3. Talquetamab-Based Combinations: The RedirecTT-1 Study
8. Cevostamab
9. Peculiar Toxicities of Belantamab Mafodotin and Bispecific Antibodies
10. Treatment with Sequential BCMA-Targeted Therapies and Real Life Experiences
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Palumbo, A.; Anderson, K. Multiple Myeloma. N. Engl. J. Med. 2011, 364, 1046–1060. [Google Scholar] [CrossRef] [PubMed]
- Pawlyn, C.; Davies, F.E. Toward Personalized Treatment in Multiple Myeloma Based on Molecular Characteristics. Blood 2019, 133, 660–675. [Google Scholar] [CrossRef] [PubMed]
- Rosenblatt, J.; Avigan, D. Cellular Immunotherapy for Multiple Myeloma. Cancer J. 2019, 25, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Field-Smith, A.; Morgan, G.J.; Davies, F.E. Bortezomib (Velcadetrade Mark) in the Treatment of Multiple Myeloma. Ther. Clin. Risk Manag. 2006, 2, 271–279. [Google Scholar] [CrossRef]
- Gozzetti, A.; Papini, G.; Candi, V.; Brambilla, C.Z.; Sirianni, S.; Bocchia, M. Second Generation Proteasome Inhibitors in Multiple Myeloma. Anticancer. Agents Med. Chem. 2017, 17, 920–926. [Google Scholar] [CrossRef]
- Moreau, P.; de Wit, E. Recent Progress in Relapsed Multiple Myeloma Therapy: Implications for Treatment Decisions. Br. J. Haematol. 2017, 179, 198–218. [Google Scholar] [CrossRef]
- D’Agostino, M.; Innorcia, S.; Boccadoro, M.; Bringhen, S. Monoclonal Antibodies to Treat Multiple Myeloma: A Dream Come True. Int. J. Mol. Sci. 2020, 21, 8192. [Google Scholar] [CrossRef]
- Moreau, P.; Facon, T.; Usmani, S.; Bahlis, N.J.; Raje, N.; Plesner, T.; Orlowski, R.Z.; Basu, S.; Nahi, H.; Hulin, C.; et al. Daratumumab Plus Lenalidomide and Dexamethasone (D-Rd) Versus Lenalidomide and Dexamethasone (Rd) in Transplant-Ineligible Patients (Pts) with Newly Diagnosed Multiple Myeloma (NDMM): Clinical Assessment of Key Subgroups of the Phase 3 Maia Study. Blood 2022, 140 (Suppl. S1), 7297–7300. [Google Scholar] [CrossRef]
- Moreau, P.; Attal, M.; Hulin, C.; Arnulf, B.; Belhadj, K.; Benboubker, L.; Béné, M.C.; Broijl, A.; Caillon, H.; Caillot, D.; et al. Bortezomib, Thalidomide, and Dexamethasone with or without Daratumumab before and after Autologous Stem-Cell Transplantation for Newly Diagnosed Multiple Myeloma (CASSIOPEIA): A Randomised, Open-Label, Phase 3 Study. Lancet 2019, 394, 29–38. [Google Scholar] [CrossRef]
- Costa, L.J.; Chhabra, S.; Medvedova, E.; Dholaria, B.R.; Schmidt, T.M.; Godby, K.N.; Silbermann, R.; Dhakal, B.; Bal, S.; Giri, S.; et al. Minimal Residual Disease Response-Adapted Therapy in Newly Diagnosed Multiple Myeloma (MASTER): Final Report of the Multicentre, Single-Arm, Phase 2 Trial. Lancet Haematol. 2023, 10, e890–e901. [Google Scholar] [CrossRef]
- Costa, L.J.; Chhabra, S.; Medvedova, E.; Dholaria, B.R.; Schmidt, T.M.; Godby, K.N.; Silbermann, R.; Dhakal, B.; Bal, S.; Giri, S.; et al. Daratumumab, Carfilzomib, Lenalidomide, and Dexamethasone With Minimal Residual Disease Response-Adapted Therapy in Newly Diagnosed Multiple Myeloma. J. Clin. Oncol. 2022, 40, 2901–2912. [Google Scholar] [CrossRef] [PubMed]
- Marcon, C.; Simeon, V.; Deias, P.; Facchin, G.; Corso, A.; Derudas, D.; Montefusco, V.; Offidani, M.; Petrucci, M.T.; Zambello, R.; et al. Experts’ Consensus on the Definition and Management of High Risk Multiple Myeloma. Front. Oncol. 2023, 12, 1096852. [Google Scholar] [CrossRef] [PubMed]
- Morè, S.; Corvatta, L.; Manieri, M.V.; Olivieri, A.; Offidani, M. Real-World Assessment of Treatment Patterns and Outcomes in Patients with Relapsed-Refractory Multiple Myeloma in an Italian Haematological Tertiary Care Centre. Br. J. Haematol. 2023, 201, 432–442. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.D.; Raje, N.; Fowler, J.A.; Mezzi, K.; Scott, E.C.; Dhodapkar, M. V How to Train Your T Cells: Overcoming Immune Dysfunction in Multiple Myeloma. Clin. Cancer Res. 2020, 26, 1541–1554. [Google Scholar] [CrossRef]
