Reversal of Neuralgia Effect of Beta Carotene in Streptozotocin-Associated Diabetic Neuropathic Pain in Female Zebrafish via Matrix Metalloprotease-13 Inhibition
Abstract
:1. Introduction
2. Results
2.1. Estimation of Fasting Blood Glucose Levels
2.2. Assessment of DNP-Induced Changes in Thermal Pain Sensation
2.3. Assessment of DNP-Induced Changes in Chemical Pain Sensation
2.4. Assessment of DNP-Induced Changes in Mechanical Pain Sensation
2.5. Estimation of DNP-Induced Biomarkers Changes
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Drugs and Chemicals
4.3. Induction of DNP
4.4. Estimation of Plasma Glucose Levels
4.5. Experimental Protocol
4.6. Assessment of Neuralgic Behaviors in Zebrafish
4.6.1. Temperature Test
4.6.2. Acetic Acid Test
4.6.3. Fin Clip Test
4.7. Brain Sample Collection
4.7.1. Estimation of TBARS Level
4.7.2. Estimation of GSH Level
4.7.3. Estimation of Total Protein Level
4.7.4. Estimation of MMP-13 Activity Assay
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tanbek, K.; Ozerol, E.; Yilmaz, U.; Yilmaz, N.; Gul, M.; Colak, C. Alpha lipoic acid decreases neuronal damage on brain tissue of STZ-induced diabetic rats. Physiol. Behav. 2022, 248, 113727. [Google Scholar] [CrossRef] [PubMed]
- Prevost, J.; Lambert, J. TENS and EMS Treatment for Diabetic Peripheral Neuropathy. Altern. Ther. Health Med. 2022, 28, 57–59. [Google Scholar] [PubMed]
- Padín, J.-F.; Maroto, M.; Entrena, J.M.; Egea, J.; Montell, E.; Vergés, J.; López, M.G.; Cobos, E.J.; García, A.G. Small Synthetic Hyaluronan Disaccharide BIS014 Mitigates Neuropathic Pain in Mice. J. Pain 2022, 24, 68–83. [Google Scholar] [CrossRef]
- Zhou, D.-M.; Shen, F.-J.; Hao, R.; Miao, B.; Yang, J.-K. Effect of Riluzole on the Expression of HCN2 in Dorsal Root Ganglion Neurons of Diabetic Neuropathic Pain Rats. J. Health Eng. 2022, 2022, 8313415. [Google Scholar] [CrossRef] [PubMed]
- Pathak, R.; Sachan, N.; Chandra, P. Mechanistic approach towards diabetic neuropathy screening techniques and future challenges: A review. Biomed. Pharmacother. 2022, 150, 113025. [Google Scholar] [CrossRef] [PubMed]
- Costa, F.V.; Rosa, L.V.; Quadros, V.A.; de Abreu, M.S.; Santos, A.R.S.; Sneddon, L.U.; Kalueff, A.V.; Rosemberg, D.B. The Use of Zebrafish as a Non-Traditional Model Organism in Translational Pain Research: The Knowns and the Unknowns. Curr. Neuropharmacol. 2021, 20, 476–493. [Google Scholar] [CrossRef]
- de Abreu, M.S.; Giacomini, A.C.V.V.; Genario, R.; Demin, K.A.; Amstislavskaya, T.G.; Costa, F.; Rosemberg, D.B.; Sneddon, L.U.; Strekalova, T.; Soares, M.C.; et al. Understanding early-life pain and its effects on adult human and animal emotionality: Translational lessons from rodent and zebrafish models. Neurosci. Lett. 2021, 768, 136382. [Google Scholar] [CrossRef]
- Gusso, D.; Wiprich, M.T.; Altenhofen, S.; Bonan, C.D. Role of the nucleoside-metabolizing enzymes on pain responses in zebrafish larvae. Neurotoxicol. Teratol. 2022, 93, 107109. [Google Scholar] [CrossRef]
- Strath, L.J.; Sorge, R.E. Racial Differences in Pain, Nutrition, and Oxidative Stress. Pain Ther. 2022, 11, 37–56. [Google Scholar] [CrossRef]
