Research Progress on the Synergistic Anti-Tumor Effect of Natural Anti-Tumor Components of Chinese Herbal Medicine Combined with Chemotherapy Drugs
Abstract
:1. Introduction
2. Natural Anti-Tumor Ingredients Extracted from Chinese Herbal Medicine
2.1. Polyphenol Compounds
2.2. Terpenoid
2.3. Alkaloid Compounds
2.4. Polysaccharide
2.5. The Important Role of Cytochrome P450 in Traditional Chinese Medicine Active Substance Tumor Treatment
3. The Synergistic Anti-Tumor Effect of Natural Components in Chinese Herbal Medicine Combined with Chemotherapy Drugs
3.1. Combination Strategies and Mechanisms of Synergistic Induction of Tumor Cell Apoptosis
3.2. Combination Strategies and Mechanisms for Reducing Drug Resistance in Tumor Cells
3.3. Combination Strategies and Mechanisms for Synergistic Enhancement of Chemotherapy Drug Efficacy
3.4. Combination Strategies and Mechanisms for Reducing Adverse Reactions to Chemotherapy
3.5. Combination Strategies and Mechanisms as Chemotherapy Immunoadjuvant
3.6. Combined Anti-Tumor Therapy of Traditional Chinese Medicine Active Ingredients and Chemotherapy Drugs Based on Nano-Delivery System
4. Current Challenges and Perspectives
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hossen, S.; Hossain, M.K.; Basher, M.K.; Mia, M.N.H.; Rahman, M.T.; Uddin, M.J. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J. Adv. Res. 2018, 15, 1–18. [Google Scholar] [CrossRef]
- Wang, X.; Waschke, B.C.; Woolaver, R.A.; Chen, S.M.Y.; Chen, Z.; Wang, J.H. MHC class I-independent activation of virtual memory CD8 T cells induced by chemotherapeutic agent-treated cancer cells. Cell. Mol. Immunol. 2020, 18, 723–734. [Google Scholar] [CrossRef]
- Behranvand, N.; Nasri, F.; Zolfaghari Emameh, R.; Khani, P.; Hosseini, A.; Garssen, J.; Falak, R. Chemotherapy: A double-edged sword in cancer treatment. Cancer Immunol. Immunother. 2021, 71, 507–526. [Google Scholar] [CrossRef]
- Abu, N.; Turdo, A.; Garcia-Sanz, J.A. Editorial: The effects of chemotherapy towards the tumor microenvironment. Front. Oncol. 2022, 12, 1069561. [Google Scholar] [CrossRef]
- Sun, K.; Wu, L.; Wang, S.; Deng, W. Antitumor effects of Chinese herbal medicine compounds and their nano-formulations on regulating the immune system microenvironment. Front. Oncol. 2022, 12, 949332. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Q.; Chen, Y.; Liang, C.-L.; Liu, H.; Qiu, F.; Dai, Z. Antitumor effects of immunity-enhancing traditional Chinese medicine. Biomed. Pharmacother. 2020, 121, 109570. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.; Wang, J.; Li, R.; Gong, J.; Wang, K.; Wang, Y.; Wang, Z.; He, R.; Li, F. Smart Targeted Delivery Systems for Enhancing Antitumor Therapy of Active Ingredients in Traditional Chinese Medicine. Molecules 2023, 28, 5955. [Google Scholar] [CrossRef] [PubMed]
- Normile, D. ASIAN MEDICINE: The New Face of Traditional Chinese Medicine. Science 2003, 299, 188–190. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Shao, H.; Gao, L.; Li, H.; Sheng, H.; Zhu, L. Nano-drug co-delivery system of natural active ingredients and chemotherapy drugs for cancer treatment: A review. Drug Deliv. 2022, 29, 2130–2161. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lou, Y.; Wang, J.; Yu, C.; Shen, W. Research Status and Molecular Mechanism of the Traditional Chinese Medicine and Antitumor Therapy Combined Strategy Based on Tumor Microenvironment. Front. Immunol. 2021, 11, 609705. [Google Scholar] [CrossRef]
- Huang, M.-Y.; Zhang, L.-L.; Ding, J.; Lu, J.-J. Anticancer drug discovery from Chinese medicinal herbs. Chin. Med. 2018, 13, 35. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Pan, Y.; Zhang, L.; Wang, X.; Han, Y.; Sun, L.; Chen, G.; Li, N. High Performance Liquid Chromatography Determination and Optimization of the Extraction Process for the Total Alkaloids from Traditional Herb Stephania cepharantha Hayata. Molecules 2019, 24, 388. [Google Scholar] [CrossRef] [PubMed]
- Dixon, R.A.; Ferreira, D. Genistein. Phytochemistry 2002, 60, 205–211. [Google Scholar] [CrossRef]
- Li, Y.; Kucuk, O.; Hussain, M.; Abrams, J.; Cher, M.L.; Sarkar, F.H. Antitumor and antimetastatic activities of docetaxel are enhanced by genistein through regulation of osteoprotegerin/receptor activator of nuclear factor-kappaB (RANK)/RANK ligand/MMP-9 signaling in prostate cancer. Cancer Res. 2006, 66, 4816–4825. [Google Scholar] [CrossRef]
