Cardiac PET Imaging of ATP Binding Cassette (ABC) Transporters: Opportunities and Challenges
Abstract
:1. Introduction
2. ABC Transporters of the Heart
2.1. ABC Transporters
2.2. ABC Transporter Families in Cardiac Tissue
Expression | Function | Disease | Ref. | |
---|---|---|---|---|
ABCA1 | Macrophages in (coronary) arteries | Mediate nascent HDL biogenesis and allow for the excretion of excess intracellular cholesterol and phospholipids | Dyslipidemia; Atherosclerosis; Coronary heart disease | [7,28,29] |
ABCA2 | Heart; monocytes and macrophages | A sterol transporter maintains homeostatic levels of cholesterol. | Atherosclerosis; Alzheimer’s disease | [35,36] |
ABCA5 | Macrophages in (coronary) arteries | A macrophage cholesterol efflux. | Atherosclerosis; Coronary heart disease | [31,43] |
Cardiomyocytes | Involved in the processing of autolysosome. | Lysosomal diseases in heart; Dilated cardiomyopathy | [44] | |
ABCA8 | Heart; macrophages | Cholesterol efflux and HDL transshipment. | Atherosclerosis; Coronary heart disease | [32,33,34] |
ABCA9 | Heart; macrophages | Works in macrophage lipid homeostasis and monocyte differentiation. | [45] | |
ABCA10 | Heart; macrophages | Serve functions in lipid trafficking. | [46] | |
ABCB1 (P-gp, MDR1) | Endothelial cells in capillaries and arterioles | Acts as an effective barrier between the blood and the cardiac myocytes. Shields heart tissue from the cardiac toxicity of some medicines. | Dilated cardiomyopathy | [8,9,18] |
ABCB10 | Heart; inner mitochondrial membrane | Affects heme synthesis and mitochondrial iron transportation. | Myocardial ischemia/reperfusion injury | [47,48] |
ABCC1 (MRP1) | Heart; vascular endothelial cells | Facilitates the transport of conjugates and hydrophobic substances; controls vascular endothelial homeostasis and blood pressure. | Anthracycline-induced cardiotoxicity; Hypertension; Atherogenesis | [27,49] |
ABCC5 (MRP5) | Cardiomyocytes; vascular | An organic anion export pump removes cGMP from cardiac cells. | Ischemic and dilated cardiomyopathy | [18,26] |
ABCC8 (SUR1) | Cardiac atrial KATP channels | Functional role in sarcolemma ATP-sensitive potassium channels. | Myocardial ischemia/reperfusion injury | [41,50] |
ABCC9 (SUR2) | Cardiac ventricular myocytes | Essential element of the sarcolemma KATP channel in cardiac ventricular myocytes. | Dilated cardiomyopathy; Cantú syndrome | [39,40] |
ABCG1 | Macrophage; epicardial and subcutaneous adipose tissue | Mediates cholesterol transport to the HDL fraction. | Atherosclerosis; Coronary heart disease | [29,51] |
ABCG2 (BCRP) | Arterioles; endothelial cells side population (SP) stem cells | Influences the survival, migration, and tube formation of microvascular endothelial cells in the heart. | Myocardial ischemia/reperfusion injury dilative; Ischemic cardiomyopathies | [11,19,52] |
2.3. P-gp Expression in Cardiac Tissue
3. Regulation of P-gp in the Heart
3.1. Substrates of P-gp
3.2. Inhibitors of P-gp
3.3. Inducers and Activators of P-gp
3.4. Heart Diseases Affecting P-gp Function
3.5. Other Factors Affecting P-gp Function
4. PET Imaging
4.1. Methods to Measure ABC Transporters Function with PET
4.2. PET Tracers for Measuring P-gp Function
4.2.1. [11C]verapamil and (R)-[11C]verapamil
4.2.2. [18F]MC225
4.2.3. [18F] and [11C]gefitinib
4.2.4. [18F]MPPF
4.2.5. [11C]rhodamine-123
4.2.6. [11C]loperamide and [11C]dLop
4.2.7. [11C]metoclopramide
4.2.8. [18F]AVT-011
4.2.9. [11C]tariquidar, [11C]elacridar, and [11C]laniquidar
4.2.10. [11C]BMP
5. Discussion
5.1. Opportunities
5.2. Challenges
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thomas, C.; Tampé, R. Structural and Mechanistic Principles of ABC Transporters. Annu. Rev. Biochem. 2020, 89, 605–636. [Google Scholar] [CrossRef]
- Domínguez, C.J.; Tocchetti, G.N.; Rigalli, J.P.; Mottino, A.D. Acute regulation of apical ABC transporters in the gut. Potential influence on drug bioavailability. Pharmacol. Res. 2021, 163, 105251. [Google Scholar] [CrossRef]
- Leandro, K.; Bicker, J.; Alves, G.; Falcão, A.; Fortuna, A. ABC transporters in drug-resistant epilepsy: Mechanisms of upregulation and therapeutic approaches. Pharmacol. Res. 2019, 144, 357–376. [Google Scholar] [CrossRef]
- Villanueva, S.; Zhang, W.; Zecchinati, F.; Mottino, A.; Vore, M. ABC Transporters in Extrahepatic Tissues: Pharmacological Regulation in Heart and Intestine. Curr. Med. Chem. 2019, 26, 1155–1184. [Google Scholar] [CrossRef]
- Kumar, V.; Santhosh Kumar, T.R.; Kartha, C.C. Mitochondrial membrane transporters and metabolic switch in heart failure. Heart Fail. Rev. 2019, 24, 255–267. [Google Scholar] [CrossRef]
- Jacobo-Albavera, L.; Domínguez-Pérez, M.; Medina-Leyte, D.J.; González-Garrido, A.; Villarreal-Molina, T. The Role of the ATP-Binding Cassette A1 (ABCA1) in Human Disease. Int. J. Mol. Sci. 2021, 22, 1593. [Google Scholar] [CrossRef] [PubMed]
- Westerterp, M.; Fotakis, P.; Ouimet, M.; Bochem, A.E.; Zhang, H.; Molusky, M.M.; Wang, W.; Abramowicz, S.; La Bastide-van Gemert, S.; Wang, N.; et al. Cholesterol Efflux Pathways Suppress Inflammasome Activation, NETosis, and Atherogenesis. Circulation 2018, 138, 898–912. [Google Scholar] [CrossRef] [PubMed]
- Auzmendi, J.; Akyuz, E.; Lazarowski, A. The role of P-glycoprotein (P-gp) and inwardly rectifying potassium (Kir) channels in sudden unexpected death in epilepsy (SUDEP). Epilepsy Behav. 2021, 121, 106590. [Google Scholar] [CrossRef] [PubMed]
- Ogonowski, N.; Rukavina Mikusic, N.L.; Kouyoumdzian, N.M.; Choi, M.R.; Fellet, A.; Balaszczuk, A.M.; Celuch, S.M. Cardiotoxic Effects of the Antineoplastic Doxorubicin in a Model of Metabolic Syndrome: Oxidative Stress and Transporter Expression in the Heart. J. Cardiovasc. Pharmacol. 2021, 78, 784–791. [Google Scholar] [CrossRef]
- Grange, R.M.H.; Preedy, M.E.J.; Renukanthan, A.; Dignam, J.P.; Lowe, V.J.; Moyes, A.J.; Pérez-Ternero, C.; Aubdool, A.A.; Baliga, R.S.; Hobbs, A.J. Multidrug resistance proteins preferentially regulate natriuretic peptide-driven cGMP signalling in the heart and vasculature. Br. J. Pharmacol. 2022, 179, 2443–2459. [Google Scholar] [CrossRef]