- Feins, S.; Kong, W.; Williams, E.F.; Milone, M.C.; Fraietta, J.A. An Introduction to Chimeric Antigen Receptor (CAR) T-Cell Immunotherapy for Human Cancer. Am. J. Hematol. 2019, 94, S3–S9. [Google Scholar] [CrossRef] [PubMed]
- Mailankody, S.; Liedtke, M.; Sidana, S.; Matous, J.V.; Chhabra, S.; Oluwole, O.O.; Malik, S.A.; Kumar, S.; Nath, R.; Anwer, F.; et al. Universal Updated Phase 1 Data Validates the Feasibility of Allogeneic Anti-BCMA ALLO-715 Therapy for Relapsed/Refractory Multiple Myeloma. Blood 2021, 138, 651. [Google Scholar] [CrossRef]
- Depil, S.; Duchateau, P.; Grupp, S.A.; Mufti, G.; Poirot, L. “Off-the-Shelf” Allogeneic CAR T Cells: Development and Challenges. Nat. Rev. Drug Discov. 2020, 19, 185–199. [Google Scholar] [CrossRef]
- Metelo, A.M.; Jozwik, A.; Luong, L.A.; Dominey-Foy, D.; Graham, C.; Attwood, C.; Inam, S.; Dunlop, A.; Sanchez, K.; Cuthill, K.; et al. Allogeneic Anti-BCMA CAR T Cells Are Superior to Multiple Myeloma-Derived CAR T Cells in Preclinical Studies and May Be Combined with Gamma Secretase Inhibitors. Cancer Res. Commun. 2022, 2, 158–171. [Google Scholar] [CrossRef]
- Clara, J.A.; Childs, R.W. Harnessing Natural Killer Cells for the Treatment of Multiple Myeloma. Semin. Oncol. 2022, 49, 69–85. [Google Scholar] [CrossRef]
- Kleber, M.; Ntanasis-Stathopoulos, I.; Terpos, E. BCMA in Multiple Myeloma-A Promising Key to Therapy. J. Clin. Med. 2021, 10, 4088. [Google Scholar] [CrossRef]
- Pahl, A.; Lutz, C.; Hechler, T. Amanitins and Their Development as a Payload for Antibody-Drug Conjugates. Drug Discov. Today Technol. 2018, 30, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Tai, Y.T.; Mayes, P.A.; Acharya, C.; Zhong, M.Y.; Cea, M.; Cagnetta, A.; Craigen, J.; Yates, J.; Gliddon, L.; Fieles, W.; et al. Novel Anti-B-Cell Maturation Antigen Antibody-Drug Conjugate (GSK2857916) Selectively Induces Killing of Multiple Myeloma. Blood 2014, 123, 3128–3138. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Jiang, T.; Liu, D. BCMA-Targeted Immunotherapy for Multiple Myeloma. J. Hematol. Oncol. 2020, 13, 125. [Google Scholar] [CrossRef]
- Mackay, F.; Schneider, P.; Rennert, P.; Browning, J. BAFF and APRIL: A Tutorial on B Cell Survival. Annu. Rev. Immunol. 2003, 21, 231–264. [Google Scholar] [CrossRef] [PubMed]
- Maura, F.; Bolli, N.; Angelopoulos, N.; Dawson, K.J.; Leongamornlert, D.; Martincorena, I.; Mitchell, T.J.; Fullam, A.; Gonzalez, S.; Szalat, R.; et al. Genomic Landscape and Chronological Reconstruction of Driver Events in Multiple Myeloma. Nat. Commun. 2019, 10, 3835. [Google Scholar] [CrossRef]
- Dahlén, E.; Veitonmäki, N.; Norlén, P. Bispecific Antibodies in Cancer Immunotherapy. Ther. Adv. Vaccines Immunother. 2018, 6, 3–17. [Google Scholar] [CrossRef]
- Huehls, A.M.; Coupet, T.A.; Sentman, C.L. Bispecific T-Cell Engagers for Cancer Immunotherapy. Immunol. Cell Biol. 2015, 93, 290–296. [Google Scholar] [CrossRef]
- Frerichs, K.A.; Broekmans, M.E.C.; Marin Soto, J.A.; van Kessel, B.; Heymans, M.W.; Holthof, L.C.; Verkleij, C.P.M.; Boominathan, R.; Vaidya, B.; Sendecki, J.; et al. Preclinical Activity of JNJ-7957, a Novel BCMA×CD3 Bispecific Antibody for the Treatment of Multiple Myeloma, Is Potentiated by Daratumumab. Clin. Cancer Res. 2020, 26, 2203–2215. [Google Scholar] [CrossRef]
- Shah, N.; Chari, A.; Scott, E.; Mezzi, K.; Usmani, S.Z. B-Cell Maturation Antigen (BCMA) in Multiple Myeloma: Rationale for Targeting and Current Therapeutic Approaches. Leukemia 2020, 34, 985–1005. [Google Scholar] [CrossRef]
- Ross, S.L.; Sherman, M.; McElroy, P.L.; Lofgren, J.A.; Moody, G.; Baeuerle, P.A.; Coxon, A.; Arvedson, T. Bispecific T Cell Engager (BiTE®) Antibody Constructs Can Mediate Bystander Tumor Cell Killing. PLoS ONE 2017, 12, e0183390. [Google Scholar] [CrossRef]
