Optimal Agents for Visualizing Collagen Tissue Microarchitecture Using Contrast-Enhanced MicroCT
Abstract
:1. Introduction
2. Results
CESA | Proven to Show Collagen Fiber Arrangement? | Tissue Distortion | Diffusion Time | Comments |
---|---|---|---|---|
Anionic Iodinated | ||||
Ioxaglate (C24H2II6N5O8), Iothalamate (C11H8I3N2O4) [13,15] | No | No data | Slow | Studied using a voxel size of 12 µm. Large quantities required, improve contrast in GAG-rich tissues (cartilage). |
Lugol’s (I3K) [1,12,13,16,17,32,33] | Limited | Yes | Fast | Studied using a voxel size of 1 to 7.5 µm. Increases attenuation of collagen. However, it also stains other constituents of tissue, only mildly increasing contrast resolution. |
Cationic Iodinated | ||||
CA4+, CA1+, CA2+ [13,14] | No | Requires further study | Fast through GAG-rich or anionic tissues | Studied using a voxel size of 30 µm. Higher positive charge correlates with a higher attenuation. |
Nonionic Iodinated | ||||
Itopride (C18H24I3N3O8), Iodixanol (C35H44I6N6O15), Iomeprol (C17H22I3N3O8) [13,14] | No | No data | Slow | Studied using a voxel size of 30 µm. Pharmaceutical radiocontrast that partitions due to MW or hydration. |
Gadolinium | ||||
Gadopentetate (dimeglumine, C28H54GdN5O20), Gadoteridol (C17H29GdN4O7), Gd3+ [13,19] | Requires further study | Requires further study | Faster than PTA | Studied using a voxel size of 25 µm. Effectiveness as a CESA directly correlates with proteoglycan content of tissue. |
POMs | ||||
PTA (H3PW12O40) [12,13,16,17,21,23,24,26,28,34,35,36,37,38,39] PMA (H3PMo12O40) [12,13,16,17] | Yes | Yes | Slow | Studied using voxel size of 1 to 40 µm. PTA is a known histochemical staining agent for binding collagen. |
Zr-POM ((Et2NH2)10[Zr(Pw11O39)2]·7H2O) [27] 1:2 Hafnium (IV) substituted WD POM (K16[Hf(a2-P2W17O61)2]·19H2O) [26,28] Parent WD POM (a-/b-K6P2W18O62·14/19H2O) [26] Monolacunary WD POM (a2-K10P2W17O61·20H2O) [26] Trilacunary WD POM (Na12[a-P2W15O56]·24H2O) [26] | Yes | No | Slow to Fast | Studied using voxel size of 2 to 7 µm. High binding affinity for collagen. Hf-WD POM, parent WD POM, and Mono-WD POM shown to provide sufficient contrast for visualizing collagen fibers. Hf-WD POM and Mono-WD POM have faster diffusion rates than PTA. Not available commercially, must be synthesized in the lab. Of these options, Mono-WD POM is more cost-effective to synthesize |
Other Metallic Compounds [12,13] | Comments | |||
FeCl3 (NH4)2MoO4 HgCl2 Na2WO4 Ba(ClO3)2 Ba (NO3)2 Pb (NO3)2 | Studied using a voxel size ranging from 23 µm to 40 µm. (Iron (III) chloride and sodium tungstate stained connective tissue more than muscle. Ammonium molybdate, (mercury (II) chloride, sodium tungstate, lead nitrate, barium nitrate, and barium chlorate provided the best visualization of tendons under microCT. Ammonium molybdate shown to be effective at visualizing tendinous tissue under microCT. Mercury(II) chloride is good for visualizing individual muscle fascicles. However, it is highly toxic and generates hazardous waste. Mercury(II) chloride and ammonium orthomolybdate remained fixed in tissue over time. | |||