- Higashikuni, Y.; Sainz, J.; Nakamura, K.; Takaoka, M.; Enomoto, S.; Iwata, H.; Sahara, M.; Tanaka, K.; Koibuchi, N.; Ito, S.; et al. The ATP-Binding Cassette Transporter BCRP1/ABCG2 Plays a Pivotal Role in Cardiac Repair After Myocardial Infarction Via Modulation of Microvascular Endothelial Cell Survival and Function. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 2128–2135. [Google Scholar] [CrossRef] [PubMed]
- Wessler Jeffrey, D.; Grip Laura, T.; Mendell, J.; Giugliano Robert, P. The P-Glycoprotein Transport System and Cardiovascular Drugs. J. Am. Coll. Cardiol. 2013, 61, 2495–2502. [Google Scholar] [CrossRef]
- Bulten, B.F.; Sollini, M.; Boni, R.; Massri, K.; de Geus-Oei, L.-F.; van Laarhoven, H.W.M.; Slart, R.H.J.A.; Erba, P.A. Cardiac molecular pathways influenced by doxorubicin treatment in mice. Sci. Rep. 2019, 9, 2514. [Google Scholar] [CrossRef] [PubMed]
- Ritter, A.; Quartermaine, C.; Pierre-Charles, J.; Balasubramanian, S.; Raeisi-Giglou, P.; Addison, D.; Miller, E. Cardiotoxicity of Anti-Cancer Radiation Therapy: A Focus on Heart Failure. Curr. Heart Fail. Rep. 2023, 20, 44–55. [Google Scholar] [CrossRef]
- Lyon, A.R.; López-Fernández, T.; Couch, L.S.; Asteggiano, R.; Aznar, M.C.; Bergler-Klein, J.; Boriani, G.; Cardinale, D.; Cordoba, R.; Cosyns, B.; et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS): Developed by the task force on cardio-oncology of the European Society of Cardiology (ESC). Eur. Heart J. 2022, 43, 4229–4361. [Google Scholar] [CrossRef] [PubMed]
- Totzeck, M.; Aide, N.; Bauersachs, J.; Bucerius, J.; Georgoulias, P.; Herrmann, K.; Hyafil, F.; Kunikowska, J.; Lubberink, M.; Nappi, C.; et al. Nuclear medicine in the assessment and prevention of cancer therapy-related cardiotoxicity: Prospects and proposal of use by the European Association of Nuclear Medicine (EANM). Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 792–812. [Google Scholar] [CrossRef]
- Couture, L.; Nash, J.A.; Turgeon, J. The ATP-Binding Cassette Transporters and Their Implication in Drug Disposition: A Special Look at the Heart. Pharmacol. Rev. 2006, 58, 244. [Google Scholar] [CrossRef]
- Meissner, K.; Sperker, B.; Karsten, C.; Zu Schwabedissen, H.M.; Seeland, U.; Böhm, M.; Bien, S.; Dazert, P.; Kunert-Keil, C.; Vogelgesang, S.; et al. Expression and Localization of P-glycoprotein in Human Heart: Effects of Cardiomyopathy. J. Histochem. Cytochem. 2002, 50, 1351–1356. [Google Scholar] [CrossRef]
- Meissner, K.; Heydrich, B.; Jedlitschky, G.; Zu Schwabedissen, H.M.; Mosyagin, I.; Dazert, P.; Eckel, L.; Vogelgesang, S.; Warzok, R.W.; Böhm, M.; et al. The ATP-binding Cassette Transporter ABCG2 (BCRP), a Marker for Side Population Stem Cells, Is Expressed in Human Heart. J. Histochem. Cytochem. 2006, 54, 215–221. [Google Scholar] [CrossRef]
- Sivapackiam, J.; Sharma, M.; Schindler, T.H.; Sharma, V. PET Radiopharmaceuticals for Imaging Chemotherapy-Induced Cardiotoxicity. Curr. Cardiol. Rep. 2020, 22, 62. [Google Scholar] [CrossRef]
- Bauer, M.; Karch, R.; Zeitlinger, M.; Philippe, C.; Römermann, K.; Stanek, J.; Maier-Salamon, A.; Wadsak, W.; Jäger, W.; Hacker, M.; et al. Approaching Complete Inhibition of P-Glycoprotein at the Human Blood–Brain Barrier: An (R)-[11C]Verapamil PET Study. J. Cereb. Blood Flow Metab. 2015, 35, 743–746. [Google Scholar] [CrossRef]
- Mossel, P.; Garcia Varela, L.; Arif, W.M.; van der Weijden, C.W.J.; Boersma, H.H.; Willemsen, A.T.M.; Boellaard, R.; Elsinga, P.H.; Borra, R.J.H.; Colabufo, N.A.; et al. Evaluation of P-glycoprotein function at the blood-brain barrier using [(18)F]MC225-PET. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 4105–4106. [Google Scholar] [CrossRef]
- Liu, X. ABC Family Transporters. In Drug Transporters in Drug Disposition, Effects and Toxicity; Liu, X., Pan, G., Eds.; Springer: Singapore, 2019; pp. 13–100. [Google Scholar] [CrossRef]
- Pereira, C.D.; Martins, F.; Wiltfang, J.; da Cruz e Silva, O.A.B.; Rebelo, S. ABC Transporters Are Key Players in Alzheimer’s Disease. J. Alzheimer’s Dis. 2018, 61, 463–485. [Google Scholar] [CrossRef]
- Juliano, R.L.; Ling, V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Et Biophys. Acta (BBA)-Biomembr. 1976, 455, 152–162. [Google Scholar] [CrossRef]
- Dazert, P.; Meissner, K.; Vogelgesang, S.; Heydrich, B.; Eckel, L.; Böhm, M.; Warzok, R.; Kerb, R.; Brinkmann, U.; Schaeffeler, E.; et al. Expression and Localization of the Multidrug Resistance Protein 5 (MRP5/ABCC5), a Cellular Export Pump for Cyclic Nucleotides, in Human Heart. Am. J. Pathol. 2003, 163, 1567–1577. [Google Scholar] [CrossRef]
- Schumacher, T.; Benndorf, R.A. ABC Transport Proteins in Cardiovascular Disease—A Brief Summary. Molecules 2017, 22, 589. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xiao, Q.; Wang, L.; Wang, Y.; Wang, D.; Ding, H. Role of ABCA1 in Cardiovascular Disease. J. Pers. Med. 2022, 12, 1010. [Google Scholar] [CrossRef] [PubMed]
- Miroshnikova, V.V.; Panteleeva, A.A.; Pobozheva, I.A.; Razgildina, N.D.; Polyakova, E.A.; Markov, A.V.; Belyaeva, O.D.; Berkovich, O.A.; Baranova, E.I.; Nazarenko, M.S.; et al. ABCA1 and ABCG1 DNA methylation in epicardial adipose tissue of patients with coronary artery disease. BMC Cardiovasc. Disord. 2021, 21, 566. [Google Scholar] [CrossRef] [PubMed]
- Attie, A.D. ABCA1: At the nexus of cholesterol, HDL and atherosclerosis. Trends Biochem. Sci. 2007, 32, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Ray, A.G.; Choudhury, K.R.; Chakraborty, S.; Chakravarty, D.; Chander, V.; Jana, B.; Siddiqui, K.N.; Bandyopadhyay, A. Novel Mechanism of Cholesterol Transport by ABCA5 in Macrophages and Its Role in Dyslipidemia. J. Mol. Biol. 2020, 432, 4922–4941. [Google Scholar] [CrossRef]
- Fan, L.L.; Liu, L.; Wang, C.Y.; Guo, T.; Luo, H. A novel nonsense mutation of ABCA8 in a patient with reduced HDL-c levels and atherosclerosis. QJM Int. J. Med. 2022, 115, 321–322. [Google Scholar] [CrossRef]
- Tsuruoka, S.; Ishibashi, K.; Yamamoto, H.; Wakaumi, M.; Suzuki, M.; Schwartz, G.J.; Imai, M.; Fujimura, A. Functional analysis of ABCA8, a new drug transporter. Biochem. Biophys. Res. Commun. 2002, 298, 41–45. [Google Scholar] [CrossRef]
- Trigueros-Motos, L.; van Capelleveen, J.C.; Torta, F.; Castaño, D.; Zhang, L.-H.; Chai, E.C.; Kang, M.; Dimova, L.G.; Schimmel, A.W.M.; Tietjen, I.; et al. ABCA8 Regulates Cholesterol Efflux and High-Density Lipoprotein Cholesterol Levels. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 2147–2155. [Google Scholar] [CrossRef]