- Golay, J.; Regazzi, M. Key Features Defining the Disposition of Bispecific Antibodies and Their Efficacy In Vivo. Ther. Drug Monit. 2020, 42, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.F.; Anderson, K.C.; Tai, Y.T. Targeting B Cell Maturation Antigen (BCMA) in Multiple Myeloma: Potential Uses of BCMA-Based Immunotherapy. Front. Immunol. 2018, 9, 1821. [Google Scholar] [CrossRef] [PubMed]
- Mailankody, S.; Devlin, S.M.; Landa, J.; Nath, K.; Diamonte, C.; Carstens, E.J.; Russo, D.; Auclair, R.; Fitzgerald, L.; Cadzin, B.; et al. GPRC5D-Targeted CAR T Cells for Myeloma. N. Engl. J. Med. 2022, 387, 1196–1206. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.L.; Harrington, K.; Staehr, M.; Masakayan, R.; Jones, J.; Long, T.J.; Ng, K.Y.; Ghoddusi, M.; Purdon, T.J.; Wang, X.; et al. GPRC5D Is a Target for the Immunotherapy of Multiple Myeloma with Rationally Designed CAR T Cells. Sci. Transl. Med. 2019, 11, eaau7746. [Google Scholar] [CrossRef]
- Laurent, S.A.; Hoffmann, F.S.; Kuhn, P.H.; Cheng, Q.; Chu, Y.; Schmidt-Supprian, M.; Hauck, S.M.; Schuh, E.; Krumbholz, M.; Rübsamen, H.; et al. γ-Secretase Directly Sheds the Survival Receptor BCMA from Plasma Cells. Nat. Commun. 2015, 6, 7333. [Google Scholar] [CrossRef]
- Li, J.; Stagg, N.J.; Johnston, J.; Harris, M.J.; Menzies, S.A.; DiCara, D.; Clark, V.; Hristopoulos, M.; Cook, R.; Slaga, D.; et al. Membrane-Proximal Epitope Facilitates Efficient T Cell Synapse Formation by Anti-FcRH5/CD3 and Is a Requirement for Myeloma Cell Killing. Cancer Cell 2017, 31, 383–395. [Google Scholar] [CrossRef] [PubMed]
- Nooka, A.K.; Cohen, A.; Lee, H.C.; Badros, A.Z.; Suvannasankha, A.; Callander, N.; Abdallah, A.-O.; Trudel, S.; Chari, A.; Libby, E.; et al. Single-Agent Belantamab Mafodotin in Patients with Relapsed or Refractory Multiple Myeloma: Final Analysis of the DREAMM-2 Trial. Blood 2022, 140 (Suppl. S1), 7301–7303. [Google Scholar] [CrossRef]
- Dimopoulos, M.A.; Hungria, V.T.M.; Radinoff, A.; Delimpasi, S.; Mikala, G.; Masszi, T.; Li, J.; Capra, M.; Maiolino, A.; Pappa, V.; et al. Efficacy and safety of single-agent belantamab mafodotin versus pomalidomide plus low-dose dexamethasone in patients with relapsed or refractory multiple myeloma (DREAMM-3): A phase 3, open-label, randomised study. Lancet Haematol. 2023, 10, e801–e812. [Google Scholar] [CrossRef]
- Suvannasankha, A.; Bahlis, N.J.; Trudel, S.; Weisel, K.; Koenecke, C.; Oriol, A.; Voorhees, P.M.; Alonso, A.; Callander, N.S.; Mateos, M.V.; et al. Safety and Clinical Activity of Belantamab Mafodotin with Pembrolizumab in Patients with Relapsed / Refractory Multiple Myeloma (RRMM): DREAMM-4 Study. HemaSphere 2022, 6, 830–831. [Google Scholar] [CrossRef]
- Callander, N.S.; Richardson, P.G.; Hus, M.; Ribrag, V.; Martinez-Lopez, J.; Kim, K.; Lee, J.H.; Dimopoulos, M.A.; Schjesvold, F.; Facon, T.; et al. Low-dose belantamab mafodotin (belamaf) in combination with nirogacestat vs belamaf monotherapy in patients with relapsed/refractory multiple myeloma (RRMM): Phase1/2 DREAMM-5 platform sub-study 3. HemaSphere 2023, 7 (Suppl. S3), e9722122. [Google Scholar] [CrossRef]
- Quach, H.; Gironella, M.; Lee, C.; Popat, R.; Cannell, P.; Kasinathan, R.S.; Chopra, B.; Rogers, R.; Ferron-Brady, G.; Shafi-Harji, S.; et al. Safety and clinical activity of belantamab mafodotin with lenalidomide plus dexamethasone in patients with relapsed/refractory multiple myeloma (RRMM). OMM): DREAMM-6 arm-A interim analysis. I. HemaSphere 2022, 6, 831–832. [Google Scholar] [CrossRef]
- Usmani, S.Z.; Mielnik, M.; Byun, J.M.; Alonso, A.A.; Abdallah, A.-O.A.; Garg, M.; Quach, H.; Min, C.-K.; Janowski, W.; Ocio, E.M.; et al. A Phase 1 Study of Belantamab Mafodotin in Combination with Standard of Care in Newly Diagnosed Multiple Myeloma: An Interim Analysis of DREAMM-9. J. Clin. Oncol. 2023, 41, 8018. [Google Scholar] [CrossRef]