- Ahmad, U.; Akhtar, J.; Singh, S.P.; Ahmad, F.J.; Siddiqui, S. Silymarin nanoemulsion against human hepatocellular carcinoma: Development and optimization. Artif. Cells Nanomed. Biotechnol. 2017, 46, 231–241. [Google Scholar] [CrossRef]
- Wang, K.-L.; Yu, Y.-C.; Hsia, S.-M. Perspectives on the Role of Isoliquiritigenin in Cancer. Cancers 2021, 13, 115. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Zhang, L.; Gao, P.; Shao, Z. Isolation and characterisation of the isoflavones from sprouted chickpea seeds. Food Chem. 2008, 114, 869–873. [Google Scholar] [CrossRef]
- Wang, J.Y.; Jiang, M.W.; Li, M.Y.; Zhang, Z.H.; Xing, Y.; Ri, M.; Jin, C.H.; Xu, G.H.; Piao, L.X.; Jin, H.L.; et al. Formononetin represses cervical tumorigenesis by interfering with the activation of PD-L1 through MYC and STAT3 downregulation. J. Nutr. Biochem. 2021, 100, 108899. [Google Scholar] [CrossRef]
- Chen, H.; Hu, X.; Lan, Y.; Chen, S.; Xiang, X.; Tan, Y.; Zeng, G.; Guo, Z.; Li, K.; Zhang, J. Puerarin promotes apoptosis and senescence of bladder cancer cells. J. Funct. Foods 2022, 91, 105032. [Google Scholar] [CrossRef]
- Fu, Y.; Liu, H.; Long, M.; Song, L.; Meng, Z.; Lin, S.; Zhang, Y.; Qin, J. Icariin attenuates the tumor growth by targeting miR-1-3p/TNKS2/Wnt/β-catenin signaling axis in ovarian cancer. Front. Oncol. 2022, 12, 940926. [Google Scholar] [CrossRef]
- Liu, B.; Liu, L.; Zang, A.; Song, Z.; Yang, H.; Wang, Z.; Shang, Y.; Ma, T.; Zhang, Y. Tanshinone IIA inhibits proliferation and induces apoptosis of human nasopharyngeal carcinoma cells via p53-cyclin B1/CDC2. Oncol. Lett. 2019, 18, 3317–3322. [Google Scholar] [CrossRef]
- Jiang, H.; Tang, W.; Song, Y.; Jin, W.; Du, Q. Induction of Apoptosis by Metabolites of Rhei Radix et Rhizoma (Da Huang): A Review of the Potential Mechanism in Hepatocellular Carcinoma. Front. Pharmacol. 2022, 13, 806175. [Google Scholar] [CrossRef]
- Wang, X.-P.; Wang, Q.-X.; Lin, H.-P.; Chang, N. Anti-tumor bioactivities of curcumin on mice loaded with gastric carcinoma. Food Funct. 2017, 8, 3319–3326. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, C.-H.; Yao, C.-J.; Lai, G.-M.; Lee, L.-M.; Whang-Peng, J.; Shih, P.-H. Honokiol induces apoptotic cell death by oxidative burst and mitochondrial hyperpolarization of bladder cancer cells. Exp. Ther. Med. 2019, 17, 4213–4222. [Google Scholar] [CrossRef] [PubMed]
- Peterson, G.; Barnes, S. Genistein inhibits both estrogen and growth factor-stimulated proliferation of human breast cancer cells. Cell Growth Differ. Mol. Biol. J. Am. Assoc. Cancer Res. 1996, 7, 1345–1351. [Google Scholar]
- Yu, L.; Li, T.; Zhang, H.; Ma, Z.; Wu, S. Silymarin suppresses proliferation of human hepatocellular carcinoma cells under hypoxia through downregulation of the HIF-1α/VEGF pathway. Am. J. Transl. Res. 2023, 15, 4521–4532. [Google Scholar] [PubMed]
- Kunchandy, E.; Rao, M.N.A. Oxygen radical scavenging activity of curcumin. Int. J. Pharm. 1990, 58, 237–240. [Google Scholar] [CrossRef]
- Godugu, C.; Doddapaneni, R.; Singh, M. Honokiol nanomicellar formulation produced increased oral bioavailability and anticancer effects in triple negative breast cancer (TNBC). Colloids Surf. B Biointerfaces 2017, 153, 208–219. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Liu, J.; Liu, H.; Liang, S.; Lin, M.; Gu, Y.; Liu, T.; Wang, D.; Ge, H.; Mo, S. The antitumor effect of tanshinone IIA on anti-proliferation and decreasing VEGF/VEGFR2 expression on the human non-small cell lung cancer A549 cell line. Acta Pharm. Sinica. B 2015, 5, 554–563. [Google Scholar] [CrossRef]
- Aida, K.; Tawata, M.; Shindo, H.; Onaya, T.; Sasaki, H.; Yamaguchi, T.; Chin, M.; Mitsuhashi, H. Isoliquiritigenin: A new aldose reductase inhibitor from glycyrrhizae radix. Planta Medica 1990, 56, 254–258. [Google Scholar] [CrossRef]
- Wu, X.; Xu, H.; Wu, Z.; Chen, C.; Liu, J.; Wu, G.; Yao, X.; Liu, F.; Li, G.; Shen, L. Formononetin, a novel FGFR2 inhibitor, potently inhibits angiogenesis and tumor growth in preclinical models. Oncotarget 2015, 6, 44563–44578. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhang, G.; Liu, P.; Liu, Y.; Ding, J.; Xu, H.; Hao, L.; Pan, D.; Wang, H.; Wang, J.; et al. Comprehensive genomic analysis of puerarin in inhibiting bladder urothelial carcinoma cell proliferation and migration. Recent Pat. Anti Cancer Drug Discov. 2023. [Google Scholar] [CrossRef]
