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Received: 30 October 2023

Revised: 23 November 2023

Accepted: 24 November 2023

Published: 27 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pharmaceuticals

Article

MD Simulations to Calculate NMR Relaxation Parameters
of Vanadium(IV) Complexes: A Promising Diagnostic Tool
for Cancer and Alzheimer’s Disease
Rodrigo Mancini Santos 1, Camila Assis Tavares 1, Taináh Martins Resende Santos 1, Hassan Rasouli 1,2

and Teodorico Castro Ramalho 1,3,*

1 Laboratory of Molecular Modelling, Department of Chemistry, Federal University of Lavras, Lavras
37200-000, MG, Brazil; rodrigomancini4@gmail.com (R.M.S.); tainah-martins@hotmail.com (T.M.R.S.);
h3n.rasouli@gmail.com (H.R.)

2 Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences,
Kermanshah 6714414971, Iran

3 Department of Chemistry, Faculty of Science, University of Hradec Králové,
500 03 Hradec Králové, Czech Republic

* Correspondence: teo@ufla.br

Abstract: Early phase diagnosis of human diseases has still been a challenge in the medicinal field, and
one of the efficient non-invasive techniques that is vastly used for this purpose is magnetic resonance
imaging (MRI). MRI is able to detect a wide range of diseases and conditions, including nervous system
disorders and cancer, and uses the principles of NMR relaxation to generate detailed internal images
of the body. For such investigation, different metal complexes have been studied as potential MRI
contrast agents. With this in mind, this work aims to investigate two systems containing the vanadium
complexes [VO(metf)2]·H2O (VC1) and [VO(bpy)2Cl]+ (VC2), being metformin and bipyridine ligands
of the respective complexes, with the biological targets AMPK and ULK1. These biomolecules are
involved in the progression of Alzheimer’s disease and triple-negative breast cancer, respectively, and
may act as promising spectroscopic probes for detection of these diseases. To initially evaluate the
behavior of the studied ligands within the aforementioned protein active sites and aqueous environment,
four classical molecular dynamics (MD) simulations including VC1 + H2O (1), VC2 + H2O (2), VC1
+ AMPK + H2O (3), and VC2 + ULK1 + H2O (4) were performed. From this, it was obtained that for
both systems containing VCs and water only, the theoretical calculations implied a higher efficiency
when compared with DOTAREM, a famous commercially available contrast agent for MRI. This result is
maintained when evaluating the system containing VC1 + AMPK + H2O. Nevertheless, for the system
VC2 + ULK1 + H2O, there was observed a decrease in the vanadium complex efficiency due to the
presence of a relevant steric hindrance. Despite that, due to the nature of the interaction between VC2
and ULK1, and the nature of its ligands, the study gives an insight that some modifications on VC2
structure might improve its efficiency as an MRI probe.

Keywords: NMR relaxation; computational chemistry; molecular dynamics; OWSCA; vanadium complexes

1. Introduction

The growing body of evidence suggests that the prevalence of cancer and Alzheimer’s
disease (AD) has dramatically increased over the past few decades. It is estimated that
the number of worldwide deaths by these diseases has significantly increased yearly [1,2].
Various genetic and environmental risk factors are involved in the progression of cancer and
AD; however, despite commonality of risk factors in cancer and AD, studies have shown
that there is an inverse correlation between the pathogenesis of AD and progression of
cancer [3–5]. To date, various FDA-approved drugs have been used to treat both cancer and
AD; however, the outcomes suggest that the current therapies could not completely prevent
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the onset of these diseases and the applied drugs mainly alleviated specific complications
associated with cancer and AD.

Early diagnosis is extremely crucial in the battle against AD and cancer, representing a
critical turning point in the pursuit of effective treatments and improved patient outcomes.
Identifying these diseases in their initial stages empowers individuals and healthcare
providers with valuable opportunities for timely intervention, personalized therapies, and
enhanced quality of life [6,7]. However, early diagnosis in both AD and cancer is riddled
with multifaceted challenges, mostly because of the complexity of molecular pathways and
biomolecules involved in the pathogenesis of both [8–12].

