Quality Assessment of Selected Protein Structures Derived from Homology Modeling and AlphaFold
Abstract
:1. Introduction
2. Results
2.1. Structure Evaluation and Comparison of Homology Models and AlphaFold Structures
2.2. Evaluation of the Gαi1 Structural Models
2.3. Evaluation of the Gαs Structural Models
2.4. Evaluation of the APC Structural Models
2.5. Evaluation of the Hemopexin Structural Models
2.6. Evaluation of the Rap2 Structural Models
2.7. Evaluation of the Structural Models of Human Serum Albumin
2.8. Evaluation of the IL-36α Structural Models
2.9. Impact of Molecular Dynamics Simulation on Predicted Structures
3. Discussion
4. Materials and Methods
4.1. Homology Modeling and AlphaFold-Predicted Structures
4.2. Quality Assessments of the Structures
4.3. MD Simulation of Predicted Structures
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Compiani, M.; Capriotti, E. Computational and Theoretical Methods for Protein Folding. Biochemistry 2013, 52, 8601–8624. [Google Scholar] [CrossRef] [PubMed]
- Levinthal, C. How to Fold Graciously. Mössbauer Spectrosc. Biol. Syst. Proc. 1969, 24, 22–24. [Google Scholar]
- Bai, X.C.; Gonen, T.; Gronenborn, A.M.; Perrakis, A.; Thorn, A.; Yang, J. Challenges and Opportunities in Macromolecular Structure Determination. Nat. Rev. Mol. Cell Biol. 2023, 1–6. [Google Scholar] [CrossRef]
- Gromiha, M.M.; Nagarajan, R.; Selvaraj, S. Protein Structural Bioinformatics: An Overview. In Encyclopedia of Bioinformatics and Computational Biology: ABC of Bioinformatics; Elsevier: Amsterdam, The Netherlands, 2018; Volumes 1–3, pp. 445–459. ISBN 9780128114322. [Google Scholar]
- Browne, W.J.; North, A.C.T.; Phillips, D.C.; Brew, K.; Vanaman, T.C.; Hill, R.L. A Possible Three-Dimensional Structure of Bovine α-Lactalbumin Based on That of Hen’s Egg-White Lysozyme. J. Mol. Biol. 1969, 42, 65–86. [Google Scholar] [CrossRef] [PubMed]
- Beuming, T.; Sherman, W. Current Assessment of Docking into GPCR Crystal Structures and Homology Models: Successes, Challenges, and Guidelines. J. Chem. Inf. Model. 2012, 52, 3263–3277. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, J.; Coleman, R.G.; Setola, V.; Irwin, J.J.; Fan, H.; Schlessinger, A.; Sali, A.; Roth, B.L.; Shoichet, B.K. Ligand Discovery from a Dopamine D3 Receptor Homology Model and Crystal Structure. Nat. Chem. Biol. 2011, 7, 769–778. [Google Scholar] [CrossRef]
- Tunyasuvunakool, K.; Adler, J.; Wu, Z.; Green, T.; Zielinski, M.; Žídek, A.; Bridgland, A.; Cowie, A.; Meyer, C.; Laydon, A.; et al. Highly Accurate Protein Structure Prediction for the Human Proteome. Nature 2021, 596, 590–596. [Google Scholar] [CrossRef]
- Stevens, A.O.; He, Y. Benchmarking the Accuracy of AlphaFold 2 in Loop Structure Prediction. Biomolecules 2022, 12, 985. [Google Scholar] [CrossRef]
- Senior, A.W.; Evans, R.; Jumper, J.; Kirkpatrick, J.; Sifre, L.; Green, T.; Qin, C.; Žídek, A.; Nelson, A.W.R.; Bridgland, A.; et al. Improved Protein Structure Prediction Using Potentials from Deep Learning. Nature 2020, 577, 706–710. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Hekkelman, M.L.; de Vries, I.; Joosten, R.P.; Perrakis, A. AlphaFill: Enriching AlphaFold Models with Ligands and Cofactors. Nat. Methods 2023, 20, 205–213. [Google Scholar] [CrossRef]