- Angus, D.C.; Alexander, B.M.; Berry, S.; Buxton, M.; Lewis, R.; Paoloni, M.; Webb, S.A.R.; Arnold, S.; Barker, A.; Berry, D.A.; et al. Adaptive Platform Trials: Definition, Design, Conduct and Reporting Considerations. Nat. Rev. Drug Discov. 2019, 18, 797–807. [Google Scholar] [CrossRef]
- Trudel, S.; McCurdy, A.; Fu, M.; Sutherland, H.J.; Louzada, M.L.; Chu, M.P.; White, D.J.; Mian, H.S.; Kotb, R.; Othman, I.; et al. Belantamab Mafodotin in Combination with Pomalidomide and Dexamethasone Demonstrates Durable Responses in Triple Class Exposed/Refractory Multiple Myeloma. Blood 2022, 140, 7306–7307. [Google Scholar] [CrossRef]
- van de Donk, N.W.C.J.; Moreau, P.; Garfall, A.L.; Bhutani, M.; Oriol, A.; Nooka, A.K.; Martin, T.G.; Rosiñol, L.; Mateos, M.-V.; Bahlis, N.J.; et al. Long-Term Follow-up from MajesTEC-1 of Teclistamab, a B-Cell Maturation Antigen (BCMA) x CD3 Bispecific Antibody, in Patients with Relapsed/Refractory Multiple Myeloma (RRMM). J. Clin. Oncol. 2023, 41, 8011. [Google Scholar] [CrossRef]
- Dosani, T.; Carlsten, M.; Maric, I.; Landgren, O. The Cellular Immune System in Myelomagenesis: NK Cells and T Cells in the Development of Myeloma [Corrected] and Their Uses in Immunotherapies. Blood Cancer J. 2015, 5, e306. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.; Searle, E.; Anguille, S.; Bhutani, M.; Biran, N.; Boyd, K.; Cowan, A.; Matous, J.; Perrot, A.; Berdeja, J.; et al. Teclistamab in combination with lenalidomide in previously treated patients with multiple myeloma in the phase 1B multicohort Majestec-2 study. HemaSphere 2023, 7 (Suppl. S3), e162590. [Google Scholar] [CrossRef]
- Offner, F.; Decaux, O.; Hulin, C.; Anguille, S.; Sophie Michallet, A.; Costa, L.; Touzeau, C.; Boyd, K.; Vishwamitra, D.; Guo, Y.; et al. Teclistamab (TEC) + nirogacestat (NIRO) in relapsed/refractory multiple myeloma (RRMM): The phase 1B Majestec-2 study. HemaSphere 2023, 7 (Suppl. S3), e1257964. [Google Scholar] [CrossRef]
- Bahlis, N.J.; Costello, C.L.; Raje, N.S.; Levy, M.Y.; Dholaria, B.; Solh, M.; Tomasson, M.H.; Damore, M.A.; Jiang, S.; Basu, C.; et al. Elranatamab in Relapsed or Refractory Multiple Myeloma: The MagnetisMM-1 Phase 1 Trial. Nat. Med. 2023, 29, 2570–2576. [Google Scholar] [CrossRef]
- Lesokhin, A.M.; Tomasson, M.H.; Arnulf, B.; Bahlis, N.J.; Miles Prince, H.; Niesvizky, R.; Rodrίguez-Otero, P.; Martinez-Lopez, J.; Koehne, G.; Touzeau, C.; et al. Elranatamab in Relapsed or Refractory Multiple Myeloma: Phase 2 MagnetisMM-3 Trial Results. Nat. Med. 2023, 29, 2259–2267. [Google Scholar] [CrossRef]
- Raje, N.S.; Leleu, X.P.; Lesokhin, A.M.; Mohty, M.; Nooka, A.K.; Leip, E.; Conte, U.; Viqueira, A.; Manier, S. Efficacy and Safety of Elranatamab by Age and Frailty in Patients (Pts) with Relapsed/Refractory Multiple (RRMM): A Subgroup Analysis from MagnetisMM-3. J. Clin. Oncol. 2023, 41, 8040. [Google Scholar] [CrossRef]
- Costa, L.J.; LeBlanc, T.W.; Tesch, H.; Sonneveld, P.; Kyle, R.; Sinyavskaya, L.; Hlavacek, P.; Meche, A.; Ren, J.; Schepart, A.; et al. An Indirect Comparison of Elranatamab’s (ELRA) Objective Response Rate (ORR) from MagnetisMM-3 (MM-3) vs Real-World External Control Arms in Triple-Class Refractory (TCR) Multiple Myeloma (MM). J. Clin. Oncol. 2023, 41, 6618. [Google Scholar] [CrossRef]
- Hlavacek, P.; Mol, I.; Hu, Y.; Cappelleri, J.C.; Chu, H.; Aydin, D. A Matching-Adjusted Indirect Treatment Comparison of Elranatamab in Patients with Triple-Class Exposed Relapsed/Refractory Multiple Myeloma: Comparisons with Belantamab Mafodotin, Selinexor plus Dexamethasone, and Real-World Physician’s Choice of Treatmen. J. Clin. Oncol. 2023, 41, e20038. [Google Scholar] [CrossRef]