Despite these difficulties, MRI is a technique that presents several advantages in the
detection of such diseases as AD and cancer and has been vastly used for this purpose [13,14].
It enables non-invasive examination, eliminating the need for invasive procedures or exposure
to ionizing radiation, making it a safer option for patients of all ages [15]. The versatility of
MRI allows for imaging various tissues, organs, and systems within the body, facilitating the
identification and characterization of abnormalities with remarkable precision [16].

Moreover, to enhance the diagnostic potential of MRI even further, researchers have been
exploring the use of metal complexes as probes due to their unique magnetic properties [17,18].
Gadolinium-based complexes, for instance, are widely used in clinical practice, exhibiting
distinct relaxation properties and potential for functional imaging [19]. Another important fact
about gadolinium is that it has potential toxicity and long-term accumulation in the body [20].
Developing new contrast agents that are biocompatible and less prone to accumulation is
crucial to ensure patient safety and enhance the overall efficacy and reliability of medical
imaging techniques [21].

In the quest for alternative probes in MRI, several potential candidates have emerged
that offer improved safety profiles and imaging capabilities [21]. Among those, vana-
dium(IV) complexes (VCs) have gained significant attention as contrast agents in medical
imaging, once they are paramagnetic and due to their unique properties and versatile appli-
cations, presenting biocompatibility and favorable magnetic and optical properties [22–24].

It is known that the average presence of vanadium in the human body is about 1 mg,
being non-toxic at this concentration [25]. However, VCs can exhibit varying levels of
toxicity depending on several factors such as the form of vanadate, oxidation state, time
of exposure, dose, and route of intoxication [26]. Moreover, the toxicity of vanadium is
influenced by the route of administration, species tested, and the specific complexation of
the metal [27]. Based on the foregoing evidence, studies considering the use of vanadium
for the treatment of diseases should take into account different factors in order to better
understand the effects on a biological system. Nevertheless, vanadium complexes have
shown significant potential for the treatment of AD, making them intriguing candidates for
anticancer and anti-diabetic therapy as well [28–31].

In addition to being potential targets for the treatment of AD, cancer, and diabetes,
VCs show a large spectrum of potential activity and are efficiently used in the treatment of
leishmaniasis, Chagas disease, influenza, and dengue [32–34]. Furthermore, recent studies
have been conducted to investigate the use of VCs as promising candidates for the treatment
of COVID-19 due to their antiviral, anti-inflammatory, and hypoglycemic effects [35–37].
Recently, VCs such as [VO(metf)2]·H2O (VC1) and [VO(bpy)2Cl]+ (VC2), where metf is
metformin and bpy is bipyridine, have shown great potential regarding their application to
AD and autophagy associated with triple-negative breast cancer, respectively [38,39].

In the study conducted by Tavares et al. [38], the biological application of VC1 in the
system containing AMP-activated protein kinase (AMPK) was investigated. AMPK plays a
pivotal role in AD and is considered a link between AD and diabetes mellitus type 2. The
results obtained by VC1 are encouraging, and the use of such a complex should be taken into
consideration in future studies. Whereas in the work reported by Santos, T. M. R. et al. [39],
the interaction of VC2 and Unc-51-like kinase 1 (ULK1), inducing autophagy in triple-negative
breast cancer cells, was explored. Once again, results showed the versatility and great potential
of vanadium complexes.
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Considering computational methods, MD simulations present to be a powerful tool
to study complex systems, being able to compute solvent effects [40] and consider the
presence of biological targets, such as AMPK and ULK1. Moreover, allying MD simulation
with less expensive quantum methods (QM) can be very useful to reduce the computational
demand and assess NMR properties, which is not computationally feasible using robust
QM calculation [40–42]. Therefore, in order to ensure correct results and a feasible calcula-
tion, previous works [38,39] parametrized a force field for VC1 and VC2, where relevant
relativistic effects were also taken into account. Thus, with the presented background, MD
simulations could be carried out.