- Nubbemeyer, B.; Paul George, A.A.; Kühl, T.; Pepanian, A.; Beck, M.S.; Maghraby, R.; Shetab Boushehri, M.; Muehlhaupt, M.; Pfeil, E.M.; Annala, S.K.; et al. Targeting Gαi/s Proteins with Peptidyl Nucleotide Exchange Modulators. ACS Chem. Biol. 2022, 17, 463–473. [Google Scholar] [CrossRef]
- Detzel, M.S.; Schmalohr, B.F.; Steinbock, F.; Hopp, M.T.; Ramoji, A.; George, A.A.P.; Neugebauer, U.; Imhof, D. Revisiting the Interaction of Heme with Hemopexin. Biol. Chem. 2021, 402, 675–691. [Google Scholar] [CrossRef]
- Paoli, M.; Anderson, B.F.; Baker, H.M.; Morgan, W.T.; Smith, A.; Baker, E.N. Crystal Structure of Hemopexin Reveals a Novel High-Affinity Heme Site Formed between Two β-Propeller Domains. Nat. Struct. Biol. 1999, 6, 926–931. [Google Scholar] [CrossRef]
- Hopp, M.T.; Alhanafi, N.; Paul George, A.A.; Hamedani, N.S.; Biswas, A.; Oldenburg, J.; Pötzsch, B.; Imhof, D. Molecular Insights and Functional Consequences of the Interaction of Heme with Activated Protein C. Antioxid. Redox Signal. 2021, 34, 32–48. [Google Scholar] [CrossRef]
- Menetrey, J.; Cherfils, J. Structure of the Small G Protein Rap2 in a Non-Catalytic Complex with GTP. Proteins Struct. Funct. Genet. 1999, 37, 465–473. [Google Scholar] [CrossRef]
- Sugio, S.; Kashima, A.; Mochizuki, S.; Noda, M.; Kobayashi, K. Crystal Structure of Human Serum Albumin at 2.5 Å Resolution. Protein Eng. Des. Sel. 1999, 12, 439–446. [Google Scholar] [CrossRef]
- Wißbrock, A.; Goradia, N.B.; Kumar, A.; Paul George, A.A.; Kühl, T.; Bellstedt, P.; Ramachandran, R.; Hoffmann, P.; Galler, K.; Popp, J.; et al. Structural Insights into Heme Binding to IL-36α Proinflammatory Cytokine. Sci. Rep. 2019, 9, 16893. [Google Scholar] [CrossRef]
- Nubbemeyer, B.; Pepanian, A.; Paul George, A.A.; Imhof, D. Strategies towards Targeting Gαi/s Proteins: Scanning of Protein-Protein Interaction Sites to Overcome Inaccessibility. ChemMedChem 2021, 16, 1696–1715. [Google Scholar] [CrossRef]
- Stojanovski, B.M.; Pelc, L.A.; Zuo, X.; Di Cera, E. Zymogen and Activated Protein C Have Similar Structural Architecture. J. Biol. Chem. 2020, 295, 15236. [Google Scholar] [CrossRef]
- Mishra, V.; Heath, R.J. Structural and Biochemical Features of Human Serum Albumin Essential for Eukaryotic Cell Culture. Int. J. Mol. Sci. 2021, 22, 8411. [Google Scholar] [CrossRef] [PubMed]
- Queen, D.; Ediriweera, C.; Liu, L. Function and Regulation of IL-36 Signaling in Inflammatory Diseases and Cancer Development. Front. Cell Dev. Biol. 2019, 7, 496193. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.G.; Dos Santos, R.N.; Oliva, G.; Andricopulo, A.D. Molecular Docking and Structure-Based Drug Design Strategies. Molecules 2015, 20, 13384–13421. [Google Scholar] [CrossRef] [PubMed]
- Hooft, R.W.W.; Vriend, G.; Sander, C.; Abola, E.E. Errors in Protein Structures. Nature 1996, 381, 272. [Google Scholar] [CrossRef] [PubMed]
- Goricanec, D.; Stehle, R.; Egloff, P.; Grigoriu, S.; Plückthun, A.; Wagner, G.; Hagn, F. Conformational Dynamics of a G-Protein α Subunit Is Tightly Regulated by Nucleotide Binding. Proc. Natl. Acad. Sci. USA 2016, 113, E3629–E3638. [Google Scholar] [CrossRef] [PubMed]
- Lambert, N.A.; Johnston, C.A.; Cappell, S.D.; Kuravi, S.; Kimple, A.J.; Willard, F.S.; Siderovski, D.P. Regulators of G-Protein Signaling Accelerate GPCR Signaling Kinetics and Govern Sensitivity Solely by Accelerating GTPase Activity. Proc. Natl. Acad. Sci. USA 2010, 107, 7066–7071. [Google Scholar] [CrossRef] [PubMed]