- Lee, H.C.; Bumma, N.; Richter, J.R.; Dhodapkar, M.V.; Hoffman, J.E.; Suvannasankha, A.; Zonder, J.A.; Shah, M.R.; Lentzsch, S.; Maly, J.J.; et al. LINKER-MM1 Study: Linvoseltamab (REGN5458) in Patients with Relapsed/Refractory Multiple Myeloma. J. Clin. Oncol. 2023, 41, 8006. [Google Scholar] [CrossRef]
- Verkleij, C.P.M.; Broekmans, M.E.C.; van Duin, M.; Frerichs, K.A.; Kuiper, R.; de Jonge, A.V.; Kaiser, M.; Morgan, G.; Axel, A.; Boominathan, R.; et al. Preclinical Activity and Determinants of Response of the GPRC5DxCD3 Bispecific Antibody Talquetamab in Multiple Myeloma. Blood Adv. 2021, 5, 2196–2215. [Google Scholar] [CrossRef] [PubMed]
- Chari, A.; Minnema, M.C.; Berdeja, J.G.; Oriol, A.; van de Donk, N.W.C.J.; Rodr\’\iguez-Otero, P.; Askari, E.; Mateos, M.-V.; Costa, L.J.; Caers, J.; et al. Talquetamab, a T-Cell–Redirecting GPRC5D Bispecific Antibody for Multiple Myeloma. N. Engl. J. Med. 2022, 387, 2232–2244. [Google Scholar] [CrossRef]
- Schinke, C.D.; Touzeau, C.; Minnema, M.C.; van de Donk, N.W.C.J.; Rodríguez-Otero, P.; Mateos, M.-V.; Rasche, L.; Ye, J.C.; Vishwamitra, D.; Ma, X.; et al. Pivotal Phase 2 MonumenTAL-1 Results of Talquetamab (Tal), a GPRC5DxCD3 Bispecific Antibody (BsAb), for Relapsed/Refractory Multiple Myeloma (RRMM). J. Clin. Oncol. 2023, 41, 8036. [Google Scholar] [CrossRef]
- Dholaria, B.R.; Weisel, K.; Mateos, M.-V.; Goldschmidt, H.; Martin, T.G.; Morillo, D.; Reece, D.E.; Rodríguez-Otero, P.; Bhutani, M.; D’Souza, A.; et al. Talquetamab (Tal) + Daratumumab (Dara) in Patients (Pts) with Relapsed/Refractory Multiple Myeloma (RRMM): Updated TRIMM-2 Results. J. Clin. Oncol. 2023, 41, 8003. [Google Scholar] [CrossRef]
- Chatterjee, S.; Daenthanasanmak, A.; Chakraborty, P.; Wyatt, M.W.; Dhar, P.; Selvam, S.P.; Fu, J.; Zhang, J.; Nguyen, H.; Kang, I.; et al. CD38-NAD(+)Axis Regulates Immunotherapeutic Anti-Tumor T Cell Response. Cell Metab. 2018, 27, 85–100.e8. [Google Scholar] [CrossRef]
- Cohen, Y.C.; Morillo, D.; Gatt, M.E.; Sebag, M.; Kim, K.; Min, C.-K.; Oriol, A.; Ocio, E.M.; Yoon, S.-S.; Mateos, M.-V.; et al. First Results from the RedirecTT-1 Study with Teclistamab (Tec) + Talquetamab (Tal) Simultaneously Targeting BCMA and GPRC5D in Patients (Pts) with Relapsed/Refractory Multiple Myeloma (RRMM). J. Clin. Oncol. 2023, 41, 8002. [Google Scholar] [CrossRef]
- Trudel, S.; Cohen, A.D.; Krishnan, A.Y.; Fonseca, R.; Spencer, A.; Berdeja, J.G.; Lesokhin, A.; Forsberg, P.A.; Laubach, J.P.; Costa, L.J.; et al. Cevostamab Monotherapy Continues to Show Clinically Meaningful Activity and Manageable Safety in Patients with Heavily Pre-Treated Relapsed/Refractory Multiple Myeloma (RRMM): Updated Results from an Ongoing Phase I Study. Blood 2021, 138, 157. [Google Scholar] [CrossRef]
- Lesokhin, A.M.; Richter, J.; Trudel, S.; Cohen, A.C.; ù Spencer, A.; Forsberg, P.A.; Laubach, J.P.; Thomas, S.K.; Bahlis, N.J.; M Costa, L.J.M.; et al. Enduring Responses after 1-Year, Fixed-Duration Cevostamab Therapy in Patients with Relapsed/Refractory Multiple Myeloma: Early Experience from a Phase I Study. Blood 2022, 140 (Suppl. S1), 4415–4417. [Google Scholar] [CrossRef]
- Farooq, A.V.; Degli Esposti, S.; Popat, R.; Thulasi, P.; Lonial, S.; Nooka, A.K.; Jakubowiak, A.; Sborov, D.; Zaugg, B.E.; Badros, A.Z.; et al. Corneal Epithelial Findings in Patients with Multiple Myeloma Treated with Antibody-Drug Conjugate Belantamab Mafodotin in the Pivotal, Randomized, DREAMM-2 Study. Ophthalmol. Ther. 2020, 9, 889–911. [Google Scholar] [CrossRef] [PubMed]
- Lonial, S.; Lee, H.C.; Badros, A.; Trudel, S.; Nooka, A.K.; Chari, A.; Abdallah, A.-O.; Callander, N.; Lendvai, N.; Sborov, D.; et al. Belantamab Mafodotin for Relapsed or Refractory Multiple Myeloma (DREAMM-2): A Two-Arm, Randomised, Open-Label, Phase 2 Study. Lancet Oncol. 2020, 21, 207–221. [Google Scholar] [CrossRef]