- Méndez-Morales, S.; Marcos, J.P.-D.; Rodríguez-Cortés, O.; Flores-Mejía, R.; Martínez-Venegas, M.; Sánchez-Vera, Y.; Tamay-Cach, F.; Lomeli-Gonzaléz, J.; Reyes, A.E.; Lehman-Mendoza, R.; et al. Diabetic neuropathy: Molecular approach a treatment opportunity. Vasc. Pharmacol. 2022, 143, 106954. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, W.; Lin, C.; Zhang, L. A Comprehensive Review on Beneficial Effects of Catechins on Secondary Mitochondrial Diseases. Int. J. Mol. Sci. 2022, 23, 11569. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Shahidi, F.K.; Khorsandi, K.; Hosseinzadeh, R.; Gul, A.; Balick, V. An update on molecular mechanisms of curcumin effect on diabetes. J. Food Biochem. 2022, 46, e14358. [Google Scholar] [CrossRef] [PubMed]
- Liao, M.-F.; Lu, K.-T.; Hsu, J.-L.; Lee, C.-H.; Cheng, M.-Y.; Ro, L.-S. The Role of Autophagy and Apoptosis in Neuropathic Pain Formation. Int. J. Mol. Sci. 2022, 23, 2685. [Google Scholar] [CrossRef] [PubMed]
- Husain, S.F.; Lam, R.W.M.; Hu, T.; Ng, M.W.F.; Liau, Z.Q.G.; Nagata, K.; Khanna, S.; Lam, Y.; Bhakoo, K.; Ho, R.C.M.; et al. Locating the Site of Neuropathic Pain In Vivo Using MMP-12-Targeted Magnetic Nanoparticles. Pain Res. Manag. 2019, 2019, 9394715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waldron, A.L.; Schroder, P.A.; Bourgon, K.L.; Bolduc, J.K.; Miller, J.L.; Pellegrini, A.D.; Dubois, A.L.; Blaszkiewicz, M.; Townsend, K.L.; Rieger, S. Oxidative stress-dependent MMP-13 activity underlies glucose neurotoxicity. J. Diabetes Complicat. 2018, 32, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Ji, R.-R.; Xu, Z.-Z.; Wang, X.; Lo, E.H. Matrix metalloprotease regulation of neuropathic pain. Trends Pharmacol. Sci. 2009, 30, 336–340. [Google Scholar] [CrossRef] [Green Version]
- Sohrabzadeh, E.; Kalantari, K.K.; Naimi, S.S.; Daryabor, A.; Akbari, N.J. The immediate effect of a single whole-body vibration session on balance, skin sensation, and pain in patients with type 2 diabetic neuropathy. J. Diabetes Metab. Disord. 2021, 21, 43–49. [Google Scholar] [CrossRef]
- Lisse, T.S.; Middleton, L.J.; Pellegrini, A.D.; Martin, P.B.; Spaulding, E.L.; Lopes, O.; Brochu, E.A.; Carter, E.V.; Waldron, A.; Rieger, S. Paclitaxel-induced epithelial damage and ectopic MMP-13 expression promotes neurotoxicity in zebrafish. Proc. Natl. Acad. Sci. USA 2016, 113, E2189–E2198. [Google Scholar] [CrossRef] [Green Version]
- Cirrincione, A.M.; Pellegrini, A.D.; Dominy, J.R.; Benjamin, M.E.; Utkina-Sosunova, I.; Lotti, F.; Jergova, S.; Sagen, J.; Rieger, S. Paclitaxel-induced peripheral neuropathy is caused by epidermal ROS and mitochondrial damage through conserved MMP-13 activation. Sci. Rep. 2020, 10, 3970. [Google Scholar] [CrossRef] [Green Version]
- Hajighasemi, F.; Darouni, L. Inhibition of VEGF and MMP-9 production by Pregabalin in human immunocompetent cells in vitro. Eur. Respir. J. 2020, 56, 2040. [Google Scholar] [CrossRef]
- D’Souza, R.S.; Barman, R.; Joseph, A.; Abd-Elsayed, A. Evidence-Based Treatment of Painful Diabetic Neuropathy: A Systematic Review. Curr. Pain Headache Rep. 2022, 26, 583–594. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.; Normahani, P.; Lane, T.; Hohenschurz-Schmidt, D.; Oliver, N.; Davies, A.H. Prevention and Management Strategies for Diabetic Neuropathy. Life 2022, 12, 1185. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.; Lim, J.W.; Kim, H. β-Carotene Inhibits Expression of Matrix Metalloproteinase-10 and Invasion in Helicobacter pylori-Infected Gastric Epithelial Cells. Molecules 2021, 26, 1567. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Ecker, M. Overview of MMP-13 as a Promising Target for the Treatment of Osteoarthritis. Int. J. Mol. Sci. 2021, 22, 1742. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Pritchard, D.M.; Yu, L.-G. Regulation and Function of Matrix Metalloproteinase-13 in Cancer Progression and Metastasis. Cancers 2022, 14, 3263. [Google Scholar] [CrossRef]