- Johnston, C.A.; Willard, F.S.; Jezyk, M.R.; Fredericks, Z.; Bodor, E.T.; Jones, M.B.; Blaesius, R.; Watts, V.J.; Harden, T.K.; Sondek, J.; et al. Structure of Gαi1 Bound to a GDP-Selective Peptide Provides Insight into Guanine Nucleotide Exchange. Structure 2005, 13, 1069–1080. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xu, X.; Hilger, D.; Aschauer, P.; Tiemann, J.K.S.; Du, Y.; Liu, H.; Hirata, K.; Sun, X.; Guixà-González, R.; et al. Structural Insights into the Process of GPCR-G Protein Complex Formation. Cell 2019, 177, 1243–1251.e12. [Google Scholar] [CrossRef]
- Dai, S.A.; Hu, Q.; Gao, R.; Blythe, E.E.; Touhara, K.K.; Peacock, H.; Zhang, Z.; von Zastrow, M.; Suga, H.; Shokat, K.M. State-Selective Modulation of Heterotrimeric Gαs Signaling with Macrocyclic Peptides. Cell 2022, 185, 3950–3965.e25. [Google Scholar] [CrossRef]
- Hu, Q.; Shokat, K.M. Disease-Causing Mutations in the G Protein Gαs Subvert the Roles of GDP and GTP. Cell 2018, 173, 1254–1264.e11. [Google Scholar] [CrossRef]
- Mather, T.; Oganessyan, V.; Hof, P.; Huber, R.; Foundling, S.; Esmon, C.; Bode, W. The 2.8 Å Crystal Structure of Gla-Domainless Activated Protein C. EMBO J. 1996, 15, 6822–6831. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, S.P.; Schmidt, A.E.; Agah, S.; Bajaj, M.S.; Padmanabhan, K. High Resolution Structures of P-Aminobenzamidine- and Benzamidine-VIIa/ Soluble Tissue Factor: Unpredicted Conformation of the 192-193 Peptide Bond and Mapping of Ca2+, Mg2+, Na+, and Zn2+ Sites in Factor VIIa. J. Biol. Chem. 2006, 281, 24873–24888. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, A.E.; Padmanabhan, K.; Underwood, M.C.; Bode, W.; Mather, T.; Bajaj, S.P. Thermodynamic Linkage between the S1 Site, the Na+ Site, and the Ca2+ Site in the Protease Domain of Human Activated Protein C (APC): Sodium Ion in the APC Crystal Structure Is Coordinated to Four Carbonyl Groups from Two Separate Loops. J. Biol. Chem. 2002, 277, 28987–28995. [Google Scholar] [CrossRef] [PubMed]
- Groebke Zbinden, K.; Banner, D.W.; Ackermann, J.; D’Arcy, A.; Kirchhofer, D.; Ji, Y.H.; Tschopp, T.B.; Wallbaum, S.; Weber, L. Design of Selective Phenylglycine Amide Tissue Factor/Factor VIIa Inhibitors. Bioorg. Med. Chem. Lett. 2005, 15, 817–822. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Zhang, J.; Shi, M.; O’Connor, S.P.; Bisaha, S.N.; Li, C.; Sitkoff, D.; Pudzianowski, A.T.; Chong, S.; Klei, H.E.; et al. Cyanoguanidine-Based Lactam Derivatives as a Novel Class of Orally Bioavailable Factor Xa Inhibitors. Bioorg. Med. Chem. Lett. 2009, 19, 4034–4041. [Google Scholar] [CrossRef] [PubMed]
- Cherfils, J.; Ménétrey, J.; Le Bras, G.; Le Bras, G.; Janoueix-Lerosey, I.; De Gunzburg, J.; Garel, J.R.; Auzat, I. Crystal Structures of the Small G Protein Rap2A in Complex with Its Substrate GTP, with GDP and with GTPγS. EMBO J. 1997, 16, 5582–5591. [Google Scholar] [CrossRef]
- Wardell, M.; Wang, Z.; Ho, J.X.; Robert, J.; Ruker, F.; Ruble, J.; Carter, D.C. The Atomic Structure of Human Methemalbumin at 1.9 Å. Biochem. Biophys. Res. Commun. 2002, 291, 813–819. [Google Scholar] [CrossRef]