- Macé, S.; Cousin, E.; Ricard, S.; Génin, E.; Spanakis, E.; Lafargue-Soubigou, C.; Génin, B.; Fournel, R.; Roche, S.; Haussy, G.; et al. ABCA2 is a strong genetic risk factor for early-onset Alzheimer’s disease. Neurobiol. Dis. 2005, 18, 119–125. [Google Scholar] [CrossRef]
- Mack, J.T.; Beljanski, V.; Tew, K.D.; Townsend, D.M. The ATP-binding cassette transporter ABCA2 as a mediator of intracellular trafficking. Biomed. Pharmacother. 2006, 60, 587–592. [Google Scholar] [CrossRef] [PubMed]
- Libby, P. The changing landscape of atherosclerosis. Nature 2021, 592, 524–533. [Google Scholar] [CrossRef] [PubMed]
- Müller-Nordhorn, J.; Willich, S.N. Coronary heart disease. In International Encyclopedia of Public Health, 2nd ed.; Quah, S.R., Ed.; Academic Press: Oxford, UK, 2017; pp. 159–167. [Google Scholar] [CrossRef]
- Flagg, T.P.; Kurata, H.T.; Masia, R.; Caputa, G.; Magnuson, M.A.; Lefer, D.J.; Coetzee, W.A.; Nichols, C.G. Differential Structure of Atrial and Ventricular KATP. Circ. Res. 2008, 103, 1458–1465. [Google Scholar] [CrossRef] [PubMed]
- Bienengraeber, M.; Olson, T.M.; Selivanov, V.A.; Kathmann, E.C.; O’Cochlain, F.; Gao, F.; Karger, A.B.; Ballew, J.D.; Hodgson, D.M.; Zingman, L.V.; et al. ABCC9 mutations identified in human dilated cardiomyopathy disrupt catalytic KATP channel gating. Nat. Genet. 2004, 36, 382–387. [Google Scholar] [CrossRef] [PubMed]
- Philip-Couderc, P.; Tavares, N.I.; Roatti, A.; Lerch, R.; Montessuit, C.; Baertschi, A.J. Forkhead Transcription Factors Coordinate Expression of Myocardial KATP Channel Subunits and Energy Metabolism. Circ. Res. 2008, 102, e20–e35. [Google Scholar] [CrossRef]
- Nichols, C.G. KATP channels as molecular sensors of cellular metabolism. Nature 2006, 440, 470–476. [Google Scholar] [CrossRef]
- Ye, D.; Meurs, I.; Ohigashi, M.; Calpe-Berdiel, L.; Habets, K.L.L.; Zhao, Y.; Kubo, Y.; Yamaguchi, A.; Van Berkel, T.J.C.; Nishi, T.; et al. Macrophage ABCA5 deficiency influences cellular cholesterol efflux and increases susceptibility to atherosclerosis in female LDLr knockout mice. Biochem. Biophys. Res. Commun. 2010, 395, 387–394. [Google Scholar] [CrossRef]
- Kubo, Y.; Sekiya, S.; Ohigashi, M.; Takenaka, C.; Tamura, K.; Nada, S.; Nishi, T.; Yamamoto, A.; Yamaguchi, A. ABCA5 Resides in Lysosomes, and ABCA5 Knockout Mice Develop Lysosomal Disease-Like Symptoms. Mol. Cell. Biol. 2005, 25, 4138–4149. [Google Scholar] [CrossRef] [PubMed]
- Piehler, A.; Kaminski, W.E.; Wenzel, J.J.; Langmann, T.; Schmitz, G. Molecular structure of a novel cholesterol-responsive A subclass ABC transporter, ABCA9. Biochem. Biophys. Res. Commun. 2002, 295, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, J.J.; Kaminski, W.E.; Piehler, A.; Heimerl, S.; Langmann, T.; Schmitz, G. ABCA10, a novel cholesterol-regulated ABCA6-like ABC transporter. Biochem. Biophys. Res. Commun. 2003, 306, 1089–1098. [Google Scholar] [CrossRef]
- Bayeva, M.; Khechaduri, A.; Wu, R.; Burke, M.A.; Wasserstrom, J.A.; Singh, N.; Liesa, M.; Shirihai, O.S.; Langer, N.B.; Paw, B.H.; et al. ATP-Binding Cassette B10 Regulates Early Steps of Heme Synthesis. Circ. Res. 2013, 113, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Liesa, M.; Luptak, I.; Qin, F.; Hyde, B.B.; Sahin, E.; Siwik, D.A.; Zhu, Z.; Pimentel, D.R.; Xu, X.J.; Ruderman, N.B.; et al. Mitochondrial Transporter ATP Binding Cassette Mitochondrial Erythroid Is a Novel Gene Required for Cardiac Recovery After Ischemia/Reperfusion. Circulation 2011, 124, 806–813. [Google Scholar] [CrossRef]
- Semsei, A.F.; Erdelyi, D.J.; Ungvari, I.; Csagoly, E.; Hegyi, M.Z.; Kiszel, P.S.; Lautner-Csorba, O.; Szabolcs, J.; Masat, P.; Fekete, G.; et al. ABCC1 polymorphisms in anthracycline-induced cardiotoxicity in childhood acute lymphoblastic leukaemia. Cell Biol. Int. 2012, 36, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Elrod, J.W.; Harrell, M.; Flagg, T.P.; Gundewar, S.; Magnuson, M.A.; Nichols, C.G.; Coetzee, W.A.; Lefer, D.J. Role of Sulfonylurea Receptor Type 1 Subunits of ATP-Sensitive Potassium Channels in Myocardial Ischemia/Reperfusion Injury. Circulation 2008, 117, 1405–1413. [Google Scholar] [CrossRef]
- Yvan-Charvet, L.; Wang, N.; Tall, A.R. Role of HDL, ABCA1, and ABCG1 Transporters in Cholesterol Efflux and Immune Responses. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 139–143. [Google Scholar] [CrossRef]
- Mal, G.S. The role of genes of membrane transporters in the formation of a drug response in patients with ischemic heart disease. Atherosclerosis 2020, 315, e186. [Google Scholar] [CrossRef]
- Lazarowski, A.J.; Rivello, H.J.G.; Janavel, G.L.V.; Cuniberti, L.A.; Meckert, P.M.C.; Yannarelli, G.G.; Mele, A.; Crottogini, A.J.; Laguens, R.P. Cardiomyocytes of Chronically Ischemic Pig Hearts Express the MDR-1 Gene-encoded P-glycoprotein. J. Histochem. Cytochem. 2005, 53, 845–850. [Google Scholar] [CrossRef] [PubMed]
- Planek, M.I.C.; Manshad, A.; Hein, K.; Hemu, M.; Ballout, F.; Varandani, R.; Venugopal, P.; Okwuosa, T. Prediction of doxorubicin cardiotoxicity by early detection of subclinical right ventricular dysfunction. Cardio-Oncology 2020, 6, 10. [Google Scholar] [CrossRef] [PubMed]
- van Asperen, J.; Schinkel, A.H.; Beijnen, J.H.; Nooijen, W.J.; Borst, P.; van Tellingen, O. Altered Pharmacokinetics of Vinblastine in Mdr1a P-glycoprotein-Deficient Mice. JNCI J. Natl. Cancer Inst. 1996, 88, 994–999. [Google Scholar] [CrossRef]
- Okyar, A.; Kumar, S.A.; Filipski, E.; Piccolo, E.; Ozturk, N.; Xandri-Monje, H.; Pala, Z.; Abraham, K.; Gomes, A.R.G.D.J.; Orman, M.N.; et al. Sex-, feeding-, and circadian time-dependency of P-glycoprotein expression and activity—Implications for mechanistic pharmacokinetics modeling. Sci. Rep. 2019, 9, 10505. [Google Scholar] [CrossRef] [PubMed]
- Lévi, F.; Okyar, A.; Dulong, S.; Innominato, P.F.; Clairambault, J. Circadian Timing in Cancer Treatments. Annu. Rev. Pharmacol. Toxicol. 2010, 50, 377–421. [Google Scholar] [CrossRef]
- Zhang, W.; Han, Y.; Lim, S.L.; Lim, L.Y. Dietary regulation of P-gp function and expression. Expert Opin. Drug Metab. Toxicol. 2009, 5, 789–801. [Google Scholar] [CrossRef] [PubMed]
- Drug Interactions|Relevant Regulatory Guidance and Policy Documents. Available online: https://www.fda.gov/drugs/drug-interactions-labeling/drug-interactions-relevant-regulatory-guidance-and-policy-documents (accessed on 1 October 2023).