- Shaikh, S.A.; Varatharajan, R.; Muthuraman, A. Palm Oil Derived Tocotrienol-Rich Fraction Attenuates Vascular Dementia in Type 2 Diabetic Rats. Int. J. Mol. Sci. 2022, 23, 13531. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.G.; Muthuraman, A. Ameliorative Processes of Beta-Carotene in Streptozotocin-Induced Diabetic Vascular Dementia in Rats. Processes 2022, 10, 1324. [Google Scholar] [CrossRef]
- Lim, K.G.; Varatharajan, R.; Muthuraman, A. The Attenuating Effect of Beta-Carotene on Streptozotocin Induced Diabetic Vascular Dementia Symptoms in Rats. Molecules 2022, 27, 4293. [Google Scholar] [CrossRef]
- Ismail, M.; Alsalahi, A.; Imam, M.U.; Ooi, D.J.; Khaza’Ai, H.; Aljaberi, M.A.; Shamsudin, M.N.; Idrus, Z. Safety and Neuroprotective Efficacy of Palm Oil and Tocotrienol-Rich Fraction from Palm Oil: A Systematic Review. Nutrients 2020, 12, 521. [Google Scholar] [CrossRef] [Green Version]
- Sen, C.K.; Rink, C.; Khanna, S. Palm Oil–Derived Natural Vitamin E α-Tocotrienol in Brain Health and Disease. J. Am. Coll. Nutr. 2010, 29, 314S–323S. [Google Scholar] [CrossRef]
- Grodstein, F.; Kang, J.H.; Glynn, R.J.; Cook, N.R.; Gaziano, J.M. A Randomized Trial of Beta Carotene Supplementation and Cognitive Function in MenThe Physicians’ Health Study II. Arch. Intern. Med. 2007, 167, 2184–2190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devore, E.E.; Grodstein, F.; Van Rooij, F.J.A.; Hofman, A.; Stampfer, M.J.; Witteman, J.C.M.; Breteler, M.M.B. Dietary Antioxidants and Long-term Risk of Dementia. Arch. Neurol. 2010, 67, 819–825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirk, G.R.; White, J.S.; McKie, L.; Stevenson, M.; Young, I.; Clements, W.D.B.; Rowlands, B.J. Combined Antioxidant Therapy Reduces Pain and Improves Quality of Life in Chronic Pancreatitis. J. Gastrointest. Surg. 2006, 10, 499–503. [Google Scholar] [CrossRef]
- Kasperczyk, S.; Dobrakowski, M.; Kasperczyk, J.; Ostałowska, A.; Zalejska-Fiolka, J.; Birkner, E. Beta-carotene reduces oxidative stress, improves glutathione metabolism and modifies antioxidant defense systems in lead-exposed workers. Toxicol. Appl. Pharmacol. 2014, 280, 36–41. [Google Scholar] [CrossRef]
- Tsuchihashi, H.; Kigoshi, M.; Iwatsuki, M.; Niki, E. Action of β-Carotene as an Antioxidant against Lipid Peroxidation. Arch. Biochem. Biophys. 1995, 323, 137–147. [Google Scholar] [CrossRef]
- Ali, J.; Aziz, M.A.; Rashid, M.M.O.; Basher, M.A.; Islam, M.S. Propagation of age-related diseases due to the changes of lipid peroxide and antioxidant levels in elderly people: A narrative review. Health Sci. Rep. 2022, 5, e650. [Google Scholar] [CrossRef]
- Ismail, C.A.N.; Long, I. Models of Diabetes in Rats: A Focus on Diabetic Neuropathy and Biomarkers. In Biomarkers in Diabetes; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–23. [Google Scholar]
- Assavarittirong, C.; Samborski, W.; Grygiel-Górniak, B. Oxidative Stress in Fibromyalgia: From Pathology to Treatment. Oxidative Med. Cells Longev. 2022, 2022, 1582432. [Google Scholar] [CrossRef]