- Goradia, N.; Wißbrock, A.; Wiedemann, C.; Bordusa, F.; Ramachandran, R.; Imhof, D.; Ohlenschläger, O. 1H, 13C, and 15N Resonance Assignments for the Pro-Inflammatory Cytokine Interleukin-36α. Biomol. NMR Assign. 2016, 10, 329–333. [Google Scholar] [CrossRef]
- Konagurthu, A.S.; Whisstock, J.C.; Stuckey, P.J.; Lesk, A.M. MUSTANG: A Multiple Structural Alignment Algorithm. Proteins Struct. Funct. Genet. 2006, 64, 559–574. [Google Scholar] [CrossRef]
- Sobolev, O.V.; Afonine, P.V.; Moriarty, N.W.; Hekkelman, M.L.; Joosten, R.P.; Perrakis, A.; Adams, P.D. A Global Ramachandran Score Identifies Protein Structures with Unlikely Stereochemistry. Structure 2020, 28, 1249–1258. [Google Scholar] [CrossRef]
- Pontius, J.; Richelle, J.; Wodak, S.J. Deviations from Standard Atomic Volumes as a Quality Measure for Protein Crystal Structures. J. Mol. Biol. 1996, 264, 121–136. [Google Scholar] [CrossRef]
- Kenny, S.E.; Antaw, F.; Locke, W.J.; Howard, C.B.; Korbie, D.; Trau, M. Next-Generation Molecular Discovery: From Bottom-Up In Vivo and In Vitro Approaches to In Silico Top-Down Approaches for Therapeutics Neogenesis. Life 2022, 12, 363. [Google Scholar] [CrossRef]
- Skolnick, J.; Gao, M.; Zhou, H.; Singh, S. AlphaFold 2: Why It Works and Its Implications for Understanding the Relationships of Protein Sequence, Structure, and Function. J. Chem. Inf. Model. 2021, 61, 4827–4831. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Akin, H.; Rao, R.; Hie, B.; Zhu, Z.; Lu, W.; Smetanin, N.; Verkuil, R.; Kabeli, O.; Shmueli, Y.; et al. Evolutionary-Scale Prediction of Atomic-Level Protein Structure with a Language Model. Science 2023, 379, 1123–1130. [Google Scholar] [CrossRef] [PubMed]
- Baek, M.; DiMaio, F.; Anishchenko, I.; Dauparas, J.; Ovchinnikov, S.; Lee, G.R.; Wang, J.; Cong, Q.; Kinch, L.N.; Dustin Schaeffer, R.; et al. Accurate Prediction of Protein Structures and Interactions Using a Three-Track Neural Network. Science 2021, 373, 871–876. [Google Scholar] [CrossRef]
- Kimple, A.J.; Bosch, D.E.; Giguère, P.M.; Siderovski, D.P. Regulators of G-Protein Signaling and Their Gα Substrates: Promises and Challenges in Their Use as Drug Discovery Targets. Pharmacol. Rev. 2011, 63, 728–749. [Google Scholar] [CrossRef]
- Beuming, T.; Martín, H.; Díaz-Rovira, A.M.; Díaz, L.; Guallar, V.; Ray, S.S. Are Deep Learning Structural Models Sufficiently Accurate for Free-Energy Calculations? Application of FEP+ to AlphaFold2-Predicted Structures. J. Chem. Inf. Model. 2022, 62, 4351–4360. [Google Scholar] [CrossRef]
- Williams, C.J.; Headd, J.J.; Moriarty, N.W.; Prisant, M.G.; Videau, L.L.; Deis, L.N.; Verma, V.; Keedy, D.A.; Hintze, B.J.; Chen, V.B.; et al. MolProbity: More and Better Reference Data for Improved All-Atom Structure Validation. Protein Sci. 2018, 27, 293–315. [Google Scholar] [CrossRef]
- Bienert, S.; Waterhouse, A.; De Beer, T.A.P.; Tauriello, G.; Studer, G.; Bordoli, L.; Schwede, T. The SWISS-MODEL Repository-New Features and Functionality. Nucleic Acids Res. 2017, 45, D313–D319. [Google Scholar] [CrossRef] [PubMed]
- Chen, V.B.; Arendall, W.B.; Headd, J.J.; Keedy, D.A.; Immormino, R.M.; Kapral, G.J.; Murray, L.W.; Richardson, J.S.; Richardson, D.C. MolProbity: All-Atom Structure Validation for Macromolecular Crystallography. Acta Crystallogr. Sect. D Biol. Crystallogr. 2010, 66, 12–21. [Google Scholar] [CrossRef]
