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Abstract: Plazomicin is a recent U.S. Food and Drug Administration (FDA)-approved semisynthetic
aminoglycoside. Its structure consists of a sisomicin scaffold modified by adding a 2(S)-hydroxy
aminobutyryl group at the N1 position and a hydroxyethyl substituent at the 6′ position. These
substitutions produced a molecule refractory to most aminoglycoside-modifying enzymes. The
main enzyme within this group that recognizes plazomicin as substrate is the aminoglycoside 2′-N-
acetyltransferase type Ia [AAC(2′)-Ia], which reduces the antibiotic’s potency. Designing formulations
that combine an antimicrobial with an inhibitor of resistance is a recognized strategy to extend the
useful life of existing antibiotics. We have recently found that several metal ions inhibit the enzymatic
inactivation of numerous aminoglycosides mediated by the aminoglycoside 6′-N-acetyltransferase
type Ib [AAC(6′)-Ib]. In particular, Ag+, which also enhances the effect of aminoglycosides by other
mechanisms, is very effective in interfering with AAC(6′)-Ib-mediated resistance to amikacin. Here
we report that silver acetate is a potent inhibitor of AAC(2′)-Ia-mediated acetylation of plazomicin
in vitro, and it reduces resistance levels of Escherichia coli carrying aac(2′)-Ia. The resistance reversion
assays produced equivalent results when the structural gene was expressed under the control of
the natural or the blaTEM-1 promoters. The antibiotic effect of plazomicin in combination with silver
was bactericidal, and the mix did not show significant toxicity to human embryonic kidney 293
(HEK293) cells.

Keywords: AAC(2′)-Ia; aminoglycoside 2′-N-acetyltransferase type Ia; aminoglycoside; multidrug
resistance; metal ions; plazomicin; adjuvant

1. Introduction

Nosocomial- and community-acquired bacterial pathogens are becoming resistant
to most, or even all, available antibiotics, and some are becoming virtually untreat-
able [1]. Many clinical isolates belonging to the Enterobacterales possess genes coding for
aminoglycoside-modifying enzymes, extended-spectrum β-lactamases, and carbapene-
mases [2,3]. Colistin remains an option for treating life-threatening multidrug-resistant in-
fections caused by some of these bacteria [4]. However, resistant variants have already been
found in several geographical regions and may soon become prevalent [5,6]. Other novel
options include cefiderocol and new β-lactams/β-lactamase inhibitors [7–9]. Aminoglyco-
sides are excellent tools for treating infections caused by Gram-negative and Gram-positive
bacteria. Unfortunately, the rise and dissemination of aminoglycoside-modifying enzymes,
the major mechanism of resistance to this class of antibiotics in the clinical setting, have
reduced their effectiveness [10–12]. Therefore, developing new antibiotics or therapeutic
strategies is necessary to generate viable treatment options [13]. Numerous analogs to
natural aminoglycosides have been designed to resist the action of resistance enzymes. The
general strategy to achieve this purpose is to add or remove chemical groups to the natural
molecule without affecting the antimicrobial properties, i.e., the capabilities to interact with
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the ribosome and produce a deleterious effect on the health of the bacterial cell. At the same
time, the new molecule must become refractory to the action of aminoglycoside-modifying
enzymes [14–16]. These compounds are known as semisynthetic aminoglycosides and have
been successfully introduced into the clinical setting to treat resistant infections [17,18]. The
first semisynthetic aminoglycoside, dibekacin (3′,4′-dideoxy-kanamycin B), was introduced
in 1975 (Figure 1) [19]. The rationale for designing this aminoglycoside was that removing
hydroxyl groups that are targets of O-phosphorylation would result in a molecule that is no
longer a substrate of some aminoglycoside phosphotransferases [19]. Later, other semisyn-
thetic aminoglycosides were synthesized with substituents that made them refractory to
enzymatic modification or located at positions where the resistance enzymes introduce
the chemical group to inactivate them. Others include combinations of removal of the
target groups plus the addition of chemical groups at other locations. A few examples of
these antimicrobials are amikacin, netilmicin, arbekacin, and isepamicin (Figure 1) [20–23].
In particular, amikacin has been widely used to treat multiresistant infections with great
success [17]. Unfortunately, enzymes capable of catalyzing its inactivation started to appear
and disseminate [10,24]. One of them, the aminoglycoside 6′-N-acetyltransferase type Ib
[AAC(6′)-Ib], coded for by a gene that is present in integrons, transposons, and plasmids,
spread throughout the world and became prevalent in most Gram-negative bacteria [12,25].
It is, therefore, imperative that research efforts to overcome resistance continue unabated.