- Gao, F.; Li, R.; Wei, P.; Ou, L.; Li, M.; Bai, Y.; Luo, W.; Fan, Z. Synergistic anticancer effects of everolimus (RAD001) and Rhein on gastric cancer cells via phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway. Bioengineered 2022, 13, 6332–6342. [Google Scholar] [CrossRef]
- Gu, Z.; Zhang, Z.; Wang, J.; Xu, B. Icariin exerts inhibitory effects on the growth and metastasis of KYSE70 human esophageal carcinoma cells via PI3K/AKT and STAT3 pathways. Environ. Toxicol. Pharmacol. 2017, 54, 7–13. [Google Scholar] [CrossRef]
- Tang, H.; Ye, Z.; Ren, Y.; Zhu, Z.; Wu, Y. Investigation on the mechanism of ginsenoside Rg3 in treating murine primary mammary tumor. Front. Med. 2009, 3, 421–425. [Google Scholar] [CrossRef]
- Li, D.; Han, T.; Xu, S.; Zhou, T.; Tian, K.; Hu, X.; Cheng, K.; Li, Z.; Hua, H.; Xu, J. Antitumor and Antibacterial Derivatives of Oridonin: A Main Composition of Dong-Ling-Cao. Molecules 2016, 5, 575. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Shi, W.; Zhao, C.; Zhang, D.; Liang, P.; Wang, G.; Lu, L. Triptolide sensitizes human breast cancer cells to tumor necrosis factor-α-induced apoptosis by inhibiting activation of the nuclear factor-κB pathway. Mol. Med. Rep. 2016, 13, 3257–3264. [Google Scholar] [CrossRef]
- Du, G.-H.; Wang, H.-X.; Yan, Z.; Liu, L.-Y.; Chen, R.-Y. [Anti-tumor target prediction and activity verification of Ganoderma lucidum triterpenoids]. Zhongguo Zhong Yao Za Zhi=Zhongguo Zhongyao Zazhi=China J. Chin. Mater. Medica 2017, 42, 517–522. [Google Scholar] [CrossRef]
- Wang, H.; Zhong, W.; Zhao, J.; Zhang, H.; Zhang, Q.; Liang, Y.; Chen, S.; Liu, H.; Zong, S.; Tian, Y.; et al. Oleanolic acid inhibits epithelial-mesenchymal transition of hepatocellular carcinoma by promoting iNOS dimerization. Mol. Cancer Ther. 2018, 18, 62–74. [Google Scholar] [CrossRef]
- Juin, S.K.; Ghosh, S.; Majumdar, S. Glycyrrhizic acid facilitates anti-tumor immunity by attenuating Tregs and MDSCs: An immunotherapeutic approach. Int. Immunopharmacol. 2020, 88, 106932. [Google Scholar] [CrossRef]
- Song, M.; Liu, X.; Liu, K.; Zhao, R.; Huang, H.; Shi, Y.; Zhang, M.; Zhou, S.; Xie, H.; Chen, H.; et al. In VitroTargeting AKT with Oridonin Inhibits Growth of Esophageal Squamous Cell Carcinoma and Patient-Derived Xenografts. Mol. Cancer Ther. 2018, 17, 1540–1553. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Li, Z.; Wang, H.; Zhang, X.; Yang, Z. Triptolide Inhibited Cytotoxicity of Differentiated PC12 Cells Induced by Amyloid-Beta₂₅₋₃₅ via the Autophagy Pathway. PLoS ONE 2015, 10, e0142719. [Google Scholar] [CrossRef]
- Kim, S.; Kim, S.; Lee, J.; Kim, K.; Park, S.; Park, Y.; Lim, H.; Kang, W.; Park, J. Triptolide as a novel agent in pancreatic cancer: The validation using patient derived pancreatic tumor cell line. BMC Cancer 2018, 18, 1103. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, T.; Kanomi, S.; Murai, Y.; Kadota, S.; Tsubono, K.; Ogita, Z.I. Constituents of the Fungus Ganoderma lucidum (FR.) KARST. II.: Structures of Ganoderic Acids F, G, and H, Lucidenic Acids D2 and E2, and Related Compounds. Chem. Pharm. Bull. 1986, 34, 4018–4029. [Google Scholar] [CrossRef]
- Patel, V.G.; Kalpana, S.H.S.; Patel, G. Validated HPTLC method for qualitative and quantitative estimation of oleanolic acid in roots of Cissampelos pareira Linn. var. hirsuta, Menispermaceae. Sch. Res. Libr. 2015, 7, 300–306. [Google Scholar]
- Hassan, S.; Ahmad, B.; Khan, M.; Shah, Z.; Ullah, A.; Ullah, S.; Khan, D.; Rizwan, M.; Ahmad, A.; Ali, Q.; et al. Monotheca buxifoliaCytotoxic Activity of Phytoconstituents Isolated from against Hepatocellular Carcinoma Cell Line HepG2: In Vitro and Molecular Docking Studies. ACS Omega 2023, 8, 33572–33579. [Google Scholar] [CrossRef]
- Afkhami-Poostchi, A.; Mashreghi, M.; Iranshahi, M.; Matin, M. Use of a genetically engineered E. coli overexpressing β-glucuronidase accompanied by glycyrrhizic acid, a natural and anti-inflammatory agent, for directed treatment of colon carcinoma in a mouse model. Int. J. Pharm. 2020, 579, 119159. [Google Scholar] [CrossRef]