- Davis, I.W.; Leaver-Fay, A.; Chen, V.B.; Block, J.N.; Kapral, G.J.; Wang, X.; Murray, L.W.; Arendall, W.B.; Snoeyink, J.; Richardson, J.S.; et al. MolProbity: All-Atom Contacts and Structure Validation for Proteins and Nucleic Acids. Nucleic Acids Res. 2007, 35, W375. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, D.; Lüthy, R.; Bowie, J.U. VERIFY3D: Assessment of Protein Models with Three-Dimensional Profiles. Methods Enzymol. 1997, 277, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Laskowski, R.A.; MacArthur, M.W.; Thornton, J.M. PROCHECK: Validation of Protein-Structure Coordinates. In International Tables for Crystallography; Wiley: Hoboken, NJ, USA, 2012; pp. 684–687. [Google Scholar]
- Colovos, C.; Yeates, T.O. Verification of Protein Structures: Patterns of Nonbonded Atomic Interactions. Protein Sci. 1993, 2, 1511–1519. [Google Scholar] [CrossRef] [PubMed]
- Studer, G.; Rempfer, C.; Waterhouse, A.M.; Gumienny, R.; Haas, J.; Schwede, T. QMEANDisCo—Distance Constraints Applied on Model Quality Estimation. Bioinformatics 2020, 36, 1765–1771. [Google Scholar] [CrossRef]
- Krieger, E.; Darden, T.; Nabuurs, S.B.; Finkelstein, A.; Vriend, G. Making Optimal Use of Empirical Energy Functions: Force-Field Parameterization in Crystal Space. Proteins Struct. Funct. Bioinform. 2004, 57, 678–683. [Google Scholar] [CrossRef]
- Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. Ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from Ff99SB. J. Chem. Theory Comput. 2015, 11, 3696–3713. [Google Scholar] [CrossRef]
Protein | Experimental Structure | Homology Model | AF Structure | ||
---|---|---|---|---|---|
RMSD (Å) | Seq. Identity (%) | RMSD (Å) | Seq. Identity (%) | ||
5JS8 | 1.05 | 100 | 0.81 | 97.41 | |
Gαi1 | 3UMS | 1.32 | 99.33 | 0.77 | 99.67 |
1Y3A | 1.33 | 99.29 | 0.74 | 100 | |
6EG8 | 0.98 | 100 | 0.83 | 99.71 | |
Gαs | 7E5E | 1.05 | 98.71 | 0.90 | 100 |
6AU6 | 1.28 | 97.18 | 0.99 | 99.08 | |
Hx | 1QJS | 0.94 | 84.34 | 1.402 | 19.32 |
1AUT | 0.89 | 100 | 0.63 | 100 | |
2AER | 1.35 | 40.67 | 1.106 | 42.58 | |
APC | 3F6U | 0.90 | 100 | 1.03 | 40 |
1W0Y | 1.15 | 40.64 | 1.02 | 42.11 | |
3HPT | 1.28 | 38.15 | 1.03 | 40 | |
Rap2 | 2RAP | 0.78 | 100 | 0.80 | 99.40 |
3RAP | 0.69 | 100 | 0.82 | 99.39 | |
1AO6 | 2.02 | 96.15 | 1.18 | 100 | |
HSA | 1N5U | 1.30 | 100 | 1.84 | 96.33 |
4G03 | 2.07 | 95.70 | 1.27 | 98.95 | |
IL-36α | 6HPI | 1.57 | 100 | 1.83 | 100 |
Protein | Validation Metric (or Method) | Homology Model * | AF * | 5JS8 * | 3UMS * | 1Y3A * |
---|---|---|---|---|---|---|
Gαi1 | MolProbity | |||||
Clashscore, all atoms (percentile) | 0 (100th) | 1.77 (99th) | 0.97 (99th) | 4.07 (99th) | 12.94 (91th) | |
Poor rotamers (%) | 0.67 | 0 | 2.86 | 0.69 | 3.80 | |
Favored rotamers (%) | 97.67 | 99.67 | 91.43 | 93.10 | 92.02 | |
Ramachandran outliers | 0 | 0 | 0.62 | 0 | 0.34 | |
Rama-Z score | −0.65 ± 0.44 | 0.06 ± 0.42 | −3.94 ± 0.39 | −1.43 ± 0.43 | −2.10 ± 0.40 | |
Ramachandran plot (%) | ||||||
Most favored | 89.6 | 95.2 | 84.8 | 92.0 | 93.1 | |
Additional allowed | 10.1 | 4.8 | 13.9 | 8.0 | 6.5 | |
Generously allowed | 0.3 | 0 | 0.7 | 0 | 0.4 | |
Disallowed | 0 | 0 | 0.7 | 0 | 0 | |
Overall G-factors | 0.17 | 0.21 | −0.10 | 0.21 | 0.39 | |
Verify3D (%) | ||||||
3D/1D profile | 91.69 | 85.31 | 86.69 | 93.77 | 95.97 | |
Errat (%) | ||||||
Overall quality factor | 99.41 | 98.26 | 95.21 | 98.15 | 95.52 | |