- Schmitt, C.; Kaeser, B.; Riek, M.; Bech, N.; Kreuzer, C. Effect of saquinavir/ritonavir on P-glycoprotein activity in healthy volunteers using digoxin as a probe. Int. J. Clin. Pharmacol. Ther. 2010, 48, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Aylin Arici, M.; Kilinc, E.; Demir, O.; Ates, M.; Yesilyurt, A.; Gelal, A. Interactions between Verapamil and Digoxin in Langendorff-Perfused Rat Hearts: The Role of Inhibition of P-glycoprotein in the Heart. Basic Clin. Pharmacol. Toxicol. 2010, 107, 847–852. [Google Scholar] [CrossRef]
- Soldner, A.; Benet, L.Z.; Mutschler, E.; Christians, U. Active transport of the angiotensin-II antagonist losartan and its main metabolite EXP 3174 across MDCK-MDR1 and Caco-2 cell monolayers. Br. J. Pharmacol. 2000, 129, 1235–1243. [Google Scholar] [CrossRef]
- Zuo, X.-C.; Zhang, W.-L.; Yuan, H.; Barrett, J.S.; Hua, Y.; Huang, Z.-J.; Zhou, H.-H.; Pei, Q.; Guo, C.-X.; Wang, J.-L.; et al. ABCB1 Polymorphism and Gender Affect the Pharmacokinetics of Amlodipine in Chinese Patients with Essential Hypertension: A Population Analysis. Drug Metab. Pharmacokinet. 2014, 29, 305–311. [Google Scholar] [CrossRef]
- Taubert, D.; von Beckerath, N.; Grimberg, G.; Lazar, A.; Jung, N.; Goeser, T.; Kastrati, A.; Schömig, A.; Schömig, E. Impact of P-glycoprotein on clopidogrel absorption. Clin. Pharmacol. Ther. 2006, 80, 486–501. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, R.; Maideen, N.M.P. HMG-CoA Reductase Inhibitors (Statins) and their Drug Interactions Involving CYP Enzymes, P-glycoprotein and OATP Transporters-An Overview. Curr. Drug Metab. 2021, 22, 328–341. [Google Scholar] [PubMed]
- Tian, Y.; Lei, Y.; Wang, Y.; Lai, J.; Wang, J.; Xia, F. Mechanism of multidrug resistance to chemotherapy mediated by P-glycoprotein (Review). Int. J. Oncol. 2023, 63, 119. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Qin, Z.; Zhang, W.-D.; Cheng, G.; Yehuda, A.G.; Ashby, C.R.; Chen, Z.-S.; Cheng, X.-D.; Qin, J.-J. Medicinal chemistry strategies to discover P-glycoprotein inhibitors: An update. Drug Resist. Updates 2020, 49, 100681. [Google Scholar] [CrossRef] [PubMed]
- Hunt, T.L.; Tzanis, E.; Bai, S.; Manley, A.; Chitra, S.; McGovern, P.C. The Effect of Verapamil, a P-gp Inhibitor, on the Pharmacokinetics, Safety, and Tolerability of Omadacycline in Healthy Adults: A Phase I, Open-Label, Single-Sequence Study. Eur. J. Drug Metab. Pharmacokinet. 2021, 46, 85–92. [Google Scholar] [CrossRef]
- Zhou, Z.-y.; Wan, L.-l.; Yang, Q.-j.; Han, Y.-l.; Li, D.; Lu, J.; Guo, C. Nilotinib reverses ABCB1/P-glycoprotein-mediated multidrug resistance but increases cardiotoxicity of doxorubicin in a MDR xenograft model. Toxicol. Lett. 2016, 259, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Elmeliegy, M.; Vourvahis, M.; Guo, C.; Wang, D.D. Effect of P-glycoprotein (P-gp) Inducers on Exposure of P-gp Substrates: Review of Clinical Drug–Drug Interaction Studies. Clin. Pharmacokinet. 2020, 59, 699–714. [Google Scholar] [CrossRef]
- Vilas-Boas, V.; Silva, R.; Palmeira, A.; Sousa, E.; Ferreira, L.M.; Branco, P.S.; Carvalho, F.; Bastos, M.D.L.; Remião, F. Development of Novel Rifampicin-Derived P-Glycoprotein Activators/Inducers. Synthesis, In Silico Analysis and Application in the RBE4 Cell Model, Using Paraquat as Substrate. PLoS ONE 2013, 8, e74425. [Google Scholar] [CrossRef]
- Sérée, E.; Villard, P.H.; Hevér, A.; Guigal, N.; Puyoou, F.; Charvet, B.; Point-Scomma, H.; Lechevalier, E.; Lacarelle, B.; Barra, Y. Modulation of MDR1 and CYP3A Expression by Dexamethasone: Evidence for an Inverse Regulation in Adrenals. Biochem. Biophys. Res. Commun. 1998, 252, 392–395. [Google Scholar] [CrossRef]
- Pinto, Y.M.; Elliott, P.M.; Arbustini, E.; Adler, Y.; Anastasakis, A.; Böhm, M.; Duboc, D.; Gimeno, J.; de Groote, P.; Imazio, M.; et al. Proposal for a revised definition of dilated cardiomyopathy, hypokinetic non-dilated cardiomyopathy, and its implications for clinical practice: A position statement of the ESC working group on myocardial and pericardial diseases. Eur. Heart J. 2016, 37, 1850–1858. [Google Scholar] [CrossRef]
- Cojan-Minzat, B.O.; Zlibut, A.; Agoston-Coldea, L. Non-ischemic dilated cardiomyopathy and cardiac fibrosis. Heart Fail. Rev. 2021, 26, 1081–1101. [Google Scholar] [CrossRef] [PubMed]
- Sekulic, M.; Zacharias, M.; Medalion, B. Ischemic Cardiomyopathy and Heart Failure. Circ. Heart Fail. 2019, 12, e006006. [Google Scholar] [CrossRef]
- Baris, N.; Kalkan, S.; Güneri, S.; Bozdemir, V.; Guven, H. Influence of carvedilol on serum digoxin levels in heart failure: Is there any gender difference? Eur. J. Clin. Pharmacol. 2006, 62, 535–538. [Google Scholar] [CrossRef]
- Bauer, M.; Karch, R.; Neumann, F.; Abrahim, A.; Wagner, C.C.; Kletter, K.; Müller, M.; Zeitlinger, M.; Langer, O. Age dependency of cerebral P-gp function measured with (R)-[11C]verapamil and PET. Eur. J. Clin. Pharmacol. 2009, 65, 941–946. [Google Scholar] [CrossRef] [PubMed]
- Hoffmeyer, S.; von Richter Burk, O.; Arnold, H.P.; Brockmöller, J.; Johne, A.; Cascorbi, I.; Gerloff, T.; Roots, I.; Eichelbaum, M.; Brinkmann, U. Functional polymorphisms of the human multidrug-resistance gene: Multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc. Natl. Acad. Sci. USA 2000, 97, 3473–3478. [Google Scholar] [CrossRef] [PubMed]
- Ameyaw, M.-M.; Regateiro, F.; Li, T.; Liu, X.; Tariq, M.; Mobarek, A.; Thornton, N.; Folayan, G.O.; Githang’a, J.; Indalo, A.; et al. MDR1 pharmacogenetics: Frequency of the C3435T mutation in exon 26 is significantly influenced by ethnicity. Pharmacogenetics Genom. 2001, 11, 217–221. [Google Scholar] [CrossRef]