- Lorence, A.; Nessler, C.L. Camptothecin, over four decades of surprising findings. Phytochemistry 2004, 65, 2735–2749. [Google Scholar] [CrossRef]
- Qian, L.; Chen, K.; Wang, C.; Chen, Z.; Meng, Z.; Wang, P. Targeting NRAS-Mutant Cancers with the Selective STK19 Kinase Inhibitor Chelidonine. Clin. Cancer Res. 2020, 26, 3408–3419. [Google Scholar] [CrossRef]
- Xin, G.; Yu, M.; Hu, Y.; Gao, S.; Qi, Z.; Sun, Y.; Yu, W.; He, J.; Ji, Y. Effect of lycorine on the structure and function of hepatoma cell membrane in vitro and in vivo. Biotechnol. Biotechnol. Equip. 2020, 34, 104–114. [Google Scholar] [CrossRef]
- Li, J.; Xie, Q.; Ma, R.; Li, Y.; Yuan, J.; Ren, M.; Li, H.; Wang, J.; Lu, D.; Xu, Z.; et al. Recent Progress on the Synergistic Antitumor Effect of a Borneol-Modified Nanocarrier Drug Delivery System. Front. Med. 2021, 8, 750170. [Google Scholar] [CrossRef]
- Zarina, M.; Muhammad, I.; Farhan, S.; Ali, I.; Shinawar Waseem, A.; Muhammad, S.; Suliman, A.A.; Yolanda Guerrero, S.; Maryam, U.; Muzzamal, H.; et al. Berberine: A comprehensive Approach to combat human maladies. Int. J. Food Prop. 2023, 26, 787–807. [Google Scholar] [CrossRef]
- Achi, I.T.; Sarbadhikary, P.; George, B.P.; Abrahamse, H. Multi-Target Potential of Berberine as an Antineoplastic and Antimetastatic Agent: A Special Focus on Lung Cancer Treatment. Cells 2022, 11, 3433. [Google Scholar] [CrossRef]
- Bertozzi, D.; Marinello, J.; Manzo, S.; Fornari, F.; Gramantieri, L.; Capranico, G. The natural inhibitor of DNA topoisomerase I, camptothecin, modulates HIF-1α activity by changing miR expression patterns in human cancer cells. Mol. Cancer Ther. 2014, 13, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Tesauro, C.; Simonsen, A.; Andersen, M.; Petersen, K.; Kristoffersen, E.; Algreen, L.; Hansen, N.; Andersen, A.; Jakobsen, A.; Stougaard, M.; et al. Topoisomerase I activity and sensitivity to camptothecin in breast cancer-derived cells: A comparative study. BMC Cancer 2019, 19, 1158. [Google Scholar] [CrossRef]
- Isolani, M.; Pietra, D.; Balestrini, L.; Borghini, A.; Deri, P.; Imbriani, M.; Bianucci, A.; Batistoni, R. The in vivo effect of chelidonine on the stem cell system of planarians. Eur. J. Pharmacol. 2012, 686, 1–7. [Google Scholar] [CrossRef]
- Wang, X.; Tanaka, M.; Krstin, S.; Peixoto, H.; Wink, M. The Interference of Selected Cytotoxic Alkaloids with the Cytoskeleton: An Insight into Their Modes of Action. Molecules 2016, 21, 906. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Yu, D.; Fu, S.; Zhang, G.; Pan, Y.; Bao, M.; Tu, J.; Shang, B.; Guo, P.; Yang, P.; et al. Lycorine hydrochloride selectively inhibits human ovarian cancer cell proliferation and tumor neovascularization with very low toxicity. Toxicol. Lett. 2013, 218, 174–185. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Xia, Q.; Luo, R.; Huang, P.; Sun, Y.; Shi, Y.; Jiang, W. Berberine inhibits the growth of human colorectal adenocarcinoma in vitro and in vivo. J. Nat. Med. 2014, 68, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Shang, P.; Qian, A.-R.; Yang, T.-H.; Jia, M.; Mei, Q.-B.; Cho, C.-H.; Zhao, W.-M.; Chen, Z.-N. Experimental study of anti-tumor effects of polysaccharides from Angelica sinensis. World J. Gastroenterol. 2003, 9, 1963–1967. [Google Scholar] [CrossRef]
- Li, W.; Song, K.; Wang, S.; Zhang, C.; Zhuang, M.; Wang, Y.; Liu, T. Anti-tumor potential of astragalus polysaccharides on breast cancer cell line mediated by macrophage activation. Mater. Sci. Eng. C 2019, 98, 685–695. [Google Scholar] [CrossRef]
- He, L.; Xu, K.; Niu, L.; Lin, L. Astragalus polysaccharide (APS) attenuated PD-L1-mediated immunosuppression via the miR-133a-3p/MSN axis in HCC. Pharm. Biol. 2022, 60, 1710–1720. [Google Scholar] [CrossRef] [PubMed]
- Veith, A.; Moorthy, B. Role of cytochrome p450s in the generation and metabolism of reactive oxygen species. Curr. Opin. Toxicol. 2018, 7, 44–51. [Google Scholar] [CrossRef]
- Murray, G. The role of cytochrome P450 in tumour development and progression and its potential in therapy. J. Pathol. 2000, 192, 419–426. [Google Scholar] [CrossRef]
- Di Nardo, G.; Gilardi, G. Natural Compounds as Pharmaceuticals: The Key Role of Cytochromes P450 Reactivity. Trends Biochem. Sci. 2020, 45, 511–525. [Google Scholar] [CrossRef] [PubMed]