Prove (μ) | ||||||
Z-score | 0.89 ± 26.80 | 1.16 ± 28.32 | 0.43 ± 1.32 | 0.23 ± 1.28 | 1.02 ± 29.01 | |
Z-score RMS | 26.80 | 28.33 | 1.39 | 1.30 | 29.01 | |
SwissProt | ||||||
QMEANDisCo global | 0.76 ± 0.05 | 0.80 ± 0.05 | 0.74 ± 0.05 | 0.79 ± 0.05 | 0.82 ± 0.05 |
Protein | Validation Method | Homology Model * | AF * | 6EG8 * | 7E5E * | 6AU6 * |
---|---|---|---|---|---|---|
Gαs | MolProbity | |||||
Clashscore, all atoms (percentile) | 0 (100th) | 2.20 (99th) | 5.71 (97th) | 0.18 (100th) | 1.25 (99th) | |
Poor rotamers (%) | 1.47 | 0 | 0 | 0.66 | 0.65 | |
Favored rotamers | 98.42 | 98.86 | 89.29 | 97.04 | 97.73 | |
Ramachandran outliers | 0 | 0 | 0 | 0 | 0.29 | |
Rama-Z score | −0.24 ± 0.38 | 0.15 ± 0.41 | −2.85 ± 0.36 | −0.24 ± 0.43 | −0.25 ± 0.44 | |
Ramachandran plot (%) | ||||||
Most favored | 93.4 | 93.6 | 91.6 | 94.2 | 90.2 | |
Additional allowed | 6.6 | 6.4 | 8.4 | 5.8 | 9.2 | |
Generously allowed | 0 | 0 | 0 | 0 | 0.6 | |
Disallowed regions | 0 | 0 | 0 | 0 | 0 | |
Overall G-factors | 0.27 | 0.21 | 0.21 | 0.21 | 0.22 | |
Verify3D (%) | ||||||
3D/1D profile | 87.66 | 87.82 | 83.60 | 94.38 | 99.42 | |
Errat (%) | ||||||
Overall quality factor | 99.73 | 98.67 | 96.10 | 99.70 | 99.09 | |
Prove (μ) | ||||||
Z-score | 0.37 ± 1.81 | 0.35 ± 1.17 | 0.39 ± 1.20 | 0.36 ± 1.20 | 0.09 ± 1.21 | |
Z-score RMS | 1.24 | 1.21 | 1.26 | 1.25 | 1.22 | |
SwissProt | ||||||
QMEANDisCo global | 0.77 ± 0.05 | 0.77 ± 0.05 | 0.77 ± 0.05 | 0.77 ± 0.05 | 0.79 ± 0.05 |
Protein | Validation Data | Homology Model * | AF * | 1AUT * | 2AER * | 3F6U * | 1W0Y * | 3HPT * |
---|---|---|---|---|---|---|---|---|
APC | MolProbity | |||||||
Clashscore, all atoms (percentile) | 0 (100th) | 1.39 (99th) | 22.49 (86th) | 17.06 (40th) | 15.26 (95th) | 44.14 16th) | 33.37 (15th) | |
Poor rotamers (%) | 2.28 | 1.24 | 11.42 | 3.15 | 14.48 | 2.77 | 2.08 | |
Favored rotamers (%) | 94.59 | 95.02 | 77.85 | 93.31 | 73.79 | 91.70 | 0.01 | |
Ramachandran outliers (%) | 0.50 | 2.61 | 0.30 | 0.54 | 2.10 | 0.55 | 0 | |
Rama. distr. Z-score | −1.08 ± 0.38 | −1.59 ± 0.37 | −2.98 ± 0.38 | −0.58 ± 0.34 | −3.10 ± 0.40 | −2.05 ± 0.31 | −0.62 ± −0.30 | |
Ramachandran plot (%) | ||||||||
Most favored regions | 89.5 | 80.7 | 84.3 | 88.8 | 80.1 | 86.8 | 85.8 | |
Additional allowed regions | 9.7 | 17.5 | 15.7 | 10.6 | 19.9 | 12.6 | 13.9 | |
Generous. allowed regions | 0.6 | 1.5 | 0.0 | 0.4 | 0.0 | 0.4 | 0.4 | |
Disallowed regions | 0.3 | 0.2 | 0.0 | 0.2 | 0.0 | 0.2 | 0.0 | |
Overall G-factors | 0.08 | −0.04 | 0.14 | 0.19 | −0.46 | |||
Verify3D (%) | ||||||||
3D/1D profile | 85.68 | 72.02 | 95.05 | 93.69 | 95.40 | 92.93 | 91.76 | |
Errat (%) | ||||||||
Overall quality factor | 94.33 | 95.81 | 85.47 | 92.18 | 84.93 | 9.98 | 95.96 | |
Prove (μ) | ||||||||
Z-score | 1.12 ± 26.87 | 0.44 ± 1.30 | 0.96 ± 26.43 | 1.22 ± 35.12 | 0.98 ± 26.52 | 1.80 ± 42.15 | 2.742 ± 52.014 | |
Z-score RMS | 26.88 | 1.38 | 26.44 | 35.14 | 26.51 | 42.18 | 52.078 | |
SwissProt | ||||||||
QMEANDisCo global | 0.74 ± 0.05 | 0.67 ± 0.05 | 0.87 ± 0.05 | 0.86 ± 0.05 | 0.86 ± 0.05 | 0.85 ± 0.05 | 0.85 ± 0.05 |
Protein | Validation Data | Homology Model * | AF * | 1QJS * |
---|---|---|---|---|
Hemopexin | MolProbity | |||
Clashscore, all atoms | 0 (100th) | 2.11 (99th) | 15.46 (96th) | |
Poor rotamers (%) | 0.84 | 1.56 | 10.80 | |