In light of these findings, this work aims to investigate promising VCs as candidates
to replace gadolinium as contrast agents for the diagnosis of Alzheimer’s disease and
triple-negative breast cancer in order to enhance safety of the MRI technique and reposition
its application.

For such purposes, MD simulations were carried out for four systems, being
VC1 + WAT (1), VC2 + WAT (2), VC1 + AMPK + WAT (3), and VC2 + ULK1 + WAT
(4), where WAT denotes water. Therefore, conformational selection was performed by
applying the Optimized Wavelet Signal Compression Algorithm (OWSCA), reducing data
without losing important information of the original data. At the end, NMR parameters
were estimated from MD simulation data based on calculations presented by Chen, P. et al.
and Villa, A. and Stock, G. [43,44].

Finally, the originality of the work relies on the use of VCs as spectroscopic probes for
disease detection, repositioning its application with respect to previous mentions in the
literature, as well as providing more information on biological probes. It is expected that
the presented work may encourage future research, contributing with new insights aiming
at VC-based drug design, including the possibility of using VCs for many types of cancer
and AD theranostics. Moreover, the use of the OWSCA algorithm as part of the strategy to
obtain relaxation parameters offers a unique contribution and a fresh perspective.

2. Results and Discussion
2.1. Calculating Ti and Ri from MD Simulation Data

In order to obtain Ti and Ri values for VC1 and VC2, MD simulation data were used to
perform the calculations. As proposed by Chen, P. et al. and Villa, A. and Stock, G. [43,44],
the NMR spin relaxation parameters can be obtained from MD simulation data. To perform
such calculations, the work published by Gonçalves, M. A. et al. [45] shed some light on the
procedure. First, the distances V· · · 1H were measured in MD trajectory for each conformation
selected by the OWSCA methodology, then the autocorrelations of the measured set of
distances were computed and fitted. If it is assumed that the overall internal motion of
molecules is independent, then the total correlation function C(t), expressed in Equation (1),
can be divided into two different equations, the overall motion correlation function CO(t) and
the internal motion correlation function CI(t), expressed by Equations (2) and (3), respectively.

C(t) = CO(t)CI(t) (1)

CO(t) =
1
5

e−t/τc (2)

CI(t) = S2 +
(

1 − S2
)

e−t/τe (3)

where τc is the rotational correlation time, S2 is the order parameter, and τe is the effective correlation
time. The three mentioned terms are estimated from the above equations, and once this is done, the
spectral density J(ω) can be given by the Fourier transform of C(t), resulting in Equation (4).

J(ω) =
2
5

 S2τc

1 + τ2
c ω2

(1 − S 2
)

τ

1 + τ2ω2

 (4)
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Being τ−1 = τc
−1 + τe

−1. This equation can be used to determine the longitudinal and
transverse relaxation rates and times, according to Equations (5) and (6), respectively.

R1 =
1
T1

= K[J(ω0) + J(2ω0)] (5)

R2 =
1
T2

=
K
4
[J(0) + 10J(ω0) + J(2ω0)] (6)

where K is expressed by Equation (7) andω0 = γ·B0, which represents the rate of precession
of the magnetic moment of the proton with an external magnetic field B0 and gyromagnetic
radius of hydrogen γ.

K =
( µ0

4π

)2 3
2

h2Υ4 I(I + 1)
φ6 (7)

With µ0 being the vacuum permeability, h being the Planck constant, I being spin
quantum number, φ being average V· · · 1H distance, as shown in Figure 1, and γ being the
gyromagnetic radius of hydrogen. In this work, B0 was considered equal to 1.5 T and γ
equal to 42.58 MHz/T. This choice was made because when discussing contrast agents for
clinical applications, it is customary to reference Ri and Ti values at 1.5 T and a standard
body temperature of 37 ◦C. [46].
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Figure 1. Representation of the measured V· · · 1H distances. The central gray sphere represents the
vanadium atom, and the blue sphere represents the 1H proton of the closest water molecule, being
both connected by a black dashed line, representing the measured distance.