- Lepri, S.; Sartori, D.; Semprebon, S.; Baranoski, A.; Coatti, G.; Mantovani, M. Genistein Affects Expression of Cytochrome P450 (CYP450) Genes in Hepatocellular Carcinoma (HEPG2/C3A) Cell Line. Drug Metab. Lett. 2018, 12, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez Castaño, P.; Parween, S.; Pandey, A. Bioactivity of Curcumin on the Cytochrome P450 Enzymes of the Steroidogenic Pathway. Int. J. Mol. Sci. 2019, 20, 4606. [Google Scholar] [CrossRef]
- Zhang, L.; Gong, Y.; Wang, S.; Gao, F. Anti-Colorectal Cancer Mechanisms of Formononetin Identified by Network Pharmacological Approach. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2019, 25, 7709–7714. [Google Scholar] [CrossRef]
- Tang, J.; Yang, H.; Song, X.; Song, X.; Yan, S.; Shao, J.; Zhang, T.; Zhang, J. Inhibition of cytochrome P450 enzymes by rhein in rat liver microsomes. Phytother. Res. PTR 2009, 23, 159–164. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, X.; Liu, Y.; Fang, L.; Pan, Z.; Bao, M.; Huang, P. Effect of Oridonin on Cytochrome P450 Expression and Activities in HepaRG Cell. Pharmacology 2018, 101, 246–254. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, F.; Xiao, X.; Wu, Z.; Hu, Q.; Jiang, Y.; Zhang, W.; Wei, S.; Ma, X.; Zhang, X. Tripterygium hypoglaucum (Lévl.) Hutch and Its Main Bioactive Components: Recent Advances in Pharmacological Activity, Pharmacokinetics and Potential Toxicity. Front. Pharmacol. 2021, 12, 715359. [Google Scholar] [CrossRef] [PubMed]
- Ayaz, M.; Nawaz, A.; Ahmad, S.; Mosa, O.F.; Eisa Hamdoon, A.A.; Khalifa, M.A.; Sadiq, A.; Ullah, F.; Wadood, A.; Kabra, A.; et al. Underlying Anticancer Mechanisms and Synergistic Combinations of Phytochemicals with Cancer Chemotherapeutics: Potential Benefits and Risks. J. Food Qual. 2022, 2022, 1189034. [Google Scholar] [CrossRef]
- Wang, L.; Qin, X.; Liang, J.; Ge, P. Induction of Pyroptosis: A Promising Strategy for Cancer Treatment. Front. Oncol. 2021, 11, 635774. [Google Scholar] [CrossRef]
- Li, Y.; Shen, J.; Fang, M.; Huang, X.; Yan, H.; Jin, Y.; Li, J.; Li, X. The promising antitumour drug disulfiram inhibits viability and induces apoptosis in cardiomyocytes. Biomed Pharmacother 2018, 108, 1062–1069. [Google Scholar] [CrossRef] [PubMed]
- Chio, C.-C.; Chen, K.-Y.; Chang, C.-K.; Chuang, J.-Y.; Liu, C.-C.; Liu, S.-H.; Chen, R.-M. Improved effects of honokiol on temozolomide-induced autophagy and apoptosis of drug-sensitive and -tolerant glioma cells. BMC Cancer 2018, 6, 1435–1438. [Google Scholar] [CrossRef] [PubMed]
- Bu, T.; Wang, C.; Jin, H.; Meng, Q.; Huo, X.; Sun, H.; Sun, P.; Wu, J.; Ma, X.; Liu, Z.; et al. Organic anion transporters and PI3K-AKT-mTOR pathway mediate the synergistic anticancer effect of pemetrexed and rhein. J. Cell. Physiol. 2019, 35, 3309–3319. [Google Scholar] [CrossRef]
- Abdallah, H.M.; Al-Abd, A.M.; El-Dine, R.S.; El-Halawany, A.M. P-glycoprotein inhibitors of natural origin as potential tumor chemo-sensitizers: A review. J. Adv. Res. 2015, 6, 45–62. [Google Scholar] [CrossRef]
- Zhang, X.; Cook, K.L.; Warri, A.; Cruz, I.M.; Rosim, M.; Riskin, J.; Helferich, W.; Doerge, D.; Clarke, R.; Hilakivi-Clarke, L. Lifetime Genistein Intake Increases the Response of Mammary Tumors to Tamoxifen in Rats. Clin. Cancer Res. 2017, 23, 814–824. [Google Scholar] [CrossRef]
- Lin, L.-C.; Wu, C.-H.; Shieh, T.-M.; Chen, H.-Y.; Huang, T.-C.; Hsia, S.-M. The licorice dietary component isoliquiritigenin chemosensitizes human uterine sarcoma cells to doxorubicin and inhibits cell growth by inducing apoptosis and autophagy via inhibition of m-TOR signaling. J. Funct. Foods 2017, 33, 332–344. [Google Scholar] [CrossRef]
- Zou, L.; Wang, D.; Hu, Y.; Fu, C.; Li, W.; Dai, L.; Yang, L.; Zhang, J. Drug resistance reversal in ovarian cancer cells of paclitaxel and borneol combination therapy mediated by PEG-PAMAM nanoparticles. Oncotarget 2017, 8, 60453–60468. [Google Scholar] [CrossRef]
- Zhang, S.; Morris, M.E. Effect of the flavonoids biochanin A and silymarin on the P-glycoprotein-mediated transport of digoxin and vinblastine in human intestinal Caco-2 cells. Pharm. Res. 2003, 20, 1184–1191. [Google Scholar] [CrossRef]