Favored rotamers (%) | 97.21 | 95.05 | 79.55 | |
Ramachandran outliers (%) | 0.24 | 4.13 | 0.99 | |
Rama. distribution Z-score | −0.69 ± 0.38 | −1.74 ± 0.35 | −3.0 ± 0.25 | |
Ramachandran plot (%) | ||||
Most favored regions | 90.3 | 83.6 | 82.7 | |
Additional allowed regions | 8.9 | 12.4 | 15.8 | |
Generously allowed regions | 0.3 | 2.1 | 1.2 | |
Disallowed regions | 0.6 | 1.8 | 0.3 | |
Overall G-factors | 0.07 | −0.20 | −0.20 | |
Verify3D (%) | ||||
3D/1D profile | 95.77 | 90.26 | 99.75 | |
Errat (%) | ||||
Overall quality factor | 79.42 | 82.86 | 72.31 | |
Prove (μ) | ||||
Z-score | 1.09 ± 24.39 | 0.56 ± 1.32 | 0.49 ± 1.31 | |
Z-score RMS | 24.41 | 1.44 | 1.40 | |
SwissProt | ||||
QMEANDisCo global | 0.81 ± 0.05 | 0.78 ± 0.05 | 0.91 ± 0.05 |
Protein | Validation Data | Homology Model * | AF * | 2RAP * | 3RAP * |
---|---|---|---|---|---|
Rap2 | MolProbity | ||||
Clashscore, all atoms | 0 (100th) | 1.39 (100th) | 4.44 (99th) | 2.59 (100th) | |
Poor rotamers (%) | 0.64 | 0 | 5.41 | 3.38 | |
Favored rotamers (%) | 98.09 | 97.53 | 85.14 | 91.22 | |
Ramachandran outliers (%) | 0 | 0.55 | 0.61 | 1.21 | |
Rama. distribution Z-score | −0.59 ± 0.59 | −0.29 ± 0.62 | −2.41 ± 0.56 | −1.16 ± 0.55 | |
Ramachandran plot (%) | |||||
Most favored regions | 93.0 | 90.2 | 89.3 | 90.6 | |
Additional allowed regions | 6.4 | 9.2 | 10.7 | 7.4 | |
Generously allowed regions | 0.0 | 0.6 | 0.0 | 2.0 | |
Disallowed regions | 0.6 | 0.0 | 0.0 | 0.0 | |
Overall G-factors | 0.20 | 0.08 | −0.18 | −0.04 | |
Verify3D (%) | |||||
3D/1D profile | 58.19 | 47.54 | 53.29 | 61.68 | |
Errat (%) | |||||
Overall quality factor | 95.65 | 98.16 | 93.96 | 98.68 | |
Prove (μ) | |||||
Z-score | - | - | - | - | |
Z-score RMS | - | - | - | - | |
SwissProt | |||||
QMEANDisCo global | 0.83 ± 0.07 | 0.83 ± 0.06 | 0.88 ± 0.07 | 0.87 ± 0.07 |
Protein | Validation Data | Homology Model * | AF * | 1AO6 * | 1N5U | 4G03 |
---|---|---|---|---|---|---|
HSA | MolProbity | |||||
Clashscore, all atoms | 0.21 (100th) | 2.07 (99th) | 13.92 (86th) | 21.97 (23rd) | 6.91 (97th) | |
Poor rotamers (%) | 6 (1.16) | 3 (0.56) | 24 (4.74) | 18 (3.54) | 27 (5.34) | |
Favored rotamers (%) | 501 (96.72) | 522 (97.94) | 436 (86.17) | 465 (91.36) | 431 (85.18) | |
Ramachandran outliers (%) | 2 (0.34) | 0 (0.00) | 11 (1.91) | 6 (1.03) | 5 (0.87) | |
Rama. distribution Z-score | 0.74 ± 0.33 | 0.41 ± 0.32 | −4.28 ± 0.28 | −0.43 ± 0.32 | −2.69 ± 0.30 | |
Ramachandran plot (%) | ||||||
Most favored regions | 93.9 | 94.9 | 88.5 | 93.2 | 90.4 | |
Additional allowed regions | 5.2 | 5.1 | 11.5 | 5.7 | 9.1 | |
Generously allowed regions | 0.7 | 0.0 | 0.0 | 0.9 | 0.2 | |
Disallowed regions | 0.2 | 0.0 | 0.0 | 0.2 | 0.4 | |
Overall G-factors | 0.33 | 0.24 | 0.21 | 0.44 | 0.18 | |
Verify3D (%) | ||||||
3D/1D profile | 79.12 | 72.41 | 74.18 | 79.55 | 79.38 | |
Errat (%) | ||||||
Overall quality factor | 98.29 | 97.63 | 93.26 | 98.08 | 96.47 | |
Prove (μ) | ||||||
Z-score | - | - | - | - | - | |
Z-score RMS | - | - | - | - | - | |
SwissProt | ||||||
QMEANDisCo global | 0.81 ± 0.05 | 0.84 ± 0.05 | 0.81 ± 0.05 | 0.82 ± 0.05 | 0.83 ± 0.05 |
Protein | Validation Data | Homology Model * | AF * | 6HPI * |
---|---|---|---|---|
IL-36α | MolProbity | |||
Clashscore, all atoms | 0 (100th) | 1.61 (99th) | 7.23 (86th) | |
Poor rotamers (%) | 3 (2.14) | 0 (0.00) | 29 (20.71) | |