2.2. Validation of the Ti and Ri Calculations from MD Simulation Data

The algorithm implementation for calculation of Ti and Ri from MD simulation
showed to be reliable when reproducing experimental data. Both published works of
Gonçalves et al. [45] and Lino et al. [47] used the algorithm explained in the previous
section to compute NMR spin relaxation parameters from MD simulation data. Table 1
summarizes the results obtained for validation.

Table 1. Ri and Ti values for the validation systems in s−1 and s, respectively.

System
Theoretical Experimental

T1 R1 T2 R2 T1 R1 T2 R2

Magnetite 0.028 35.72 0.018 55.55 0.032 31.25 [48] 0.020 50.50 [49,50]
TCE(C-C) 8.98 0.11 1.17 0.85 8.90 [51] 0.11 1.18 [51] 0.85
TFE(3F-4F) 5.35 0.18 0.12 8.33 5.37 [51] 0.19 0.14 [51] 7.14
TFE(5F-3F) 5.52 0.10 0.10 10.00 5.56 [51] 0.18 0.12 [51] 8.33
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In fact, magnetite [45] can be used in order to validate the algorithm. In this case,
it obtained an R1 value of 35.72 s−1, which was just 4.47 s−1 different from the experi-
mental one, with an R1 value of 31.25 s−1. For R2, the obtained value was 55.55 s−1, only
5.05 s−1 different from the experimentally measured one, which was 50.50 s−1. In addition,
R1/R2 ratios were very similar, being that the theoretically calculated equals 0.643 and
the experimental one is equivalent to 0.619. In addition, from the work published by
Lino et al. [47], trichloroethylene (TCE) and iodotrifluoroethylene (TFE) were also used to
validate the algorithm. For the theoretical calculations for TCE, C-C distance was used, and
for TFE, F-1-F-2 and F-2-F-3 distances were used. For TCE(C-C), the calculated T1 value
was 8.98 s, very close to the experimental data value, which was 8.90 s. For TFE(3F-4F)
and TFE(5F-3F) the T1 values were 5.35 and 5.52 s, respectively, also very close to the
experimental data values, which were 5.37 and 5.56 s, respectively. The same is valid for T2,
which is also shown to be very similar.

Vanadium complexes could be simulated in order to validate the algorithm, therefore,
there is a lack of literature describing NMR relaxation parameters for vanadium complexes,
especially experimental relaxation times and rates in order to make a comparison. Thus,
considering the nature of the algorithm (sensibility to average distance variation) and used
inputs (magnetic field, gyromagnetic radius, and spin), the use of other compounds to
validate the algorithm and perform a theoretical study about NMR relaxation properties
was necessary.

In this scenario, previous papers showed that the discussed algorithm can be a reliable
tool for calculating NMR spin relaxation parameters. This way, the algorithm can be used for a
theoretical study of VC1 and VC2 as potential MRI contrast agents for cancer and AD detection.

2.3. MD Simulation of VC1 and VC2 in Water Only and in the Presence of the Respective Protein Targets

The RMSD analyses for the VCs in each medium can be found in Figure 2, in which
VC1 and VC2 showed stable conformations throughout the entire time of the simulation. It
can be observed as well that the complexes reached equilibrium conditions in both WAT
and protein + WAT environments.
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in WAT (depicted in yellow), and VC2 in the presence of ULK1 and WAT molecules (depicted in purple).
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Specifically, VC1 exhibited an average RMSD value of 0.3335 Å with a standard
deviation of 0.0035 Å in the water surroundings, while an average RMSD value of 0.2421 Å
with a standard deviation of 0.0013 Å was found for VC1 in the protein + WAT environment.

Similarly, VC2 displayed a slight difference in RMSD values. In the water medium, the
average RMSD value was 0.3200 Å with a standard deviation of 0.0020 Å, whereas in the
presence of the biological target, the average RMSD was equal to 0.3086 Å with a standard
deviation of 0.0016 Å.