- Silva, A.H.B.d.L.; Radulski, D.R.; Pereira, G.S.; Acco, A.; Zanoveli, J.M. A single injection of pregabalin induces short- and long-term beneficial effects on fear memory and anxiety-like behavior in rats with experimental type-1 diabetes mellitus. Metab. Brain Dis. 2022, 37, 1095–1110. [Google Scholar] [CrossRef]
- Kuhad, A.; Singh, P.; Chopra, K. Matrix metalloproteinases: Potential therapeutic target for diabetic neuropathic pain. Expert Opin. Ther. Targets 2014, 19, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Du, S.; Wang, W.; Zhang, F. Therapeutic investigation of quercetin nanomedicine in a zebrafish model of diabetic retinopathy. Biomed. Pharmacother. 2020, 130, 110573. [Google Scholar] [CrossRef] [PubMed]
- Rishitha, N.; Muthuraman, A. Chapter 03: Therapeutic Evaluation of Solid Lipid Nanoparticle of Cycloastragenol in Streptozotocin Induced Vascular Dementia in Danio Rerio. In Abnormalities of Vascular System; De Caridi, G., Ed.; Open Access eBooks Publisher: Wilmington, New Zealand, 2019; pp. 1–20. [Google Scholar]
- Mohammadi, H.; Manouchehri, H.; Changizi, R.; Bootorabi, F.; Khorramizadeh, M.R. Concurrent metformin and silibinin therapy in diabetes: Assessments in zebrafish (Danio rerio) animal model. J. Diabetes Metab. Disord. 2020, 19, 1233–1244. [Google Scholar] [CrossRef] [PubMed]
- Arteaga, C.; Boix, N.; Teixido, E.; Marizande, F.; Cadena, S.; Bustillos, A. The Zebrafish Embryo as a Model to Test Protective Effects of Food Antioxidant Compounds. Molecules 2021, 26, 5786. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lu, J.; Qu, H.; Cai, C.; Liu, H.; Chu, J. β-Carotene extracted from Blakeslea trispora attenuates oxidative stress, inflammatory, hepatic injury and immune damage induced by copper sulfate in zebrafish (Danio rerio). Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2022, 258, 109366. [Google Scholar] [CrossRef]
- Alsanie, W.F.; Alhomrani, M.; Gaber, A.; Habeeballah, H.; Alkhatabi, H.A.; Felimban, R.I.; Abdelrahman, S.; Hauser, C.A.E.; Chaudhary, A.G.; Alamri, A.S.; et al. The Effects of Prenatal Exposure to Pregabalin on the Development of Ventral Midbrain Dopaminergic Neurons. Cells 2022, 11, 852. [Google Scholar] [CrossRef] [PubMed]
- Pedroso, G.L.; Hammes, T.O.; Escobar, T.D.; Fracasso, L.B.; Forgiarini, L.F.; Da Silveira, T.R. Blood Collection for Biochemical Analysis in Adult Zebrafish. J. Vis. Exp. 2012, 63, e3865. [Google Scholar] [CrossRef] [Green Version]
- Ohnesorge, N.; Heinl, C.; Lewejohann, L. Current Methods to Investigate Nociception and Pain in Zebrafish. Front. Neurosci. 2021, 15, 632634. [Google Scholar] [CrossRef]
- Nonnis, S.; Angiulli, E.; Maffioli, E.; Frabetti, F.; Negri, A.; Cioni, C.; Alleva, E.; Romeo, V.; Tedeschi, G.; Toni, M. Acute environmental temperature variation affects brain protein expression, anxiety and explorative behaviour in adult zebrafish. Sci. Rep. 2021, 11, 2521. [Google Scholar] [CrossRef]
- Taylor, J.C.; Dewberry, L.S.; Totsch, S.K.; Yessick, L.R.; DeBerry, J.J.; Watts, S.A.; Sorge, R.E. A novel zebrafish-based model of nociception. Physiol. Behav. 2017, 174, 83–88. [Google Scholar] [CrossRef]
- Deakin, A.G.; Buckley, J.; AlZu’bi, H.S.; Cossins, A.R.; Spencer, J.W.; Al’Nuaimy, W.; Young, I.S.; Thomson, J.S.; Sneddon, L.U. Automated monitoring of behaviour in zebrafish after invasive procedures. Sci. Rep. 2019, 9, 9042. [Google Scholar] [CrossRef] [Green Version]
- Dou, Y.; Andersson-Lendahl, M.; Arner, A. Structure and Function of Skeletal Muscle in Zebrafish Early Larvae. J. Gen. Physiol. 2008, 131, 445–453. [Google Scholar] [CrossRef]