Plazomicin is a next-generation semisynthetic aminoglycoside designed by modifying
sisomicin by the addition of a 2(S)-hydroxy aminobutyryl group at the N1 position and a
hydroxyethyl substituent at the 6′ position (Figure 1) [26,27]. These modifications make
a molecular structure refractory to most aminoglycoside-modifying enzymes [10,28–31].
Plazomicin was approved in 2018 by the FDA to be used in patients with limited or no
options for alternative treatment. It is active against multidrug-resistant Enterobacterales,
including strains producing carbapenemases and extended-spectrum β-lactamases, while
showing tolerable levels of nephrotoxicity and ototoxicity [29,32,33]. Unfortunately, despite
the substitutions that make plazomicin a non-substrate for most aminoglycoside-modifying
enzymes, the AAC(2′)-Ia enzyme identified in the chromosome of Providencia stuartii can
catalyze the inactivation of the antibiotic molecule through transferring an acetyl group
from the donor substrate acetyl-CoA to the amino group at the C-2′ position [34,35]. The
crystal structures of this enzyme in complex with plazomicin and three other semisynthetic
aminoglycosides have been recently reported [35,36]. Although AAC(2′)-Ia is not usually
found in clinical isolates, it is a matter of time before it disseminates and becomes prevalent
if the use of plazomicin increases. An obvious path to deal with the rise and dissemi-
nation of aminoglycoside-modifying enzymes is the continuous design of semisynthetic
aminoglycosides. However, designing new generations of semisynthetic aminoglycosides
has proven costly and time-consuming. These stumbling blocks warrant exploring al-
ternative strategies, such as the developing inhibitors of the enzymatic inactivation that,
together with the aminoglycoside, form a combination therapy effective against resistant
pathogens [13]. The recent finding that metal ions, some of them complexed to ionophores
(compounds that facilitate the internalization of ions inside the cell), inhibit the acetylation
of aminoglycosides catalyzed by enzymes such as AAC(6′)-Ib, AAC(6′)-Ie, AAC(2′)-Ic,
AAC(3)-Ia, AAC(3)-Ib, AAC(3)-IV, and Eis, and induce a reduction in the minimal in-
hibitory concentration (MIC) of several aminoglycosides to susceptibility levels proved the
feasibility of this concept. The experimental results increased expectations that multidrug-
resistant infections could be treated by these combination therapies [37–43]. In particular,
Ag+ inhibits the inactivation by acetylation of amikacin elicited by AAC(6′)-Ib and reverses
resistance in bacteria in culture at low concentrations without needing an ionophore [42].
This article describes the inhibition of AAC(2′)-Ia-mediated plazomicin-resistance by Ag+

in Escherichia coli harboring a recombinant clone containing the aac(2′)-Ia gene.
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2. Results 
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Ag+ ions drastically interfered with the acetylation of plazomicin (Figure 2). The pres-
ence of silver acetate in the reaction mixture produced significant inhibition. These results, 
taken together with previous research showing that metal ions can inhibit the enzymatic 
acetylation of aminoglycosides, are an encouraging indication that Ag+ could serve as an 
adjuvant to plazomicin if AAC(2′)-Ia or a similar enzyme disseminates among bacterial 
pathogens. Control assays carried out in the presence of sodium acetate showed the same 
levels of acetylation as those in reactions with no additions (Figure 2).  

Figure 1. Chemical structures of representative semisynthetic aminoglycosides. Dibekacin is a
3′,4′-dideoxy derivative of kanamycin B [19]. Arbekacin is a derivative of dibekacin obtained by
addition of (S)-4-amino-2-hydroxybutyric acid into the amino group at the C-1 position [44] after
observing the effect this modification had when carried out on kanamycin B to generate amikacin [21].
Isepamicin is a derivative of gentamicin with a modification like that in amikacin, and the properties
of both antibiotics are similar [45]. Netilmicin is a derivative of sisomicin obtained by addition of an
ethyl group into the amino group at the C-1 position [20]. Plazomicin is the newest semisynthetic
aminoglycoside, generated by modifying sisomicin with the addition of a 2(S)-hydroxy aminobutyryl
group at the N1 position and a hydroxyethyl substituent at the 6′ position [26,27]. Red boxes show
chemical groups added to the molecule to generate the semisynthetic derivative. Blue boxes show
the locations where hydroxyl groups were removed to generate the semisynthetic derivative.