The difference between VC1 + WAT and VC1 + AMPK + WAT, as well as VC2 + WAT
and VC2 + ULK1 + WAT, can be explained by the fact that when the respective proteins
were present, the VCs had even more restricted movements than solely in water. As a
result, the complexes exhibited reduced oscillation freedom.

2.4. OWSCA Conformational Selecting and Calculated Ti and Ri Values

From MD simulation data, the OWSCA methodology was applied in order to reduce
the data for further Ti and Ri calculations. Figure 3 shows the selected conformations for
all systems. Therefore, the OWSCA methodology was able to reduce MD simulation data
of 2000 conformations for each system in about 100 conformations, varying between 96 and
119 conformations. It is also possible to see that the use of the db1 (haar) wavelet was able
to capture the MD simulation data behavior, implying that the important information is
contained in the compressed dataset.
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WAT, and (d) VC2 + ULK1 + WAT.

Both the relaxation times (Ti) and their respective relaxation rates (Ri) were calculated
using Equations (1)–(7) and presented in Table 2. It is important to notice that all values
resided very close to each other, except the one corresponding to the system VC2 + ULK1 +
WAT, which was considerably higher than others. In addition, Table 2 presents the R1/R2 ratio
for all formulations. It is possible to see the similarity between them, including the magnetite
system used for validation of the R1/R2 ratio, provided in Table 1, indicating the consistency
of the calculation.
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Table 2. Ri and Ti values for all V(IV) complex systems in s−1 and s, respectively. In addition, R1/R2

values were calculated for all the formulations.

System T1 T2 R1 R2 R1/R2

VC1 + WAT 0.084 0.056 11.905 17.921 0.664
VC1 + AMPK + WAT 0.074 0.050 13.514 20.121 0.672
VC2 + WAT 0.086 0.058 11.630 17.331 0.671
VC2 + ULK1 + WAT 1.046 0.702 0.956 1.424 0.671

Gd-DOTA (DOTAREM) 0.032 [52] 0.025 [52,53] 31.250 40.000 0.781
Gd-DTPA (MAGNEVIST) - 0.020 [46,50,54] - 50.000 -

In order to understand the presented results, it is important to take a closer look at
the systems, which have different characteristics in terms of structure, size, and ligands.
Figure 4 shows the structure of both VCs studied. Both structures present a double bond
between vanadium and oxygen atoms, and the V=O group is an important region in which
a non-coordinated water molecule can interact with by a hydrogen bonding interaction [55].
Hence, most of the water molecules present in the chemical medium will approach more
closely to the metal atom at the center of the complexes due to the presence of the V=O
group since the resulting interaction is considerably strong. Therefore, the availability
of this group for interactions results in closer distances between 1H and V(IV). The MD
simulation of the built models containing only VC + WAT showed an average distance
V· · · 1H for VC1 of 3.19 Å, and for VC2, 3.66 Å.
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Figure 4. Structures of the V(IV) complexes in study, where the red region denotes the double bond
between V and O.

When comparing the structures presented in Figure 4a,b, it is possible to observe
that VC1 has a smaller coordinated group, and VC2 a larger coordinated group. This
group is also more hydrophobic, due to the major presence of carbons instead of nitrogen
atoms, causing the increased V· · · 1H average distance in VC2 + WAT, as mentioned before.
Therefore, the two characteristics mentioned imply considerable interaction differences
between the VCs and the chemical medium.

The dynamics of interactions between VCs, water, and the target proteins play a
relevant role in the observed results. As discussed previously, the main path in which a
water molecule can approach the central metal atom is via the V=O group. Therefore, if
this site of interaction is unavailable, it is expected that the water molecules will be farther
apart from the vanadium atom.