AgNO4 BaCl2, BaSO4 [31] Cs2CO3, CsCl, CsNO3 Cu(NO3)2, CuSO4 FeCl3, FeSO4 KBr, KIO3, KMnO4 La(NO3)3 Na2MoO4 Pb(C2H3O2)2, C6H8O7Pb VOSO4 OsO4 | Studied using a voxel size ranging from 23 µm to 40 µm except for barium sulfate, which was studied using a voxel size of 2.93 µm [31]. All these compounds were not shown to be effective for visualizing collagen microarchitecture with microCT. OsO4 is one of the first CESAs used for microCT. Binds well to adipose, but is highly toxic [12]. |
3. Discussion
4. Materials and Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silva, J.M.d.S.e.; Zanette, I.; Noël, P.B.; Cardoso, M.B.; Kimm, M.A.; Pfeiffer, F. Three-dimensional non-destructive soft-tissue visualization with X-ray staining micro-tomography. Sci. Rep. 2015, 5, srep14088. [Google Scholar] [CrossRef] [PubMed]
- Metscher, B.D. MicroCT for comparative morphology: Simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiol. 2009, 9, 11. [Google Scholar] [CrossRef] [PubMed]
- Metscher, B.D. MicroCT for developmental biology: A versatile tool for high-contrast 3D imaging at histological resolutions. Dev. Dyn. 2009, 238, 632–640. [Google Scholar] [CrossRef] [PubMed]
- Katsamenis, O.L.; Olding, M.; Warner, J.A.; Chatelet, D.S.; Jones, M.G.; Sgalla, G.; Smit, B.; Larkin, O.J.; Haig, I.; Richeldi, L.; et al. X-ray Micro-Computed Tomography for Nondestructive Three-Dimensional (3D) X-ray Histology. Am. J. Pathol. 2019, 189, 1608–1620. [Google Scholar] [CrossRef] [PubMed]
- Renders, G.A.P.; Mulder, L.; Lin, A.S.; Langenbach, G.E.J.; Koolstra, J.H.; E Guldberg, R.; Everts, V. Contrast-enhanced microCT (EPIC-µCT) ex vivo applied to the mouse and human jaw joint. Dentomaxillofac. Radiol. 2014, 43, 20130098. [Google Scholar] [CrossRef] [PubMed]
- Giuliani, A.; Greco, S.; Pacilè, S.; Zannotti, A.; Carpini, G.D.; Tromba, G.; Giannubilo, S.R.; Ciavattini, A.; Ciarmela, P. Advanced 3D Imaging of Uterine Leiomyoma’s Morphology by Propagation-based Phase-Contrast Microtomography. Sci. Rep. 2019, 9, 10580. [Google Scholar] [CrossRef] [PubMed]
- Allisy-Roberts, P.J.; Williams, J. Farr’s Physics for Medical Imaging; Elsevier Health Sciences: Edinburgh, UK, 2007; Available online: https://books.google.com/books?id=EHODwuD73XMC (accessed on 9 September 2021).
- Wolbarst, A.B. Physics of Radiology, 2nd ed.; Medical Physics Pub.: Madison, WI, USA, 2005. [Google Scholar]
- Yagi, N. 8.02—Synchrotron Radiation. Compr. Biomed. Phys. 2014, 8, 17–33. [Google Scholar] [CrossRef]
- Larrue, A.; Rattner, A.; Peter, Z.A.; Olivier, C.; Laroche, N.; Vico, L.; Peyrin, F. Synchrotron radiation micro-CT at the micrometer scale for the analysis of the three-dimensional morphology of microcracks in human trabecular bone. PLoS ONE 2011, 6, e21297. [Google Scholar] [CrossRef]
- Fratzl, P. Collagen: Structure and Mechanic; Springer: New York, NY, USA, 2008. [Google Scholar]
- Pauwels, E.; VAN Loo, D.; Cornillie, P.; Brabant, L.; VAN Hoorebeke, L. An exploratory study of contrast agents for soft tissue visualization by means of high resolution X-ray computed tomography imaging. J. Microsc. 2013, 250, 21–31. [Google Scholar] [CrossRef]
- De Bournonville, S.; Vangrunderbeeck, S.; Kerckhofs, G. Contrast-Enhanced MicroCT for Virtual 3D Anatomical Pathology of Biological Tissues: A Literature Review. Contrast Media Mol. Imaging 2019, 2019, 8617406. [Google Scholar] [CrossRef]