2. Results
2.1. Effect of Ag+ on AAC(2′)-Ia-Catalyzed Acetylation of Plazomicin

Ag+ ions drastically interfered with the acetylation of plazomicin (Figure 2). The
presence of silver acetate in the reaction mixture produced significant inhibition. These
results, taken together with previous research showing that metal ions can inhibit the
enzymatic acetylation of aminoglycosides, are an encouraging indication that Ag+ could
serve as an adjuvant to plazomicin if AAC(2′)-Ia or a similar enzyme disseminates among
bacterial pathogens. Control assays carried out in the presence of sodium acetate showed
the same levels of acetylation as those in reactions with no additions (Figure 2).
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The enzymatic reactions were allowed to proceed at 37 °C. After 30 min incubation, 20 μL were 
spotted on phosphocellulose paper strips, which were immersed in water at 80 °C. Following this, 
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cellulose paper strips were left to dry and counted to determine the bound radioactivity, which 
corresponds to acetylated plazomicin. 
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Figure 2. Effect of Ag+ on AAC(2′)-Ia activity. Assays were performed in triplicate by the phospho-
cellulose paper binding method with soluble extracts obtained from E. coli TOP10(pUC57AAC2Ia)
cells. The reaction mixture contained 200 mM Tris HCl pH 7.6 buffer, 0.25 mM MgCl2, 330 µM
plazomicin, the indicated concentrations of silver acetate (Ag+) or sodium acetate (Na+), and 0.05 µCi
of [acetyl-1-14C]-acetyl-coenzyme A (specific activity 60 µCi/µmol) in a final volume of 30 µL. The
enzymatic reactions were allowed to proceed at 37 ◦C. After 30 min incubation, 20 µL were spotted
on phosphocellulose paper strips, which were immersed in water at 80 ◦C. Following this, the paper
strips were washed twice by immersion in room temperature water. Finally, the phosphocellulose
paper strips were left to dry and counted to determine the bound radioactivity, which corresponds to
acetylated plazomicin.

2.2. Effect of Ag+ on AAC(2′)-Ia-Mediated Resistance to Plazomicin

As determined using commercial E-strips, the E. coli TOP10(pUC57AAC2Ia) MIC of
plazomicin was 12 µg/mL. To assess the effect of Ag+ on the resistance to plazomicin of
growing cells, E. coli TOP10(pUC57AAC2Ia) was cultured in the presence of silver acetate
in addition to plazomicin. A growth-level reduction was observed when only plazomicin
was present (Table 1). However, the cells grew to an OD600 consistent with heavy growth,
confirming that AAC(2′)-Ia confers substantial resistance to the antibiotic. Addition of silver
acetate at 4 µM was sufficient to completely inhibit growth in the presence of plazomicin
at a sub-MIC concentration (4 µg/mL) (Table 1). Furthermore, when the concentration of
plazomicin was 8 µg/mL, still a sub-MIC value, 2 µM silver acetate was enough to inhibit
growth (Table 1). A control experiment adding sodium acetate showed the same growth
levels in the absence or presence of the addition (Table 1). The results described in this
section unequivocally indicated that Ag+ interferes with resistance to amikacin mediated
by AAC(6′)-Ib.

Table 1. Growth in the presence of plazomicin and silver acetate.

Plazomicin
(µg/mL)

Silver Acetate (µM)
OD600

Sodium Acetate (µM)
OD600

0 1 2 4 0 8

0 3.21 ± 0.02 3.09 ± 0.01 3.09 ± 0.02 3.18 ± 0.11 3.04 ± 0.06 3.12 ± 0.08
4 3.05 ± 0.08 2.86 ± 0.11 1.95 ± 0.01 0.12 ± 0.01 1.39 ± 0.03 1.34 ± 0.06
8 1.21 ± 0.01 1.26 ± 0.01 0.10 ± 0.03 0.02 ± 0 1.13 ± 0.02 1.08 ± 0.04

Cultures of E. coli TOP10(pUC57AAC2Ia) were performed in cation-adjusted Mueller Hinton without additions
or supplemented with silver acetate or sodium acetate at the indicated concentrations.