- Silva, R.; Vilas-Boas, V.; Carmo, H.; Dinis-Oliveira, R.J.; Carvalho, F.; de Lourdes Bastos, M.; Remião, F. Modulation of P-glycoprotein efflux pump: Induction and activation as a therapeutic strategy. Pharmacol. Ther. 2015, 149, 1–123. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.M.; Babich, J.W. PET Tracers for Imaging Cardiac Function in Cardio-oncology. Curr. Cardiol. Rep. 2022, 24, 247–260. [Google Scholar] [CrossRef]
- Tomasi, G.; Turkheimer, F.; Aboagye, E. Importance of Quantification for the Analysis of PET Data in Oncology: Review of Current Methods and Trends for the Future. Mol. Imaging Biol. 2012, 14, 131–146. [Google Scholar] [CrossRef]
- Kannan, P.; John, C.; Zoghbi, S.S.; Halldin, C.; Gottesman, M.M.; Innis, R.B.; Hall, M.D. Imaging the Function of P-Glycoprotein With Radiotracers: Pharmacokinetics and In Vivo Applications. Clin. Pharmacol. Ther. 2009, 86, 368–377. [Google Scholar] [CrossRef]
- García-Varela, L.; Arif, W.M.; Vállez García, D.; Kakiuchi, T.; Ohba, H.; Harada, N.; Tago, T.; Elsinga, P.H.; Tsukada, H.; Colabufo, N.A.; et al. Pharmacokinetic Modeling of [18F]MC225 for Quantification of the P-Glycoprotein Function at the Blood–Brain Barrier in Non-Human Primates with PET. Mol. Pharm. 2020, 17, 3477–3486. [Google Scholar] [CrossRef]
- Luurtsema, G.; Molthoff, C.F.M.; Schuit, R.C.; Windhorst, A.D.; Lammertsma, A.A.; Franssen, E.J.F. Evaluation of (R)-[11C]verapamil as PET tracer of P-glycoprotein function in the blood–brain barrier: Kinetics and metabolism in the rat. Nucl. Med. Biol. 2005, 32, 87–93. [Google Scholar] [CrossRef]
- Savolainen, H.; Windhorst, A.D.; Elsinga, P.H.; Cantore, M.; Colabufo, N.A.; Willemsen, A.T.M.; Luurtsema, G. Evaluation of [18F]MC225 as a PET radiotracer for measuring P-glycoprotein function at the blood–brain barrier in rats: Kinetics, metabolism, and selectivity. J. Cereb. Blood Flow Metab. 2016, 37, 1286–1298. [Google Scholar] [CrossRef] [PubMed]
- García-Varela, L.; García, D.V.; Kakiuchi, T.; Ohba, H.; Nishiyama, S.; Tago, T.; Elsinga, P.H.; Tsukada, H.; Colabufo, N.A.; Dierckx, R.A.J.O.; et al. Pharmacokinetic Modeling of (R)-[11C]verapamil to Measure the P-Glycoprotein Function in Nonhuman Primates. Mol. Pharm. 2021, 18, 416–428. [Google Scholar] [CrossRef] [PubMed]
- Mark, M.; David, A.M.; Jeanne, M.L.; Steve, S.; Ann, C.C.; Lucy, S.; Jashvant, D.U. Imaging of Cyclosporine Inhibition of P-Glycoprotein Activity Using 11C-verapamil in the Brain: Studies of Healthy Humans. J. Nucl. Med. 2009, 50, 1267. [Google Scholar] [CrossRef]
- Hernández-Lozano, I.; Mairinger, S.; Filip, T.; Sauberer, M.; Wanek, T.; Stanek, J.; Sake, J.A.; Pekar, T.; Ehrhardt, C.; Langer, O. PET imaging to assess the impact of P-glycoprotein on pulmonary drug delivery in rats. J. Control. Release 2022, 342, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Mairinger, S.; Hernández-Lozano, I.; Filip, T.; Löbsch, M.; Stanek, J.; Zeitlinger, M.; Hacker, M.; Tournier, N.; Wanek, T.; Ehrhardt, C.; et al. Influence of P-glycoprotein on pulmonary disposition of the model substrate [11C]metoclopramide assessed by PET imaging in rats. Eur. J. Pharm. Sci. 2023, 183, 106404. [Google Scholar] [CrossRef] [PubMed]
- Bao, X.; Lu, S.; Liow, J.-S.; Morse, C.L.; Anderson, K.B.; Zoghbi, S.S.; Innis, R.B.; Pike, V.W. [11C]Rhodamine-123: Synthesis and biodistribution in rodents. Nucl. Med. Biol. 2012, 39, 1128–1136. [Google Scholar] [CrossRef]
- Laberge, P.; Martineau, P.; Sebajang, H.; Lalonde, G. Verapamil intoxication after substitution of immediate-release for extended-release verapamil. Am. J. Health-Syst. Pharm. 2001, 58, 402–405. [Google Scholar] [CrossRef]
- Luurtsema, G.; Molthoff, C.F.M.; Windhorst, A.D.; Smit, J.W.; Keizer, H.; Boellaard, R.; Lammertsma, A.A.; Franssen, E.J.F. (R)-and (S)-[11C]verapamil as PET-tracers for measuring P-glycoprotein function: In vitro and in vivo evaluation. Nucl. Med. Biol. 2003, 30, 747–751. [Google Scholar] [CrossRef]
- Waldegger, S.; Niemeyer, G.; Mörike, K.; Wagner, C.; Suessbrich, H.; Busch, A.; Lang, F.; Eichelbaum, M. Effect of verapamil enantiomers and metabolites on cardiac K+ channels expressed in Xenopus oocytes. Cell. Physiol. Biochem. 1999, 9, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Varela, L.; Mossel, P.; Aguiar, P.; Vazquez-Matias, D.A.; van Waarde, A.; Willemsen, A.T.M.; Bartels, A.L.; Colabufo, N.A.; Dierckx, R.A.J.O.; Elsinga, P.H.; et al. Dose-response assessment of cerebral P-glycoprotein inhibition in vivo with [18F]MC225 and PET. J. Control. Release 2022, 347, 500–507. [Google Scholar] [CrossRef] [PubMed]
- García-Varela, L.; Rodríguez-Pérez, M.; Custodia, A.; Moraga-Amaro, R.; Colabufo, N.A.; Aguiar, P.; Sobrino, T.; Dierckx, R.A.J.O.; van Waarde, A.; Elsinga, P.H.; et al. In Vivo Induction of P-Glycoprotein Function can be Measured with [18F]MC225 and PET. Mol. Pharm. 2021, 18, 3073–3085. [Google Scholar] [CrossRef] [PubMed]
- Passchier, J.; van Waarde, A.; Doze, P.; Elsinga, P.H.; Vaalburg, W. Influence of P-glycoprotein on brain uptake of [18F]MPPF in rats. Eur. J. Pharmacol. 2000, 407, 273–280. [Google Scholar] [CrossRef]
- Laćan, G.; Plenevaux, A.; Rubins, D.J.; Way, B.M.; Defraiteur, C.; Lemaire, C.; Aerts, J.; Luxen, A.; Cherry, S.R.; Melega, W.P. Cyclosporine, a P-glycoprotein modulator, increases [18F]MPPF uptake in rat brain and peripheral tissues: microPET and ex vivo studies. Eur. J. Nucl. Med. Mol. Imaging 2008, 35, 2256–2266. [Google Scholar] [CrossRef]