- Muthuraman, A.; Rishitha, N. Chapter 02: Ameliorative Potential of Curcumin Phytosome in Streptozotocin Induced Vascular Dementia in Danio Rerio. In Abnormalities of Vascular System; De Caridi, G., Ed.; Open Access eBooks Publisher: Wilmington, New Zealand, 2018; pp. 1–17. [Google Scholar]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Babaei, F.; Ramalingam, R.; Tavendale, A.; Liang, Y.; Yan, L.S.K.; Ajuh, P.; Cheng, S.H.; Lam, Y.W. Novel Blood Collection Method Allows Plasma Proteome Analysis from Single Zebrafish. J. Proteome Res. 2013, 12, 1580–1590. [Google Scholar] [CrossRef]
- Vargas, R.; Jóhannesdóttir, I.; Sigurgeirsson, B.; Jorsteinsson, H.; Karlsson, K. The zebrafish brain in research and teaching: A simple in vivo and in vitro model for the study of spontaneous neural activity. Adv. Physiol. Educ. 2011, 35, 188–196. [Google Scholar] [CrossRef]
- Gupta, T.; Mullins, M.C. Dissection of Organs from the Adult Zebrafish. J. Vis. Exp. 2010, 37, e1717. [Google Scholar] [CrossRef] [PubMed]
Groups | Fasting Blood Glucose Level (mg/dL) |
---|---|
Normal | 72.3 ± 1.6 |
STZ (350 mg/kg) | 141.2 ± 2.1 a |
STZ + PBC (25 µM) | 101.8 ± 2.4 b |
STZ + PBC (50 µM) | 83.5 ± 2.2 b,c |
STZ + PBC (100 µM) | 76.1 ± 1.2 b,c |
STZ + PG (10 μM) | 74.5 ± 1.3 b,c |
STZ + CL-82198 (10 μM) | 79.4 ± 1.6 b,c |
Groups | Tissue GSH (μM/mg of Protein) | Tissue TBARS (nM/mg of Protein) | Tissue MMP-13 (ng/mL) | Plasma MMP-13 (ng/mL) |
---|---|---|---|---|
Normal | 6.52 ± 0.04 | 0.16 ± 0.009 | 0.46 ± 0.13 | 0.06 ± 0.08 |
STZ (350 mg/kg) | 1.03 ± 0.11 a | 1.95 ± 0.004 a | 1.74 ± 0.18 a | 1.14 ± 0.04 a |
PBC (25 µM) | 3.92 ± 0.09 a | 0.97 ± 0.008 a | 1.35 ± 0.14 a | 0.89 ± 0.09 a |
PBC (50 µM) | 4.63 ± 0.07 b,c | 0.56 ± 0.005 b,c | 0.68 ± 0.12 b,c | 0.37 ± 0.05 b,c |
PBC (100 µM) | 5.75 ± 0.11 b,c | 0.32 ± 0.007 b,c | 0.55 ± 0.08 b,c | 0.33 ± 0.04 b,c |
PG (10 μM) | 5.43 ± 0.08 b,c | 0.29 ± 0.012 b,c | 0.49 ± 0.11 b,c | 0.25 ± 0.06 b,c |
CL-82198 (10 μM) | 5.96 ± 0.03 b,c | 0.18 ± 0.011 b,c | 0.47 ± 0.09 b,c | 0.14 ± 0.03 b,c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paramakrishnan, N.; Chavan, L.; Lim, K.G.; Paramaswaran, Y.; Muthuraman, A. Reversal of Neuralgia Effect of Beta Carotene in Streptozotocin-Associated Diabetic Neuropathic Pain in Female Zebrafish via Matrix Metalloprotease-13 Inhibition. Pharmaceuticals 2023, 16, 157. https://doi.org/10.3390/ph16020157
Paramakrishnan N, Chavan L, Lim KG, Paramaswaran Y, Muthuraman A. Reversal of Neuralgia Effect of Beta Carotene in Streptozotocin-Associated Diabetic Neuropathic Pain in Female Zebrafish via Matrix Metalloprotease-13 Inhibition. Pharmaceuticals. 2023; 16(2):157. https://doi.org/10.3390/ph16020157
Chicago/Turabian StyleParamakrishnan, Nallupillai, Laxmikant Chavan, Khian Giap Lim, Yamunna Paramaswaran, and Arunachalam Muthuraman. 2023. "Reversal of Neuralgia Effect of Beta Carotene in Streptozotocin-Associated Diabetic Neuropathic Pain in Female Zebrafish via Matrix Metalloprotease-13 Inhibition" Pharmaceuticals 16, no. 2: 157. https://doi.org/10.3390/ph16020157
APA StyleParamakrishnan, N., Chavan, L., Lim, K. G., Paramaswaran, Y., & Muthuraman, A. (2023). Reversal of Neuralgia Effect of Beta Carotene in Streptozotocin-Associated Diabetic Neuropathic Pain in Female Zebrafish via Matrix Metalloprotease-13 Inhibition. Pharmaceuticals, 16(2), 157. https://doi.org/10.3390/ph16020157