- Joshi, N.S.; Bansal, P.N.; Stewart, R.C.; Snyder, B.D.; Grinstaff, M.W. Effect of Contrast Agent Charge on Visualization of Articular Cartilage Using Computed Tomography: Exploiting Electrostatic Interactions for Improved Sensitivity. J. Am. Chem. Soc. 2009, 131, 13234–13235. [Google Scholar] [CrossRef] [PubMed]
- Newton, M.D.; Hartner, S.E.; Timmons, S.; Delaney, N.D.; Pirrone, M.G.; Baker, K.C.; Maerz, T. Contrast-enhanced μCT of the intervertebral disc: A comparison of anionic and cationic contrast agents for biochemical and morphological characterization. J. Orthop. Res. 2017, 35, 1067–1075. [Google Scholar] [CrossRef] [PubMed]
- Balint, R.; Lowe, T.; Shearer, T. Optimal Contrast Agent Staining of Ligaments and Tendons for X-Ray Computed Tomography. PLoS ONE 2016, 11, e0153552. [Google Scholar] [CrossRef] [PubMed]
- Nierenberger, M.; Rémond, Y.; Ahzi, S.; Choquet, P. Assessing the three-dimensional collagen network in soft tissues using contrast agents and high resolution micro-CT: Application to porcine iliac veins. Comptes Rendus Biol. 2015, 338, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Di Lullo, G.A.; Sweeney, S.M.; Körkkö, J.; Ala-Kokko, L.; Antonio, J.D.S. Mapping the Ligand-binding Sites and Disease-associated Mutations on the Most Abundant Protein in the Human, Type I Collagen. J. Biol. Chem. 2002, 277, 4223–4231. [Google Scholar] [CrossRef] [PubMed]
- Cockman, M.D.; Blanton, C.; Chmielewski, P.; Dong, L.; Dufresne, T.; Hookfin, E.; Karb, M.; Liu, S.; Wehmeyer, K. Quantitative imaging of proteoglycan in cartilage using a gadolinium probe and microCT. Osteoarthr. Cartil. 2006, 14, 210–214. [Google Scholar] [CrossRef]
- Vilà-Nadal, L.; Romo, S.; López, X.; Poblet, J. Structural and Electronic Features of Wells-Dawson Polyoxometalates. In Complexity in Chemistry and Beyond: Interplay Theory and Experiment. NATO Science for Peace and Security Series B: Physics and Biophysics; Hill, C., Musaev, D.G., Eds.; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar] [CrossRef]
- Loret, B.; Simões, F.M. Effects of the pH on the mechanical behavior of articular cartilage and corneal stroma. Int. J. Solids Struct. 2010, 47, 2201–2214. [Google Scholar] [CrossRef]
- Karhula, S.S.; Finnilä, M.A.; Lammi, M.J.; Ylärinne, J.H.; Kauppinen, S.; Rieppo, L.; Pritzker, K.P.H.; Nieminen, H.J.; Saarakkala, S. Effects of Articular Cartilage Constituents on Phosphotungstic Acid Enhanced Micro-Computed Tomography. PLoS ONE 2017, 12, e0171075. [Google Scholar] [CrossRef]
- Missbach-Guentner, J.; Pinkert-Leetsch, D.; Dullin, C.; Ufartes, R.; Hornung, D.; Tampe, B.; Zeisberg, M.; Alves, F. 3D virtual histology of murine kidneys –high resolution visualization of pathological alterations by micro computed tomography. Sci. Rep. 2018, 8, 1407. [Google Scholar] [CrossRef]
- Lesciotto, K.M.; Perrine, S.M.M.; Kawasaki, M.; Stecko, T.; Ryan, T.M.; Kawasaki, K.; Richtsmeier, J.T. Phosphotungstic acid-enhanced microCT: Optimized protocols for embryonic and early postnatal mice. Dev. Dyn. 2020, 249, 573–585. [Google Scholar] [CrossRef]