- Yang, F.-H.; Zhang, Q.; Liang, Q.-Y.; Wang, S.-Q.; Zhao, B.-X.; Wang, Y.-T.; Cai, Y.; Li, G.-F. Bioavailability Enhancement of Paclitaxel via a Novel Oral Drug Delivery System: Paclitaxel-Loaded Glycyrrhizic Acid Micelles. Molecules 2015, 20, 4337. [Google Scholar] [CrossRef]
- Liu, Q.; Sun, Y.; Zheng, J.-M.; Yan, X.-L.; Chen, H.-M.; Chen, J.-K.; Huang, H.-Q. Formononetin sensitizes glioma cells to doxorubicin through preventing EMT via inhibition of histone deacetylase 5. Int. J. Clin. Exp. Pathol. 2015, 8, 6434–6441. [Google Scholar]
- Hong, C.; Wang, D.; Liang, J.; Guo, Y.; Zhu, Y.; Xia, J.; Qin, J.; Zhan, H.; Wang, J. Novel ginsenoside-based multifunctional liposomal delivery system for combination therapy of gastric cancer. Theranostics 2019, 9, 4437–4449. [Google Scholar] [CrossRef]
- Li, C.; Deng, C.; Pan, G.; Wang, X.; Zhang, K.; Dong, Z.; Zhao, G.; Tan, M.; Hu, X.; Shi, S.; et al. Lycorine hydrochloride inhibits cell proliferation and induces apoptosis through promoting FBXW7-MCL1 axis in gastric cancer. J. Exp. Clin. Cancer Res. 2020, 39, 230. [Google Scholar] [CrossRef]
- Wu, Z.; Li, C.; Li, Q.; Li, J.; Lu, X. Puerarin alleviates cisplatin-induced acute renal damage and upregulates microRNA-31-related signaling. Exp. Ther. Med. 2020, 20, 3122–3129. [Google Scholar] [CrossRef]
- Khan, M.W.; Zou, C.; Hassan, S.; Din, F.U.; Abdoul Razak, M.Y.; Nawaz, A.; Alam Zeb, N.; Wahab, A.; Bangash, S.A. Cisplatin and oleanolic acid Co-loaded pH-sensitive CaCO3 nanoparticles for synergistic chemotherapy. RSC Adv. 2022, 12, 14808–14818. [Google Scholar] [CrossRef]
- Wang, M.-Z.; He, X.; Yu, Z.; Wu, H.; Yang, T.-H. A Nano Drug Delivery System Based on Angelica sinensis Polysaccharide for Combination of Chemotherapy and Immunotherapy. Molecules 2020, 25, 3096. [Google Scholar] [CrossRef]
- Yin, L.; Huang, G.; Khan, I.; Su, L.; Xia, W.; Law, B.Y.K.; Wong, V.K.W.; Wu, Q.; Wang, J.; Leong, W.K.; et al. Poria cocos polysaccharides exert prebiotic function to attenuate the adverse effects and improve the therapeutic outcome of 5-FU in ApcMin/+ mice. Chin. Med. 2022, 17, 116. [Google Scholar] [CrossRef]
- Haider, T.; Pandey, V.; Banjare, N.; Gupta, P.N.; Soni, V. Drug resistance in cancer: Mechanisms and tackling strategies. Pharmacol. Rep. 2020, 72, 1125–1151. [Google Scholar] [CrossRef]
- Grocholski, B.R.N.; Sugden, A.N.R.W.M.; Purnell, B.E.E.L.A.; Wible, B.R.D.; Osborne, I.A.S.; Ash, C.A.O.I.E.; Alderton, A.N.G.M. A smarter radiative cooler. Science 2020, 370, 1287–1288. [Google Scholar] [CrossRef]
- Nekkanti, S.K.V. Improved delivery of poorly soluble compounds using nanoparticle technology a review. Drug Deliv. Transl. Res. 2016, 6, 319–332. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, Y.; Xia, M.; Gao, Y.; Zhang, L.; Song, Y.; Zhang, C. The combination of nanotechnology and traditional Chinese medicine (TCM) inspires the modernization of TCM: Review on nanotechnology in TCM-based drug delivery systems. Drug Deliv. Transl. Res. 2021, 12, 1306–1325. [Google Scholar] [CrossRef] [PubMed]
- Qiao, L.; Han, M.; Gao, S.; Shao, X.; Wang, X.; Sun, L.; Fu, X.; Wei, Q. Research progress on nanotechnology for delivery of active ingredients from traditional Chinese medicines. J. Mater. Chem. B 2020, 8, 6333–6351. [Google Scholar] [CrossRef]
- Gao, Q.; Feng, J.; Liu, W.; Wen, C.; Wu, Y.; Liao, Q.; Zou, L.; Sui, X.; Xie, T.; Zhang, J.; et al. Opportunities and challenges for co-delivery nanomedicines based on combination of phytochemicals with chemotherapeutic drugs in cancer treatment. Adv. Drug Deliv. Rev. 2022, 188, 114445. [Google Scholar] [CrossRef]
- Hu, J.; Yuan, X.; Wang, F.; Gao, H.; Liu, X.; Zhang, W. The progress and perspective of strategies to improve tumor penetration of nanomedicines. Chin. Chem. Lett. 2021, 32, 1341–1347. [Google Scholar] [CrossRef]
Natural Anti-Tumor Ingredients of Chinese Herbal Medicine | Molecular Structure | Source | Part of Plant | Target and IC50 | Cancer | Refs. |
---|---|---|---|---|---|---|
Genistein | Legume | _ | MCF-7 (IC50 = 9.4 μM), T47D ER + (IC507 = μM) | Prostatic cancer | [14,25] | |
Silymarin | Milk thistle fruit | Seeds, fruits | HepG2 (IC50 = 58.46 μM) | Liver cancer | [15,26] | |
Curcumin | Turmeric | Roots | AGS (IC50 = 2 1.9 ± 0.1 μM), HT 29 (IC50 = 40.7 ± 0.5 μM) | Gastric cancer | [23,27] | |