- Nooka, A.K.; Cohen, A.D.; Lee, H.C.; Badros, A.; Suvannasankha, A.; Callander, N.; Abdallah, A.-O.; Trudel, S.; Chari, A.; Libby, E.N.; et al. Single-Agent Belantamab Mafodotin in Patients with Relapsed/Refractory Multiple Myeloma: Final Analysis of the DREAMM-2 Trial. Cancer 2023, 129, 3746–3760. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.W.; Gardner, R.; Porter, D.L.; Louis, C.U.; Ahmed, N.; Jensen, M.; Grupp, S.A.; Mackall, C.L. Current Concepts in the Diagnosis and Management of Cytokine Release Syndrome. Blood 2014, 124, 188–195. [Google Scholar] [CrossRef]
- Teachey, D.T.; Rheingold, S.R.; Maude, S.L.; Zugmaier, G.; Barrett, D.M.; Seif, A.E.; Nichols, K.E.; Suppa, E.K.; Kalos, M.; Berg, R.A.; et al. Cytokine Release Syndrome after Blinatumomab Treatment Related to Abnormal Macrophage Activation and Ameliorated with Cytokine-Directed Therapy. Blood 2013, 121, 5154–5157. [Google Scholar] [CrossRef]
- Ludwig, H.; Terpos, E.; van de Donk, N.; Mateos, M.-V.; Moreau, P.; Dimopoulos, M.-A.; Delforge, M.; Rodriguez-Otero, P.; San-Miguel, J.; Yong, K.; et al. Prevention and Management of Adverse Events during Treatment with Bispecific Antibodies and CAR T Cells in Multiple Myeloma: A Consensus Report of the European Myeloma Network. Lancet Oncol. 2023, 24, e255–e269. [Google Scholar] [CrossRef]
- van de Donk, N.W.C.J.; Garfall, A.L.; Benboubker, L.; Uttervall, K.; Groen, K.; Rosiñol, L.; Hodin, C.; Stephenson, T.; Trancucci, D.; Perales-Puchalt, A.; et al. Evaluation of Prophylactic Tocilizumab (Toci) for the Reduction of Cytokine Release Syndrome (CRS) to Inform the Management of Patients (Pts) Treated with Teclistamab in MajesTEC-1. J. Clin. Oncol. 2023, 41, 8033. [Google Scholar] [CrossRef]
- Mateos, M.-V.; Bahlis, N.J.; Spencer, A.; Kaedbey, R.; Rodríguez-Otero, P.; Harrison, S.; Wong, C.; Goodman, G.; Nakamura, R.; Choeurng, V.; et al. Tocilizumab pre-treatment significantly reduces the incidence of cytokine release syndrome in patients with relapsed/refractory multiple myeloma (RRMM) who receive cevostamab. HemaSphere 2023, 7 (Suppl. S3), e75458a8. [Google Scholar] [CrossRef]
- Mohan, M.; Chakraborty, R.; Bal, S.; Nellore, A.; Baljevic, M.; D’Souza, A.; Pappas, P.G.; Berdeja, J.G.; Callander, N.; Costa, L.J. Recommendations on Prevention of Infections during Chimeric Antigen Receptor T-Cell and Bispecific Antibody Therapy in Multiple Myeloma. Br. J. Haematol. 2023. Online ahead of print. [Google Scholar] [CrossRef]
- Sim, B.Z.; Longhitano, A.; Er, J.; Harrison, S.J.; Slavin, M.A.; Teh, B.W. Infectious Complications of Bispecific Antibody Therapy in Patients with Multiple Myeloma. Blood Cancer J. 2023, 13, 34. [Google Scholar] [CrossRef]
- Hammons, L.; Szabo, A.; Janardan, A.; Bhatlapenumarthi, V.; Annyapu, E.; Dhakal, B.; Al Hadidi, S.; Radhakrishnan, S.V.; Narra, R.; Bhutani, D.; et al. The Changing Spectrum of Infection with BCMA and GPRC5D Targeting Bispecific Antibody (BsAb) Therapy in Patients with Relapsed Refractory Multiple Myeloma. Haematologica 2023. Online ahead of print. [Google Scholar] [CrossRef]
- Moreau, P.; Garfall, A.L.; van de Donk, N.W.C.J.; Nahi, H.; San-Miguel, J.F.; Oriol, A.; Nooka, A.K.; Martin, T.; Rosinol, L.; Chari, A.; et al. Teclistamab in Relapsed or Refractory Multiple Myeloma. N. Engl. J. Med. 2022, 387, 495–505. [Google Scholar] [CrossRef]
- Mohty, M.; Tomasson, M.H.; Arnulf, B.; Bahlis, N.J.; Rodríguez-Otero, P.; Martinez-Lopez, J.; Touzeau, C.; Quach, H.; Depaus, J.; Yokoyama, H.; et al. Elranatamab, a B-cell maturation antigen (BCMA)-CD3 bispecific antibody, for patients with relapsed/refractory multiple myeloma: Extended follow up and biweekly administration from MagnetisMM-3. HemaSphere 2023, 7 (Suppl. S3), e1309654. [Google Scholar] [CrossRef]
- Palmen, B.; Hari, P.; D’Souza, A.; Abid, M.B. Protracted Viral Infections in Patients with Multiple Myeloma Receiving Bispecific T-Cell Engager Therapy Targeting B-Cell Maturation Antigen. Haematologica 2023, 108, 3186–3190. [Google Scholar] [CrossRef]