Favored rotamers (%) | 135 (96.43) | 139 (99.29) | 80 (57.14) | |
Ramachandran outliers (%) | 1 (0.64) | 0 (0.00) | 3 (1.92) | |
Rama. distribution Z-score | 0.38 ± 0.67 | −0.79 ± 0.59 | −4.62 ± 0.55 | |
Ramachandran plot (%) | ||||
Most favored regions | 89.7 | 89.7 | 73.5 | |
Additional allowed regions | 10.3 | 10.3 | 25.7 | |
Generously allowed regions | 0 | 0 | 0.7 | |
Disallowed regions | 0 | 0 | 0 | |
Overall G-factors | 0.03 | 0.03 | −0.16 | |
Verify3D (%) | ||||
3D/1D profile | 70.25 | 70.25 | 59.49 | |
Errat (%) | ||||
Overall quality factor | 90.90 | 90.90 | 85.18 | |
Prove (μ) | ||||
Z-score | - | - | - | |
Z-score RMS | - | - | - | |
SwissProt | ||||
QMEANDisCo global | 0.76 ± 0.07 | 0.71 ± 0.07 | 0.90 ± 0.07 |
PDB | Protein | Ligand(s) | Resolution | Released Date (Updated) | Sequence Length | Organism | Mutation(s) |
---|---|---|---|---|---|---|---|
5JS8 | Gαi1 | GDP | NMR ensemble | 2016 (2019) | 326 | Homo sapiens | − |
3UMS | Gαi1 | GDP, SO42−, Cl− | 2.34 Å | 2012 (2012) | 354 | Homo sapiens | + |
1Y3A | Gαi1 | GDP | 2.50 Å | 2005 (2019) | 329 | Homo sapiens | − |
6EG8 | Gαs | GDP, Mg2+ | 2.80 Å | 2019 (2019) | 381 | Homo sapiens | − |
7E5E | Gαs | GDP, Cl− | 1.95 Å | 2022 (2022) | 348 | Homo sapiens | − |
6AU6 | Gαs | GDP, Cl−, Mg2+, GOL | 1.70 Å | 2018 (2019) | 377 | Homo sapiens | + |
1QJS | Hemopexin | HEM, PO43−, Cl−, Na+ | 2.90 Å | 2000 (2019) | 460 | Oryctolagus cuniculus | − |
1AUT | APC | 0G6, BHD | 2.80 Å | 1996 (2013) | 364 | Homo sapiens | − |
3F6U | APC | 0G6, Ca2+, Na+ | 2.80 Å | 2008 (2013) | 338 | Homo sapiens | − |
2AER | Factor VIIa | GLC, FUC, BEN, Zn2+, Ca2+, Cl−, Na+, Mg2+, | 1.87 Å | 2005 (2020) | 396 | Homo sapiens | + |
1W0Y | Factor VIIa | 771, BGC, FUC, CAC, Ca2+ | 2.50 Å | 2004 (2020) | 396 | Homo sapiens | − |
3HPT | Factor X | YET, MES, GOL, DMS, ACT, Ca2+, Na+ | 2.19 Å | 2009 (2017) | 332 | Homo sapiens | − |
2RAP | Rap2 | GTP, Mg2+ | 2.60 Å | 1998 (2011) | 167 | Homo sapiens | − |
3RAP | GTP, Mg2+ | 2.20 Å | 1999 (2023) | 167 | Homo sapiens | − | |
6HPI | IL-36α | - | NMR ensemble | 2019 (2023) | 158 | Homo sapiens | − |
1AO6 | HSA | - | 2.50 Å | 1998 (2011) | 585 | Homo sapiens | − |
1N5U | HSA | HEM, MYR | 1.90 Å | 2003 (2011) | 585 | Homo sapiens | − |
4G03 | HSA | - | 2.22 Å | 2013 (2013) | 585 | Homo sapiens | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Binbay, F.A.; Rathod, D.C.; George, A.A.P.; Imhof, D. Quality Assessment of Selected Protein Structures Derived from Homology Modeling and AlphaFold. Pharmaceuticals 2023, 16, 1662. https://doi.org/10.3390/ph16121662
Binbay FA, Rathod DC, George AAP, Imhof D. Quality Assessment of Selected Protein Structures Derived from Homology Modeling and AlphaFold. Pharmaceuticals. 2023; 16(12):1662. https://doi.org/10.3390/ph16121662
Chicago/Turabian StyleBinbay, Furkan Ayberk, Dhruv Chetanbhai Rathod, Ajay Abisheck Paul George, and Diana Imhof. 2023. "Quality Assessment of Selected Protein Structures Derived from Homology Modeling and AlphaFold" Pharmaceuticals 16, no. 12: 1662. https://doi.org/10.3390/ph16121662
APA StyleBinbay, F. A., Rathod, D. C., George, A. A. P., & Imhof, D. (2023). Quality Assessment of Selected Protein Structures Derived from Homology Modeling and AlphaFold. Pharmaceuticals, 16(12), 1662. https://doi.org/10.3390/ph16121662