Honokiol | Traditional Chinese Medicine Houpu | Bark | MDA-MB-231 (IC50 = 16.99 ± 1.28 μM), MDA-MB-468 (IC50 = 15.94 ± 2.35 μM), MDA-MB-453 (IC50 = 20.11 ± 3.13 μM) | Prostatic cancer, bladder cancer | [24,28] | |
Tanshinone ⅡA | Salvia miltiorrhiza | Roots, rhizomes | A549 (IC50 = 145.3 μM) | Lung cancer, human nasopharyngeal carcinoma | [21,29] | |
Isoliquiritigenin | Derived from licorice and carnation | Roots, rhizomes | RBC (IC50 = 2.0 μM) | Multiple cancers | [16,30] | |
Formononetin | Astragalus membranaceus, Sophora flavescens, licorice, kudzu root, and other leguminous plants | Roots | SW480 (IC50 = 4.31 μM) | Colorectal cancer, cervical carcinoma | [18,31] | |
Puerarin | Pueraria lobata | Roots | BUC T24 (IC50 = 218 μM) | Bladder cancer | [19,32] | |
Rhein | Rheum palmatum | Roots, rhizomes | MGC803 (IC50 = 94.26 μM) | Gastric cancer, liver cancer | [22,33] | |
Icariin | Epimedium plant | Rhizomes | KYSE70 (IC50 = 40 μM) | Esophageal cancer, ovarian cancer | [20,34] |
Natural Anti-Tumor Ingredients of Chinese Herbal Medicine | Molecular Structure | Source | Part of Plant | Target and IC50 | Cancer | Refs. |
---|---|---|---|---|---|---|
Ginsenoside Rg3 | Ginseng | Roots | _ | Breast tumors | [35] | |
Oridonin | Chinese medicine Rabdosia rubescens | _ | KYSE70 (IC50 = 8.4 μM) | Esophageal cancer | [36,41] | |
Triptolide | Tripterygium wilfordii plant | Roots | Capan-1 (IC50 = 0.01 μM) | Pancreatic cancer, breast cancer | [37,42,43] | |
Ganoderma triterpenes | Ganoderma lucidum | The surface part of gills | _ | Lung cancer | [38,44] | |
Oleanolic acid | In plants, such as the leaves of the Oleaceae plant Qidunguo | Roots | HepG2 (IC50 = 31.94 ± 1.03 μM) | Liver cancer | [39,45,46] | |
Glycyrrhizic acid | Licorice | Roots, rhizomes, leaf | SW480 (IC50 = 210 μM) | Colorectal cancer, melanoma | [40,47] |
Natural Anti-Tumor Ingredients of Chinese Herbal Medicine | Molecular Structure | Source | Part of Plant | Target and IC50 | Cancer | Refs. |
---|---|---|---|---|---|---|
Camptothecin | Camptotheca acuminata fruit | Seed, root bark | HCC1419 (IC50 = 0.067 μM) | Multiple cancers | [48,54,55] | |
Chelidonine | Baiqu Cabbage | Leaf | A-375 (IC50 = 3 μM), U2OS (IC50 = 34.51 ± 9.47 μM) | Liver cancer, lung cancer, melanoma | [49,56,57] | |
Lycorine hydrochloride | Lycoris bulb | _ | Hey1B (IC50 = 1.2 μM) | Endometrial cancer, Liver cancer | [50,58] | |
Borneol | Borneol fragrance | _ | _ | Multiple cancers | [51] | |
Berberine | Coptis chinensis | Roots, rhizomes, stem, bark | LoVo (IC50 = 1.25–160 μM) | Colorectal cancer, Lung cancer | [52,59] |
Natural Anti-Tumor Ingredients of Chinese Herbal Medicine | Molecular Structure | Source | Part of Plant | Target and IC50 | Cancer | Refs. |
---|---|---|---|---|---|---|
Angelica polysaccharide | Angelica | Roots | _ | Liver cancer | [60] | |
Astragalus polysaccharides | Mongolian Milkvetch Root | Roots | HepG2 (IC50 = 4.2 μM) | Liver cancer, breast cancer | [61,62] |
Cooperative Mechanism | Natural Active Ingredients of Chinese Herbal Medicine | Combined Chemotherapy Drugs | Cancer | Molecular Mechanism | Refs. |
---|---|---|---|---|---|
Synergistic induction of tumor cell apoptosis | Honokiol | Temozolomide | Glioma | The combined treatment of human U87-MG cells with magnolol and temozolomide can induce greater caspase-3 activation, DNA fragmentation, cell apoptosis, and cell cycle arrest in the G1 phase. | [75] |
Rhein | Pemetrexeddisodium for injection | Lung cancer | Rhein enhances the anti-tumor activity of paclitaxel by regulating the PI3K-AKT-mTOR pathway and Bcl-2 protein family in A549 cells, affecting autophagy and apoptosis. | [76] | |
Reduce drug resistance of tumor cells | Icariin | Doxorubicin | Multiple cancers | Rhein enhances the anti-tumor activity of paclitaxel by regulating the PI3K-AKT-mTOR pathway and Bcl-2 protein family in A549 cells, affecting autophagy and apoptosis. | [77] |
Genistein | Tamoxifen | Breast cancer | The downregulation of unfolded protein response and autophagy-related genes and genes linked to immunosuppression and upregulation of cytotoxic T-cell marker CD8a in the tumors of the lifetime genistein group, compared with controls groups. | [78] | |