- Wong, M.D.; Spring, S.; Henkelman, R.M. Structural Stabilization of Tissue for Embryo Phenotyping Using Micro-CT with Iodine Staining. PLoS ONE 2013, 8, e84321. [Google Scholar] [CrossRef] [PubMed]
- De Bournonville, S.; Vangrunderbeeck, S.; Ly, H.G.T.; Geeroms, C.; De Borggraeve, W.M.; Parac-Vogt, T.N.; Kerckhofs, G. Exploring polyoxometalates as non-destructive staining agents for contrast-enhanced microfocus computed tomography of biological tissues. Acta Biomater. 2020, 105, 253–262. [Google Scholar] [CrossRef] [PubMed]
- De Clercq, K.; Persoons, E.; Napso, T.; Luyten, C.; Parac-Vogt, T.N.; Sferruzzi-Perri, A.N.; Kerckhofs, G.; Vriens, J. High-resolution contrast-enhanced microCT reveals the true three-dimensional morphology of the murine placenta. Proc. Natl. Acad. Sci. USA 2019, 116, 13927–13936. [Google Scholar] [CrossRef] [PubMed]
- Kerckhofs, G.; Stegen, S.; van Gastel, N.; Sap, A.; Falgayrac, G.; Penel, G.; Durand, M.; Luyten, F.P.; Geris, L.; Vandamme, K.; et al. Simultaneous three-dimensional visualization of mineralized and soft skeletal tissues by a novel microCT contrast agent with polyoxometalate structure. Biomaterials 2018, 159, 1–12. [Google Scholar] [CrossRef]
- Ginsberg, A.P. Inorganic Syntheses; Wiley: Hoboken, NJ, USA, 1990; Volume 27, Available online: https://books.google.com/books?id=6yB2BSYfJUcC (accessed on 6 June 2021).
- Graham, C.R.; Finke, R.G. The Classic Wells−Dawson Polyoxometalate, K6[α-P2W18O62]·14H2O. Answering an 88 Year-Old Question: What Is Its Preferred, Optimum Synthesis? Inorg. Chem. 2008, 47, 3679–3686. [Google Scholar] [CrossRef]
- Shepherd, D.V.; Shepherd, J.H.; Best, S.M.; Cameron, R.E. 3D imaging of cells in scaffolds: Direct labelling for micro CT. J. Mater. Sci. Mater. Med. 2018, 29, 86. [Google Scholar] [CrossRef]
- Hsu, C.; Kalaga, S.; Akoma, U.; Rasmussen, T.L.; Christiansen, A.E.; Dickinson, M.E. High Resolution Imaging of Mouse Embryos and Neonates with X-Ray Micro-Computed Tomography. Curr. Protoc. Mouse Biol. 2019, 9, e63. [Google Scholar] [CrossRef]
- Rohani, S.; Ghomashchi, S.; Umoh, J.; Holdsworth, D.; Agrawal, S.; Ladak, H. Iodine potassium iodide improves the contrast-to-noise ratio of micro-computed tomography images of the human middle ear. J. Microsc. 2016, 264, 334–338. [Google Scholar] [CrossRef]
- Dullin, C.; Ufartes, R.; Larsson, E.; Martin, S.; Lazzarini, M.; Tromba, G.; Missbach-Guentner, J.; Pinkert-Leetsch, D.; Katschinski, D.M.; Alves, F. μCT of ex-vivo stained mouse hearts and embryos enables a precise match between 3D virtual histology, classical histology and immunochemistry. PLoS ONE 2017, 12, e0170597. [Google Scholar] [CrossRef]
- Nieminen, H.; Gahunia, H.; Pritzker, K.; Ylitalo, T.; Rieppo, L.; Karhula, S.; Lehenkari, P.; Hæggström, E.; Saarakkala, S. 3D histopathological grading of osteochondral tissue using contrast-enhanced micro-computed tomography. Osteoarthr. Cartil. 2017, 25, 1680–1689. [Google Scholar] [CrossRef]
- Kwon, H.-J.; Choi, Y.-J.; Cho, T.-H.; Yang, H.-M. Three-dimensional structure of the orbicularis retaining ligament: An anatomical study using micro-computed tomography. Sci. Rep. 2018, 8, 17042. [Google Scholar] [CrossRef]