Figure 5a shows the interaction between VC1 and AMPK. It is possible to see that the
interaction occurs in a way that the V=O group becomes more unavailable for hydrogen bonding
interaction with water. Despite that, there is still a possible way for the water to approach the
vanadium atom, since the coordination groups are smaller and more hydrophilic. Hence, the
average V· · · 1H distance observed for the system VC1 + AMPK + WAT was 3.29 Å, only 0.10 Å
higher than for the system VC1 + WAT.
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On the other hand, Figure 5b shows the interaction between VC2 and ULK1. The
interaction with the protein occurs mostly with the V=O group, making it completely
unavailable for interactions with other molecules. The coordinated groups are bigger and
more hydrophobic, leaving no considerable space for the water molecules to approach the
vanadium atom, due to a relevant steric hindrance. Therefore, the average V· · · 1H distance
observed for the system VC2 + ULK1 + WAT was 5.55 Å, 1.89 Å higher than for the system
VC2 + WAT.

Comparing both systems with their respective proteins, it is possible to notice that the
V=O group of VC2 becomes completely unavailable when it interacts with ULK1, leading
to a more difficult interaction with the water in the medium, increasing the average V· · · 1H
distance by a considerable amount. In addition to the fact that VC1 also interacts with
AMPK by the V=O group, this site of interaction does not become completely unavailable,
allowing the water molecules to approach the vanadium atom, which leads to a very small
increase in the average V· · · 1H distance.

From Equations (5)–(7), it is possible to notice how the average distances φ between
the vanadium atom and hydrogen atom of the water molecule play an important role in
the T1 and T2 calculations. An increase in the average distance also increases the relaxation
time, decreasing the relaxation rate. Due to the high order power of φ, a small increase in
its value has a considerable impact on Ti and Ri values.

This way, the mathematical relationship between φ and Ti can be interpreted based on
relaxation concepts. Both longitudinal and transversal relaxation times are a measurement of
how quickly a molecule can return to its equilibrium state after the removal of a radio pulse
in the presence of a magnetic field B0. This way, the return to its equilibrium state is possible
due to the energy distribution with the surroundings [56,57]. Hence, when evaluating the
influence of VCs in 1H relaxation time, it is assumed that the VCs are important agents for
receiving this dissipated energy, contributing to a faster returning of 1H to its equilibrium state.
For that distribution to be more effective, it is important that the distance V· · · 1H should be
as close as possible. Therefore, in a situation where the distance between the vanadium atom
and 1H is larger, it is expected to have a higher relaxation time.

From our findings regarding the VC2 system with ULK1, the unavailability of the
V=O for hydrogen bonding interactions and also the size and affinity with water of the
coordinated groups resulted in an increase in average V· · · 1H distance. This increase
resulted in a considerably higher Ti value when compared with the other systems.

From the obtained results, it was possible to make a comparison between the proposed
potential contrast agents with those commercially available. For Gd-DOTA, a commercial
Gd(III)-based contrast agent, its T1 and T2 have a value of 0.032 and 0.025 s, respectively [52,53].
For Gd-DTPA, also one of the most common contrast agents, the T2 value is 0.020 s [46,50,55].
Then, the VC1 showed to be a potential longitudinal and transversal MRI probe, being more
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effective than Gd-DOTA and Gd-DTPA, with superior relaxation times. In fact, its T1 and T2
values were 0.084 and 0.056 s, respectively, considering interactions in a chemical medium
with only water, and 0.074 and 0.050 considering the presence of AMPK. Although VC2
presented a T1 and T2 of 0.086 and 0.058 s, respectively, when considering the system only
with water, its effectiveness did not hold for a system considering interactions with ULK1, in
which T1 and T2 were 1.046 and 0.702 s.

Despite the fact that VC2 did not show to be more effective than Gd-DOTA and Gd-
DTPA when considering ULK1 as the protein target, its obtained values for Ti and Ri suggest
that modifications in the structure of VC2 might lead to a more effective potential contrast
agent. The foundation for this proposal remains in the fact that since the unavailability
of the V=O group increases Ti value, an addition or substitution of a ligand, capable of
interacting in the same ULK1 site as V=O, might make it more available for hydrogen
bonding interactions, allowing the water molecules to approach the vanadium atom and
dissipate energy faster.