Isoliquiritigenin | Doxorubicin | Uterine sarcoma | Isoliquiritigenin inhibits cell growth by inducing apoptosis and autophagy via inhibition of m-TOR signaling. | [79] | |
Borneol | Paclitaxel | Ovarian cancer | Based on the synergistic effect of paclitaxel and borneol combination on multidrug resistance reversal by impairing drug efflux resulted from the over-expressed P-gp function. | [80] | |
Synergistic enhancement of chemotherapy drug efficacy | Silymarin | Doxorubicin | Colorectal cancer | Biochanin A and silymarin can inhibit P-gp-mediated efflux in Caco-2 cells. | [81] |
Glycyrrhizic acid | Paclitaxel | Colorectal cancer | Glycyrrhizic acid can increase the solubility of hydrophobic drugs and their permeability through cell membranes, as it can increase membrane permeability and reduce membrane elasticity. | [82] | |
Formononetin | Doxorubicin | Glioma | Formononetin sensitizes glioma cells to doxorubicin through preventing epithelial–mesenchymal transition via the inhibition of histone deacetylase 5. | [83] | |
Ginsenoside Rg3 | Paclitaxel | Gastric cancer | The combination therapy using these targeted liposomes significantly suppressed gastric cancer tumor growth. | [84] | |
Lycorine | HA14-1 (inhibitor of BCL2) | Gastric cancer | Lycorine hydrochloride reduced the protein stability of MCL1 by up-regulating ubiquitin E3 ligase FBXW7, arrested cell cycle at S phase and triggered the apoptosis of gastric cancer cells. | [85] | |
Reduce adverse reactions to chemotherapy | Puerarin | Cisplatin | Acute renal injury | Cisplatin increased the expression levels of apoptotic proteins and affected the Numb/Notch1 signaling pathway, which is downstream of miR-31. | [86] |
Oleanolic acid | Cisplatin | Liver cancer | Oleanolic acid greatly reduced cisplatin induced nephrotoxicity in the formulation. | [87] | |
As an immunoadjuvant for chemotherapy | Angelica polysaccharide | Doxorubicin | Multiple cancers | The treatment of released AP moiety increased the expression of IL-2, while that of IL-10 was decreased, showing potential in restoring Th1/Th2 immune balance in tumor microenvironment. | [88] |
Poria cocos polysaccharides | 5-Fluorouracil | Multiple cancers | Poria cocos polysaccharide alleviates the cytotoxic effects of 5-fluorouracil by reducing the expression of pro-inflammatory cytokines, increasing anti-inflammatory cytokines, and significantly improves the intestinal barrier by enhancing tight junction proteins and related adhesion molecules. | [89] |
Nano-Carriers | Formulations | Traditional Chinese Medicine Active Ingredients | Combined Chemotherapy Drugs | Cancer | Refs. |
---|---|---|---|---|---|
Polymeric nanoparticles | PEG-PAMAM nanoparticle | Borneol | Paclitaxel | Ovarian cancer cells | [80] |
Solid lipid nanoparticles | Lipid-coated cisplatin/oleanolic acid calcium carbonate nanoparticles | Oleanolic | Cisplatin | Liver cancer | [87] |
Polymeric nanoparticles | Enzyme-sensitive tumor-targeting nano drug delivery system | Angelica sinensis polysaccharide | Doxorubicin | Multiple cancers | [88] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, H.; Zhang, M.; Cao, H.; Du, X.; Zhang, X.; Wang, J.; Bi, X. Research Progress on the Synergistic Anti-Tumor Effect of Natural Anti-Tumor Components of Chinese Herbal Medicine Combined with Chemotherapy Drugs. Pharmaceuticals 2023, 16, 1734. https://doi.org/10.3390/ph16121734
Zhou H, Zhang M, Cao H, Du X, Zhang X, Wang J, Bi X. Research Progress on the Synergistic Anti-Tumor Effect of Natural Anti-Tumor Components of Chinese Herbal Medicine Combined with Chemotherapy Drugs. Pharmaceuticals. 2023; 16(12):1734. https://doi.org/10.3390/ph16121734
Chicago/Turabian StyleZhou, Hongrui, Mengxue Zhang, Huihui Cao, Xintong Du, Xin Zhang, Jin Wang, and Xiuli Bi. 2023. "Research Progress on the Synergistic Anti-Tumor Effect of Natural Anti-Tumor Components of Chinese Herbal Medicine Combined with Chemotherapy Drugs" Pharmaceuticals 16, no. 12: 1734. https://doi.org/10.3390/ph16121734
APA StyleZhou, H., Zhang, M., Cao, H., Du, X., Zhang, X., Wang, J., & Bi, X. (2023). Research Progress on the Synergistic Anti-Tumor Effect of Natural Anti-Tumor Components of Chinese Herbal Medicine Combined with Chemotherapy Drugs. Pharmaceuticals, 16(12), 1734. https://doi.org/10.3390/ph16121734