- Passchier, J.; Comley, R.; Salinas, C.; Rabiner, E.; Gunn, R.; Cunningham, V.; Wilson, A.; Houle, S.; Gee, A.; Laruelle, M. The role of P-glycoprotein on blood brain barrier permeability of [11C] Loperamide in humans. Neuroimage 2008, 41, T192. [Google Scholar] [CrossRef]
- Edna, F.C.; Daniel, K.; Mordechai, M.; Tadashi, O.; Sheila, D.S.; James, N.H.; Hartmut, G.; Richard, B.K.; Alastair, J.J.W.; Grant, R.W. Differential in Vivo Sensitivity to Inhibition of P-glycoprotein Located in Lymphocytes, Testes, and the Blood-Brain Barrier. J. Pharmacol. Exp. Ther. 2006, 317, 1012. [Google Scholar] [CrossRef]
- Nicholas, S.; Sami, S.Z.; Jeih-San, L.; William, K.; Peter, H.; Kimberly, J.; Robert, L.G.; Andrew, T.; Victor, W.P.; Robert, B.I. Human Brain Imaging and Radiation Dosimetry of 11C-N-Desmethyl-Loperamide, a PET Radiotracer to Measure the Function of P-Glycoprotein. J. Nucl. Med. 2009, 50, 807. [Google Scholar] [CrossRef]
- Sami, S.Z.; Jeih-San, L.; Fumihiko, Y.; Jinsoo, H.; Edward, T.; Neva, L.; Robert, L.G.; Victor, W.P.; Robert, B.I. 11C-Loperamide and Its N-Desmethyl Radiometabolite Are Avid Substrates for Brain Permeability-Glycoprotein Efflux. J. Nucl. Med. 2008, 49, 649. [Google Scholar] [CrossRef]
- Géraldine, P.; Solène, M.; Sébastien, G.; Sylvain, A.; Marie-Anne, P.; Simon, S.; Raphaël, B.; Frédéric, D.; Irène, B.; Fabien, C.; et al. Imaging the Impact of the P-Glycoprotein (ABCB1) Function on the Brain Kinetics of Metoclopramide. J. Nucl. Med. 2016, 57, 309. [Google Scholar] [CrossRef]
- Sylvain, A.; Fabien, C.; Solène, M.; Catriona, W.; Martin, B.; Oliver, L.; Irène, B.; Sébastien, G.; Nicolas, T. P-Glycoprotein (ABCB1) Inhibits the Influx and Increases the Efflux of 11C-Metoclopramide Across the Blood–Brain Barrier: A PET Study on Nonhuman Primates. J. Nucl. Med. 2018, 59, 1609. [Google Scholar] [CrossRef]
- Nicolas, T.; Martin, B.; Verena, P.; Lukas, N.; Eva-Maria, K.; Karsten, B.; Peter, M.; Maria, W.; Rudolf, K.; Fabien, C.; et al. Impact of P-Glycoprotein Function on the Brain Kinetics of the Weak Substrate 11C-Metoclopramide Assessed with PET Imaging in Humans. J. Nucl. Med. 2019, 60, 985. [Google Scholar] [CrossRef]
- Pichler, V.; Ozenil, M.; Bamminger, K.; Vraka, C.; Hacker, M.; Langer, O.; Wadsak, W. Pitfalls and solutions of the fully-automated radiosynthesis of [(11)C]metoclopramide. EJNMMI Radiopharm. Chem. 2019, 4, 31. [Google Scholar] [CrossRef] [PubMed]
- Luurtsema, G.; Schuit, R.C.; Klok, R.P.; Verbeek, J.; Leysen, J.E.; Lammertsma, A.A.; Windhorst, A.D. Evaluation of [11C]laniquidar as a tracer of P-glycoprotein: Radiosynthesis and biodistribution in rats. Nucl. Med. Biol. 2009, 36, 643–649. [Google Scholar] [CrossRef]
- Dörner, B.; Kuntner, C.; Bankstahl, J.P.; Bankstahl, M.; Stanek, J.; Wanek, T.; Stundner, G.; Mairinger, S.; Löscher, W.; Müller, M.; et al. Synthesis and Small-Animal Positron Emission Tomography Evaluation of [11C]-Elacridar As a Radiotracer to Assess the Distribution of P-Glycoprotein at the Blood−Brain Barrier. J. Med. Chem. 2009, 52, 6073–6082. [Google Scholar] [CrossRef]
- Bauer, M.; Blaickner, M.; Philippe, C.; Wadsak, W.; Hacker, M.; Zeitlinger, M.; Langer, O. Whole-Body Distribution and Radiation Dosimetry of 11C-Elacridar and 11C-Tariquidar in Humans. J. Nucl. Med. 2016, 57, 1265. [Google Scholar] [CrossRef] [PubMed]
- Bauer, F.; Kuntner, C.; Bankstahl, J.P.; Wanek, T.; Bankstahl, M.; Stanek, J.; Mairinger, S.; Dörner, B.; Löscher, W.; Müller, M.; et al. Synthesis and in vivo evaluation of [11C]tariquidar, a positron emission tomography radiotracer based on a third-generation P-glycoprotein inhibitor. Bioorganic Med. Chem. 2010, 18, 5489–5497. [Google Scholar] [CrossRef]
- Hernández Lozano, I.; Bauer, M.; Wulkersdorfer, B.; Traxl, A.; Philippe, C.; Weber, M.; Häusler, S.; Stieger, B.; Jäger, W.; Mairinger, S.; et al. Measurement of Hepatic ABCB1 and ABCG2 Transport Activity with [11C]Tariquidar and PET in Humans and Mice. Mol. Pharm. 2020, 17, 316–326. [Google Scholar] [CrossRef] [PubMed]
- Vlaming, M.L.H.; Läppchen, T.; Jansen, H.T.; Kivits, S.; van Driel, A.; van de Steeg, E.; van der Hoorn, J.W.; Sio, C.F.; Steinbach, O.C.; DeGroot, J. PET-CT imaging with [18F]-gefitinib to measure Abcb1a/1b (P-gp) and Abcg2 (Bcrp1) mediated drug–drug interactions at the murine blood–brain barrier. Nucl. Med. Biol. 2015, 42, 833–841. [Google Scholar] [CrossRef]
- Kawamura, K.; Yamasaki, T.; Yui, J.; Hatori, A.; Konno, F.; Kumata, K.; Irie, T.; Fukumura, T.; Suzuki, K.; Kanno, I.; et al. In vivo evaluation of P-glycoprotein and breast cancer resistance protein modulation in the brain using [11C]gefitinib. Nucl. Med. Biol. 2009, 36, 239–246. [Google Scholar] [CrossRef]
- Kannan, P.; Füredi, A.; Dizdarevic, S.; Wanek, T.; Mairinger, S.; Collins, J.; Falls, T.; van Dam, R.M.; Maheshwari, D.; Lee, J.T.; et al. In vivo characterization of [18F]AVT-011 as a radiotracer for PET imaging of multidrug resistance. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 2026–2035. [Google Scholar] [CrossRef] [PubMed]
- Okamura, T.; Kikuchi, T.; Okada, M.; Toramatsu, C.; Fukushi, K.; Takei, M.; Irie, T. Noninvasive and Quantitative Assessment of the Function of Multidrug Resistance-Associated Protein 1 in the Living Brain. J. Cereb. Blood Flow Metab. 2008, 29, 504–511. [Google Scholar] [CrossRef] [PubMed]