3. Materials and Methods
3.1. Systems Descriptions and Docking Studies

In total, four systems were studied, being [VO(metf)2]·H2O (VC1) in a solvation box
(VC1 + WAT), VC1 and its biological target AMPK with water molecules (VC1 + AMPK +
WAT), [VO(bpy)2Cl]+ (VC2) with only water molecules (VC2 + WAT), and VC2 with its target
protein in aqueous medium (VC2 + ULK1 + WAT). The chemical structures of the vanadium
complexes are shown in Figure 6.
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Figure 6. Chemical structures of (a) VC1: [VO(metf)2]·H2O and (b) VC2: [VO(bpy)2Cl]+.

Information about systems VC1 + WAT and VC1 + AMPK + WAT is based on the
paper published by Tavares, C. A. et al. [38], while information about systems VC2 + WAT
and VC2 + ULK1 is based on the work of Santos, T. M. R. et al. [39]. The three-dimensional
structure of the AMPK protein was obtained from the RCSB Protein Data Bank (PDB ID:
6C9G) [58]. Since some amino acid residues were absent from the obtained structure, the
preparation of the protein was performed using the SWISS-MODEL platform [59]. For the
three-dimensional structure of the ULK1 protein (PDB ID: 4WNO) [60], no other previous
treatments were performed since the original file contained all necessary residues. For both
biological targets, hydrogen atoms were added to the protein structures and charges were
calculated by using BIOVIA Discovery Studio v.21 [61].

Docking studies were carried out by using the Molegro Virtual Docker [61,62] for both
AMPK and ULK1 structures. The binding site chosen for the docking study associated to
AMPK was based on the work by [63], where it was reported that the independent ligand of
VC1 (metformin) interacted with residues Asp-215, Asp-216, and Asp-217 in the homology
model. Flexible residues were included within a radius of 8 Å, and the binding site radius
was set as 7 Å. In turn, for ULK1, the binding site considered in this study was derived
from [64]. Moreover, flexible residues were set to be within a 12 Å radius.
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3.2. Molecular Dynamics Simulations

The paper published by Tavares, C. A. et al. [38] developed AMBER force field pa-
rameters for VC1, which were validated in the same work. In another study, made by
Santos, T. M. R. et al. [39], parameters for a new AMBER force field for VC2 were developed
and subsequently validated. Therefore, the development of such parameters for both VC1
and VC2 allowed the investigation carried out in this paper, where the simulations were
performed using the AMBER20 package.

All MD simulations were carried out with a total time of 200 ns, following the steps
of minimization, heating, equilibration, and production. Once again, four systems were
investigated through this Molecular Mechanics technique.

For AMPK, the ff99SB-ILDN force field was used to describe the protein. The first
step was performed by minimizing the energy of the system using the steepest descent
and, subsequently, the conjugate gradient method. In the heating step, the temperature
was gradually increased from 0 to 300 K, then, the system was equilibrated at the same
temperature, with a gradual decrease in the restriction. For the production step, an explicit
solvent simulation was conducted using the TIP3P model for water molecules.

For ULK1, the ff19SB force field was used to simulate this system. The system contain-
ing this protein underwent the minimization step using the steepest descent followed by
the conjugate gradient at constant volume. Next, the heating of VC2 + ULK1 + WAT was
carried out, reaching 300 K, where a restriction of 500 kcal/mol was applied. Subsequently,
the system was equilibrated at the same temperature of the last step. Lastly, the production
step was performed using the OPC water model.

The MD simulations of VC1 + WAT and VC2 + WAT were carried out in a similar
procedure, at 300 K using a solvation box with cubic dimensions and TIP3P and OPC water
models to represent the water molecules for the respective systems.