- Sartori, J.; Köhring, S.; Witte, H.; Fischer, M.S.; Löffler, M. Three-dimensional imaging of the fibrous microstructure of Achilles tendon entheses in Mus musculus. J. Anat. 2018, 233, 370–380. [Google Scholar] [CrossRef] [PubMed]
- Dudak, J.; Zemlicka, J.; Karch, J.; Patzelt, M.; Mrzilkova, J.; Zach, P.; Hermanova, Z.; Kvacek, J.; Krejci, F. High-contrast X-ray micro-radiography and micro-CT of ex-vivo soft tissue murine organs utilizing ethanol fixation and large area photon-counting detector. Sci. Rep. 2016, 6, 30385. [Google Scholar] [CrossRef] [PubMed]
- Yushkevich, P.A. Chapter 17—Image Post Processing and Analysis. In Diagnostic Radiology Physics: A Handbook for Teachers and Students; International Atomic Energy Agency: Vienna, Austria, 2014. [Google Scholar]
- McCollough, C.H.; Leng, S.; Yu, L.; Fletcher, J.G.; Jacobsen, M.C.; Schellingerhout, D.; Wood, C.A.; Tamm, E.P.; Godoy, M.C.; Sun, J.; et al. Dual- and Multi-Energy CT: Principles, Technical Approaches, and Clinical Applications. Radiology 2015, 276, 637–653. [Google Scholar] [CrossRef]
- Birnbacher, L.; Willner, M.; Velroyen, A.; Marschner, M.; Hipp, A.; Meiser, J.; Koch, F.; Schröter, T.; Kunka, D.; Mohr, J.; et al. Experimental Realisation of High-sensitivity Laboratory X-ray Grating-based Phase-contrast Computed Tomography. Sci. Rep. 2016, 6, 24022. [Google Scholar] [CrossRef] [PubMed]
- Hagen, C.K.; Endrizzi, M.; Towns, R.; Meganck, J.A.; Olivo, A. A Preliminary Investigation into the Use of Edge Illumination X-ray Phase Contrast Micro-CT for Preclinical Imaging. Mol. Imaging Biol. 2020, 22, 539–548. [Google Scholar] [CrossRef]
- Bech, M.; Tapfer, A.; Velroyen, A.; Yaroshenko, A.; Pauwels, B.; Hostens, J.; Bruyndonckx, P.; Sasov, A.; Pfeiffer, F. In-vivo dark-field and phase-contrast X-ray imaging. Sci. Rep. 2013, 3, 3209. [Google Scholar] [CrossRef]
- Tapfer, A.; Bech, M.; Velroyen, A.; Meiser, J.; Mohr, J.; Walter, M.; Schulz, J.; Pauwels, B.; Bruyndonckx, P.; Liu, X.; et al. Experimental results from a preclinical X-ray phase-contrast CT scanner. Proc. Natl. Acad. Sci. USA 2012, 109, 15691–15696. [Google Scholar] [CrossRef]
- Connor, D.M.; Zhong, Z. Diffraction-Enhanced Imaging. Curr. Radiol. Rep. 2014, 2, 55. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glancy, S.B.; Morris, H.D.; Ho, V.B.; Klarmann, G.J. Optimal Agents for Visualizing Collagen Tissue Microarchitecture Using Contrast-Enhanced MicroCT. Pharmaceuticals 2023, 16, 1719. https://doi.org/10.3390/ph16121719
Glancy SB, Morris HD, Ho VB, Klarmann GJ. Optimal Agents for Visualizing Collagen Tissue Microarchitecture Using Contrast-Enhanced MicroCT. Pharmaceuticals. 2023; 16(12):1719. https://doi.org/10.3390/ph16121719
Chicago/Turabian StyleGlancy, Spencer B., Herman Douglas Morris, Vincent B. Ho, and George J. Klarmann. 2023. "Optimal Agents for Visualizing Collagen Tissue Microarchitecture Using Contrast-Enhanced MicroCT" Pharmaceuticals 16, no. 12: 1719. https://doi.org/10.3390/ph16121719
APA StyleGlancy, S. B., Morris, H. D., Ho, V. B., & Klarmann, G. J. (2023). Optimal Agents for Visualizing Collagen Tissue Microarchitecture Using Contrast-Enhanced MicroCT. Pharmaceuticals, 16(12), 1719. https://doi.org/10.3390/ph16121719