- Severin, M.; Johannes, A.S.; Irene Hernández, L.; Thomas, F.; Michael, S.; Johann, S.; Thomas, W.; Carsten, E.; Oliver, L. Assessing the Activity of Multidrug Resistance–Associated Protein 1 at the Lung Epithelial Barrier. J. Nucl. Med. 2020, 61, 1650. [Google Scholar] [CrossRef]
- Luurtsema, G.; Elsinga, P.; Dierckx, R.; Boellaard, R.; Waarde, A.V. PET tracers for imaging of ABC transporters at the blood-brain barrier: Principles and strategies. Curr. Pharm. Des. 2016, 22, 5779–5785. [Google Scholar] [CrossRef] [PubMed]
- Mossel, P.; Bartels, A.L.; de Deyn, P.P.; Luurtsema, G. The Role of P-Glycoprotein at the Blood–Brain Barrier in Neurological and Psychiatric Disease. In PET and SPECT in Psychiatry; Dierckx, R.A.J.O., Otte, A., de Vries, E.F.J., van Waarde, A., Sommer, I.E., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 45–81. [Google Scholar] [CrossRef]
- Hendrikse, N.H.; Schinkel, A.H.; De Vries, E.G.E.; Fluks, E.; Van der Graaf, W.T.A.; Willemsen, A.T.M.; Vaalburg, W.; Franssen, E.J.F. Complete in vivo reversal of P-glycoprotein pump function in the blood-brain barrier visualized with positron emission tomography. Br. J. Pharmacol. 1998, 124, 1413–1418. [Google Scholar] [CrossRef] [PubMed]
- Young-Joo, L.; Jun, M.; Hiroyuki, K.; Takashi, O.; Motoki, I.; Yuji, N.; Shigeru, O.; Ryuji, N.; Kazutoshi, S.; Yuichi, S.; et al. In Vivo Evaluation of P-glycoprotein Function at the Blood-Brain Barrier in Nonhuman Primates Using [11C]Verapamil. J. Pharmacol. Exp. Ther. 2006, 316, 647. [Google Scholar] [CrossRef]
- Bart, J.; Willemsen, A.T.M.; Groen, H.J.M.; van der Graaf, W.T.A.; Wegman, T.D.; Vaalburg, W.; de Vries, E.G.E.; Hendrikse, N.H. Quantitative assessment of P-glycoprotein function in the rat blood–brain barrier by distribution volume of [11C]verapamil measured with PET. NeuroImage 2003, 20, 1775–1782. [Google Scholar] [CrossRef]
- Kortekaas, R.; Leenders, K.L.; Van Oostrom, J.C.; Vaalburg, W.; Bart, J.; Willemsen, A.T.; Hendrikse, N.H. Blood–brain barrier dysfunction in parkinsonian midbrain in vivo. Ann. Neurol. 2005, 57, 176–179. [Google Scholar] [CrossRef]
- Toornvliet, R.; van Berckel, B.N.M.; Luurtsema, G.; Lubberink, M.; Geldof, A.A.; Bosch, T.M.; Oerlemans, R.; Lammertsma, A.A.; Franssen, E.J.F. Effect of age on functional P-glycoprotein in the blood-brain barrier measured by use of (R)-[11C]verapamil and positron emission tomography. Clin. Pharmacol. Ther. 2006, 79, 540–548. [Google Scholar] [CrossRef]
- Brunner, M.; Langer, O.; Sunder-Plassmann, R.; Dobrozemsky, G.; Müller, U.; Wadsak, W.; Krcal, A.; Karch, R.; Mannhalter, C.; Dudczak, R.; et al. Influence of functional haplotypes in the drug transporter gene ABCB1 on central nervous system drug distribution in humans. Clin. Pharmacol. Ther. 2005, 78, 182–190. [Google Scholar] [CrossRef]
- Sasongko, L.; Link, J.M.; Muzi, M.; Mankoff, D.A.; Yang, X.; Collier, A.C.; Shoner, S.C.; Unadkat, J.D. Imaging P-glycoprotein Transport Activity at the Human Blood-brain Barrier with Positron Emission Tomography. Clin. Pharmacol. Ther. 2005, 77, 503–514. [Google Scholar] [CrossRef] [PubMed]
- Mossel, P.; Arif, W.M.; De Souza, G.S.; Varela, L.G.; van der Weijden, C.W.J.; Boersma, H.H.; Willemsen, A.T.M.; Boellaard, R.; Elsinga, P.H.; Borra, R.J.H.; et al. Quantification of P-glycoprotein function at the human blood-brain barrier using [(18)F]MC225 and PET. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 3917–3927. [Google Scholar] [CrossRef] [PubMed]
- Fusi, F.; Durante, M.; Gorelli, B.; Perrone, M.G.; Colabufo, N.A.; Saponara, S. MC225, a Novel Probe for P-glycoprotein PET Imaging at the Blood–brain Barrier: In Vitro Cardiovascular Safety Evaluation. J. Cardiovasc. Pharmacol. 2017, 70, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Costes, N.; Merlet, I.; Zimmer, L.; Lavenne, F.; Cinotti, L.; Delforge, J.; Luxen, A.; Pujol, J.-F.; Bars, D.L. Modeling [18F]MPPF Positron Emission Tomography Kinetics for the Determination of 5-Hydroxytryptamine(1A) Receptor Concentration with Multiinjection. J. Cereb. Blood Flow Metab. 2002, 22, 753–765. [Google Scholar] [CrossRef]
- Elsinga, P.H.; Hendrikse, N.H.; Bart, J.; van Waarde, A.; Vaalburg, W. Positron Emission Tomography Studies on Binding of Central Nervous System Drugs and P-Glycoprotein Function in the Rodent Brain. Mol. Imaging Biol. 2005, 7, 37–44. [Google Scholar] [CrossRef]
- la Fougère, C.; Böning, G.; Bartmann, H.; Wängler, B.; Nowak, S.; Just, T.; Wagner, E.; Winter, P.; Rominger, A.; Förster, S.; et al. Uptake and binding of the serotonin 5-HT1A antagonist [18F]-MPPF in brain of rats: Effects of the novel P-glycoprotein inhibitor tariquidar. NeuroImage 2010, 49, 1406–1415. [Google Scholar] [CrossRef]
- Merlet, I.; Ostrowsky, K.; Costes, N.; Ryvlin, P.; Isnard, J.; Faillenot, I.; Lavenne, F.; Dufournel, D.; Le Bars, D.; Mauguière, F. 5-HT1A receptor binding and intracerebral activity in temporal lobe epilepsy: An [18F]MPPF-PET study. Brain 2004, 127, 900–913. [Google Scholar] [CrossRef]
- Tournier, N.; Cisternino, S.; Peyronneau, M.-A.; Goutal, S.; Dolle, F.; Scherrmann, J.-M.; Bottlaender, M.; Saba, W.; Valette, H. Discrepancies in the P-glycoprotein-Mediated Transport of 18F-MPPF: A Pharmacokinetic Study in Mice and Non-human Primates. Pharm. Res. 2012, 29, 2468–2476. [Google Scholar] [CrossRef]
- Tournier, N.; Valette, H.; Peyronneau, M.-A.; Saba, W.; Goutal, S.; Kuhnast, B.; Dollé, F.; Scherrmann, J.-M.; Cisternino, S.; Bottlaender, M. Transport of Selected PET Radiotracers by Human P-Glycoprotein (ABCB1) and Breast Cancer Resistance Protein (ABCG2): An In Vitro Screening. J. Nucl. Med. 2011, 52, 415–423. [Google Scholar] [CrossRef]