- Hansen, D.K.; Sidana, S.; Peres, L.C.; Colin Leitzinger, C.; Shune, L.; Shrewsbury, A.; Gonzalez, R.; Sborov, D.W.; Wagner, C.; Dima, D.; et al. Idecabtagene Vicleucel for Relapsed/Refractory Multiple Myeloma: Real-World Experience From the Myeloma CAR T Consortium. J. Clin. Oncol. 2023, 41, 2087–2097. [Google Scholar] [CrossRef]
- Ferreri, C.J.; Hildebrandt, M.A.T.; Hashmi, H.; Shune, L.O.; McGuirk, J.P.; Sborov, D.W.; Wagner, C.B.; Kocoglu, M.H.; Rapoport, A.; Atrash, S.; et al. Real-World Experience of Patients with Multiple Myeloma Receiving Ide-Cel after a Prior BCMA-Targeted Therapy. Blood Cancer J. 2023, 13, 117. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.D.; Mateos, M.V.; Cohen, Y.C.; Rodriguez-Otero, P.; Paiva, B.; van de Donk, N.W.C.J.; Martin, T.; Suvannasankha, A.; De Braganca, K.C.; Corsale, C.; et al. Efficacy and Safety of Cilta-Cel in Patients with Progressive Multiple Myeloma after Exposure to Other BCMA-Targeting Agents. Blood 2023, 141, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Van Oekelen, O.; Nath, K.; Mouhieddine, T.H.; Farzana, T.; Aleman, A.; Melnekoff, D.T.; Ghodke-Puranik, Y.; Shah, G.L.; Lesokhin, A.; Giralt, S.; et al. Interventions and Outcomes of Patients with Multiple Myeloma Receiving Salvage Therapy after BCMA-Directed CAR T Therapy. Blood 2023, 141, 756–765. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Ahn, S.; Maity, R.; Leblay, N.; Ziccheddu, B.; Truger, M.; Chojnacka, M.; Cirrincione, A.; Durante, M.; Tilmont, R.; et al. Mechanisms of Antigen Escape from BCMA- or GPRC5D-Targeted Immunotherapies in Multiple Myeloma. Nat. Med. 2023, 29, 2295–2306. [Google Scholar] [CrossRef] [PubMed]
- Midha, S.; Leblebjian, H.; Laubach, J.; Mo, C.; Sperling, A.; Nadeem, O.; Bianchi, G.; Hartley-Brown, M.; Ramsdell, L.; Donadio, K.; et al. Real world experience of patients treated with teclistamab: A BCMA-directed bispecific T-cell engaging therapy for multiple myeloma. Clin. Lymphoma Myeloma Leuk. 2023, 23 (Suppl. S1), S53. [Google Scholar] [CrossRef]
- Sanoyan, D.A.; Seipel, K.; Bacher, U.; Kronig, M.-N.; Porret, N.; Wiedemann, G.; Daskalakis, M.; Pabst, T. Real-Life Experiences with CAR T-Cell Therapy with Idecabtagene Vicleucel (Ide-Cel) for Triple-Class Exposed Relapsed/Refractory Multiple Myeloma Patients. BMC Cancer 2023, 23, 345. [Google Scholar] [CrossRef]
- Munshi, N.C.; Anderson, L.D.J.; Shah, N.; Madduri, D.; Berdeja, J.; Lonial, S.; Raje, N.; Lin, Y.; Siegel, D.; Oriol, A.; et al. Idecabtagene Vicleucel in Relapsed and Refractory Multiple Myeloma. N. Engl. J. Med. 2021, 384, 705–716. [Google Scholar] [CrossRef] [PubMed]
Trial | Phase | Population | Intervention | Trial ID |
---|---|---|---|---|
MajesTEC-4 | III | NDMM maintenance | Teclistamab vs. lenalidomide monotherapy | NCT05243797 |
MajesTEC-3 | III | RRMM with ≤3 prior lines of therapy | Teclistamab, daratumumab sc vs. daratumumab sc, pomalidomide, and dexamethasone or daratumumab sc, bortezomib, and dexamethasone | NCT05083169 |
MajesTEC-7 | III | NDMM | Teclistamab, daratumumab, lenalidomide (Tec-DR) and talquetamab, daratumumab, lenalidomide (Tal-DR) vs. daratumumab, lenalidomide and Dexamethasone (DRd) | NCT05552222 |
MajesTEC-9 | III | NDMM | Teclistamab monotherapy vs. teclistamab with pomalidomide plus bortezomib and dexamethasone or carfilzomib plus dexamethasone | NCT05572515 |
Trial | Phase | Population | Intervention | Trial ID |
---|---|---|---|---|
MagnetisMM-4 | IB/II | RRMM with ≥3 prior line | Elranatamab + Nirogacestat Elranatamab + lenalidomide + dexamethasone | NCT05090566 |
MagnetisMM-3 | II | RRMM | Elranatamab monotherapy | NCT04649359 |
MagnetisMM-20 | IB | RRMM | Elranatamab Carfilzomib Maplirpacept | NCT05675449 |