3.3. Conformational Selections of V(IV) Complexes Using the Optimal Wavelet Signal Compression
Algorithm and MD Data for T1 and R1 Estimation

The Optimal Wavelet Signal Compression Algorithm (OWSCA) showed to be a suc-
cessful resource to treat different systems, especially when dealing with possible MRI
probes [65]. In fact, it can be used to select the most representative conformations in the
dataset, reducing the data to be applied in further calculations.

OWSCA is based on discrete wavelet transform of the dataset x(t), and it can be
defined according to Equation (8), wherein such conversion reveals the main features of the
system and, therefore, represents the original signal in a reduced way

∼
x(t), without losing

important characteristics of the system [45,65].

dj,k =

+∞∫
−∞

x(t)ψj,k(t)dt (8)

where dj,k is the wavelet coefficient, t is the time normalized between 0 and 1, j represents
the scaling parameter responsible to determine the time and frequency resolutions of
the scaled wavelet function ψ, and k represents the shifting parameter, which translates
the scaled wavelet along the time axis [45]. The wavelet ψ has oscillating wave-like
characteristics and has it concentrated in time or space. Consequently, there are several
types and families of wavelets, whose properties differ along convergence speeds when
time tends to 0, symmetry, compression potential, and smoothness [45]. Thus, when using
OWSCA for reducing the original dataset and maintaining the principal characteristics of
the system, the choice of the appropriate wavelet is an important step to consider.

With the MD simulation data for the four systems, VC1 + WAT (1), VC2 + WAT (2),
VC1 + AMPK + WAT (3), and VC2 + ULK1 + WAT (4), the OWSCA was applied in order
to reduce the data for further calculations. Considering the nature of the systems, it is
important to keep in mind that the main contribution of the total energy of systems (3)
and (4) is associated with the protein, and the main contribution of the total energy of
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systems (1) and (2) is due to the V(IV) complexes. These assumptions were made based on
the fact that they are the large molecules of their respective system. The chosen wavelet
for all systems was db1 (haar), which is capable of representing signals with non-smooth
transitions, since it presents a discontinuous profile [66]. Then, Ti and Ri, where i = 1
indicates longitudinal and i = 2 indicates transverse, were estimated from the computed
V· · · 1H distances, obtained for each conformation selected by the OWSCA procedure. The
flowchart shown in Figure 7 summarizes the needed steps for the work purposes. The
OWSCA procedure is implemented in a homemade software [67–69].
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4. Conclusions

From the presented work, it was possible to conclude that vanadium complexes could
be promising contrast agents. Another important conclusion made from this work, which
reinforces the promising potential of vanadium complexes as MRI probes, is that both
systems studied for VC1 showed to be more effective than Gd-DOTA and Gd-DTPA, two
available commercial contrast agents for MRI. Despite the fact that VC2 did not show to
be as good as Gd-DOTA and Gd-DTPA when considering the relaxation parameters with
its target protein, ULK1, the presented results contribute to the development of less toxic
and more efficient MRI probes. In addition, as described in previous works, vanadium
complexes have a promising potential in therapy of many diseases, but there is a lack
of literature describing its potential as contrast agents. In this scenario, acting as MRI
probes, vanadium complexes could be used for theranostics of many types of cancer and
Alzheimer’s, including the facilitation of vanadium-based drugs design. In light of the
obtained results, it is possible to encourage new efforts on testing new VCs as MRI contrast
agents, aspiring to a more effective diagnosis and possible new therapies.

Furthermore, the work presents a fresh perspective about how to assess VCs’ NMR
relaxation properties. From the presented methodology, it was shown the possibility of
theoretically studying of vanadium systems, including specific targets and considering
explicit solvent effects. Therefore, it is possible to study complex biological systems,
providing insights for further efforts and experimental studies.

Thus, the presented study is another step toward pursuing improvements in cancer
and AD early diagnosis, also concerning safer contrast agents for patients, and giving a
potential tool for new drug design. We hope, then, that our results will stimulate new
experimental and full-dimensional theoretical investigations that could assess the validity
of this assumption.
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