- Lee, J.S.; Paull, K.; Alvarez, M.; Hose, C.; Monks, A.; Grever, M.; Fojo, A.T.; Bates, S.E. Rhodamine efflux patterns predict P-glycoprotein substrates in the National Cancer Institute drug screen. Mol. Pharmacol. 1994, 46, 627. [Google Scholar]
- Jones, L.W.; Narayan, K.S.; Shapiro, C.E.; Sweatman, T.W. Rhodamine-123: Therapy for Hormone Refractory Prostate Cancer, A Phase I Clinical Trial. J. Chemother. 2005, 17, 435–440. [Google Scholar] [CrossRef]
- Zoufal, V.; Mairinger, S.; Krohn, M.; Wanek, T.; Filip, T.; Sauberer, M.; Stanek, J.; Traxl, A.; Schuetz, J.D.; Kuntner, C.; et al. Influence of Multidrug Resistance-Associated Proteins on the Excretion of the ABCC1 Imaging Probe 6-Bromo-7-[11C]Methylpurine in Mice. Mol. Imaging Biol. 2019, 21, 306–316. [Google Scholar] [CrossRef]
- Okamura, T.; Kikuchi, T.; Okada, M.; Wakizaka, H.; Zhang, M.-R. Imaging of Activity of Multidrug Resistance–Associated Protein 1 in the Lungs. Am. J. Respir. Cell Mol. Biol. 2013, 49, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Zoufal, V.; Mairinger, S.; Krohn, M.; Wanek, T.; Filip, T.; Sauberer, M.; Stanek, J.; Kuntner, C.; Pahnke, J.; Langer, O. Measurement of cerebral ABCC1 transport activity in wild-type and APP/PS1-21 mice with positron emission tomography. J. Cereb. Blood Flow Metab. 2019, 40, 954–965. [Google Scholar] [CrossRef] [PubMed]
- Schwach, V.; Slaats, R.H.; Passier, R. Human Pluripotent Stem Cell-Derived Cardiomyocytes for Assessment of Anticancer Drug-Induced Cardiotoxicity. Front. Cardiovasc. Med. 2020, 7, 50. [Google Scholar] [CrossRef] [PubMed]
- Di Sopra, L.; Piccini, D.; Coppo, S.; Stuber, M.; Yerly, J. An automated approach to fully self-gated free-running cardiac and respiratory motion-resolved 5D whole-heart MRI. Magn. Reson. Med. 2019, 82, 2118–2132. [Google Scholar] [CrossRef] [PubMed]
- Syvänen, S.; Lindhe, Ö.; Palner, M.; Kornum, B.R.; Rahman, O.; Långström, B.; Knudsen, G.M.; Hammarlund-Udenaes, M. Species Differences in Blood-Brain Barrier Transport of Three Positron Emission Tomography Radioligands with Emphasis on P-Glycoprotein Transport. Drug Metab. Dispos. 2009, 37, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Clement, C.; Birindelli, G.; Pizzichemi, M.; Pagano, F.; Kruithof-De Julio, M.; Ziegler, S.; Rominger, A.; Auffray, E.; Shi, K. Concept development of an on-chip PET system. EJNMMI Phys. 2022, 9, 38. [Google Scholar] [CrossRef]
- Ribeiro, M.C.; Rivera-Arbeláez, J.M.; Cofiño-Fabres, C.; Schwach, V.; Slaats, R.H.; Ten Den, S.A.; Vermeul, K.; van den Berg, A.; Pérez-Pomares, J.M.; Segerink, L.I.; et al. A New Versatile Platform for Assessment of Improved Cardiac Performance in Human-Engineered Heart Tissues. J. Pers. Med. 2022, 12, 214. [Google Scholar] [CrossRef]
Cardiac Agents | P-gp Substrate | Ref. |
---|---|---|
Antiarrhythmic agents | Bepridil, Digoxin, Quinidine, Verapamil | [12,48] |
Anticoagulant agents | Apixaban, Dabigatran, Rivaroxaban, Edoxaban, Warfarin | [50] |
Antihypertensive agents | Aliskiren, Ambrisentan, Amlodipine, Celiprolol, Debrisoquine, Diltiazem, Labetalol, Losartan, Nadolol, Propranolol, Talinolol, Timolol. | [12,62,63] |
Antiplatelet agents | Clopidogrel, Ticagrelor | [64] |
Cholesterol-lowering drugs | Atorvastatin, Lovastatin, Simvastatin | [65] |
Chemical Structure | Biomarker | Targeted Structures | Radionuclide | Animal Experiments | Clinical Trials | Ref. | ||
---|---|---|---|---|---|---|---|---|
BBB | Heart | |||||||
ABCB1 (P-GP) | substrate and inhibitor | Verapamil | 11C | √ 1 | × | √ | [92] | |
(R)-Verapamil | 11C | √ | × | √ | [93,94] | |||
ABCB1 (P-GP) | substrate | MC225 | 18F | √ | √ | [22,95,96] | ||
ABCB1 (P-GP) | substrate | MPPF | 18F | √ | √ | [97,98] | ||
ABCB1 (P-GP) | substrate | Rhodamine-123 | 11C | × | √ | [91] | ||
ABCB1 (P-GP) | substrate | Loperamide | 11C | √ | √ | [99,100] | ||
dLop | 11C | √ | √ | [100,101,102] | ||||
ABCB1 (P-GP) | substrate | Metoclopramide | 11C | √ | √ | [103,104,105,106] | ||
ABCB1 (P-GP) | inhibitor | Laniquidar | 11C | √ | × | [107] | ||
ABCB1 (P-GP) | inhibitor | Elacridar | 11C | √ | √ | [108,109] | ||
ABCG2 (BCRP) | inhibitor | Tariquidar | 11C | √ | √ | [110,111] | ||
ABCB1 (P-GP) ABCG2 (BCRP) | substrate | Gefitinib | 18F | √ | [112] | |||
11C | √ | √ | [113] | |||||
ABCB1 (P-GP) ABCG2 (BCRP) | Substrate | AVT-011 | 18F | √ | × | [114] | ||
ABCC1 (MRP1) | Substrate | BMP | 11C | √ | [115,116] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Mossel, P.; Schwach, V.; Slart, R.H.J.A.; Luurtsema, G. Cardiac PET Imaging of ATP Binding Cassette (ABC) Transporters: Opportunities and Challenges. Pharmaceuticals 2023, 16, 1715. https://doi.org/10.3390/ph16121715
Liu W, Mossel P, Schwach V, Slart RHJA, Luurtsema G. Cardiac PET Imaging of ATP Binding Cassette (ABC) Transporters: Opportunities and Challenges. Pharmaceuticals. 2023; 16(12):1715. https://doi.org/10.3390/ph16121715
Chicago/Turabian StyleLiu, Wanling, Pascalle Mossel, Verena Schwach, Riemer H. J. A. Slart, and Gert Luurtsema. 2023. "Cardiac PET Imaging of ATP Binding Cassette (ABC) Transporters: Opportunities and Challenges" Pharmaceuticals 16, no. 12: 1715. https://doi.org/10.3390/ph16121715
APA StyleLiu, W., Mossel, P., Schwach, V., Slart, R. H. J. A., & Luurtsema, G. (2023). Cardiac PET Imaging of ATP Binding Cassette (ABC) Transporters: Opportunities and Challenges. Pharmaceuticals, 16(12), 1715. https://doi.org/10.3390/ph16121715