MagnetisMM-5 | III | RRMM | Elranatamab Daratumumab Pomalidomide Dexamethasone | NCT05020236 |
MagnetisMM-6 | III | RRMM | Elranatamab Daratumumab Lenalidomide Dexamethasone | NCT05623020 |
A Study Evaluating the Safety, Pharmacokinetics, and Activity of the Combination of Cevostamab and Elranatamab in Participants With Relapsed or Refractory Multiple Myeloma | IB | RRMM | Cevostamab Elranatamab Tocilizumab | NCT05927571 |
PF-06863135 As Single Agent And In Combination With Immunomodulatory Agents In Relapse/Refractory Multiple Myeloma | I | RRMM | PF-06863135 monotherapy IV or SC PF-06863135 + dexamethasone PF-06863135 + lenalidomide PF-06863135 + pomalidomide | NCT03269136 |
Trial | Phase | Population | Intervention | Trial ID |
---|---|---|---|---|
MonumenTAL-3 | III | RRMM with ≥1 prior line | Talquetamab sc with daratumumab and pomalidomide (Tal-DP) vs. talquetamab, daratumumab (Tal-D) vs. daratumumab, pomalidomide, dexamethasone (DPd) | NCT05455320 |
TRIMM-3 | I | RRMM not candidate for available therapy | Talquetamab and teclistamab each in combination with a Programmed Cell Death receptor-1 (PD-1) inhibitor | NCT05338775 |
MajesTEC-7 | III | NDMM | Teclistamab, daratumumab, lenalidomide (Tec-DR) and talquetamab, daratumumab, lenalidomide (Tal-DR) vs. daratumumab, lenalidomide and dexamethasone (DRd) | NCT05552222 |
MonumenTAL-2 | I | NDMM | Treatment A: talquetamab + carfilzomib Treatment B: talquetamab + daratumumab + carfilzomib Treatment C: talquetamab + lenalidomide Treatment D: talquetamab + daratumumab + lenalidomide Treatment E: talquetamab + pomalidomide | NCT05050097 |
Trial | Phase | Population | Intervention | Trial ID |
---|---|---|---|---|
CAMMA 1 | Ib | RRMM | Weekly cevostamab or cevostamab, pomalidonide, dexamethasone or cevostamab, daratumumab, dexamethasone | NCT04910568 |
CAMMA 2 | I/II | RRMM, triple-class refractory, and previously treated with anti-BCMA therapies | Cevostamab | NCT05050097 |
GO43979 | I | RRMM | Cevostamab plus elaranatamab | NCT05927571 |
Cevostamab following CAR T cell therapy for RRMM | II | RRMM | Cevostamab consolidation following BCMA CAR T cell therapy | NCT05801939 |
MajesTEC-1 | MagnetisMM-3 | MonumenTAL-1 | GO39775 | |
---|---|---|---|---|
BsAb | Teclistamab | Elranatamab | Talquetamab | Cevostamab |
CRS % | 72.1(0.6) | 57.7 (0) | QW: 79 (2.1) Q2W: 74.5 (0.7) Prior TCR: 76.5 (2) | 80.7 (1.2) |
ICANS % | 3 (0) | 3.4 (0) | QW: 11 Q2W: 11 Prior TCR: 3 | 14.3 (0.6) |
Neutropenia % | 71.5 (65.5) | 48.8 (48.8) | QW: 35 (30.8) Q2W: 28.3 (22) Prior TCR 49 (27.5) | 38 |
Thrombocytopenia (%) | 42.4 (22.4) | 30.9 (23.6) | QW: 27.3 (20.3) Q2W: 29.7 (18.6) Prior TCR: 37.3 (29.4) | 24 |
Infections (%) | 80 (55.2) | 69.9 (39.8; grade 5: 6.5) | QW: 58.7 (19.6) Q2W: 66.2 (14.5) Prior TCR: 72.5 (27.5) | 45 (20) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morè, S.; Corvatta, L.; Manieri, V.M.; Morsia, E.; Poloni, A.; Offidani, M. Novel Immunotherapies and Combinations: The Future Landscape of Multiple Myeloma Treatment. Pharmaceuticals 2023, 16, 1628. https://doi.org/10.3390/ph16111628
Morè S, Corvatta L, Manieri VM, Morsia E, Poloni A, Offidani M. Novel Immunotherapies and Combinations: The Future Landscape of Multiple Myeloma Treatment. Pharmaceuticals. 2023; 16(11):1628. https://doi.org/10.3390/ph16111628
Chicago/Turabian StyleMorè, Sonia, Laura Corvatta, Valentina Maria Manieri, Erika Morsia, Antonella Poloni, and Massimo Offidani. 2023. "Novel Immunotherapies and Combinations: The Future Landscape of Multiple Myeloma Treatment" Pharmaceuticals 16, no. 11: 1628. https://doi.org/10.3390/ph16111628
APA StyleMorè, S., Corvatta, L., Manieri, V. M., Morsia, E., Poloni, A., & Offidani, M. (2023). Novel Immunotherapies and Combinations: The Future Landscape of Multiple Myeloma Treatment. Pharmaceuticals, 16(11), 1628. https://doi.org/10.3390/ph16111628