Studies on the expression of the aac(2′)-Ia gene suggest that in its natural location, the
P. stuartii chromosome, is subjected to regulation [46]. To discard any regulatory role in the
action of Ag+, the AAC(2′)-Ia open reading frame was placed downstream of the blaTEM-1
promoter and cloned using pUC57 as cloning vector to generate the recombinant plasmid
pUC57PBLAAAC2Ia. The MIC of plazomicin of E. coli TOP10(pUC57PBLAAAC2Ia) was
12/16 µg/mL. Table 2 shows that the results of this experiment were similar to those
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observed with the gene under the control of the natural promoter. The resistance levels
in liquid medium were slightly lower with the gene that carries the blaTEM-1 promoter.
However, inhibition of resistance by Ag+ was identical with both promoters.

Table 2. Growth in the presence of plazomicin and silver acetate.

Plazomicin
(µg/mL)

Silver Acetate (µM)
OD600

0 1 2 4

0 3.54 ± 0.01 3.48 ± 0.02 3.50 ± 0.07 3.35 ± 0.10
4 1.71 ± 0.02 1.66 ± 0.09 0.95 ± 0.09 0.09 ± 0.07
8 0.68 ± 0.06 0.24 ± 0.02 0.14 ± 0.06 0.03 ± 0

Cultures of E. coli TOP10(pUC57PBLAAAC2Ia) were performed in cation-adjusted Mueller Hinton without
additions or supplemented with silver acetate or sodium acetate at the indicated concentrations.

2.3. Bactericidal Effect

Plazomicin showed bactericidal activity in previous studies [47]. Time-kill assays
were used to evaluate if the phenotypic conversion to susceptibility observed when E.
coli TOP10(pUC57AAC2Ia) was cultured in the presence of silver acetate in addition to
plazomicin was due to a bactericidal effect. Figure 3 shows that adding silver acetate
and plazomicin at a sub-MIC concentration had a robust bactericidal effect. Conversely,
healthy growth was observed when one of the components was omitted. As in a previous
report [47], regrowth was observed after 10 h incubation. It is worth noting that in the past
study, regrowth in time-kill assays was observed with concentrations of up to 2× or 4×MIC
values depending on the strain assayed. The bases for regrowth remain to be elucidated.
Possible causes are the emergence of resistance or the presence of tolerant variants in
the culture. The results of the experiments described in this section demonstrated that
plazomicin, in the presence of Ag+ ions, exerted bactericidal action on E. coli cells, in which
resistance is caused by the presence of the AAC(2′)-Ia enzyme. The bactericidal effect of
plazomicin plus Ag+ ions on E. coli resistant cells was similar to that of plazomicin alone
on susceptible E. coli cells.
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Figure 3. Time-kill assays for plazomicin in the presence of silver acetate. E. coli TOP10(pUC57AAC2Ia)
was incubated at 37 ◦C until the cell concentration reached the CFU/mL indicated in the figure at time
zero. At this moment, the culture was divided in four aliquots. An aliquot was not supplemented with
any reagent. The others were each supplemented with 8 µg/mL plazomicin, 8 µM silver acetate, or both.
The cultures were then incubated at 37 ◦C and the CFU/mL values were determined after the indicated
periods. AgAcetate, silver acetate. Assays were done in duplicate, and the values are mean± SD of two
independent experiments.

2.4. Cytotoxicity of the Mix Plazomicin/Silver Acetate

An essential factor for the viability of combination therapies is that they show low
toxicity to the host. A preliminary analysis of the cytotoxicity of the mix investigated in
this work was carried out using HEK293 cells. Figure 4 shows that the exposure of the
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cells to the combination or the individual components at the active concentrations did
not cause significant mortality. While these experiments are a preliminary step toward
understanding the toxicity of the combination plazomicin/silver acetate, the results warrant
further development towards overcoming the action of the AAC(2′)-Ia enzyme.
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Figure 4. Cytotoxicity of silver acetate and plazomacin. Cytotoxicity on HEK293 cells was assayed
using a LIVE/DEAD kit as described in the Materials and Methods section. The percentage of
surviving cells was calculated relative to cells untreated (striped bar). Control of maximum toxicity
was determined by incubating the cells in 70% methanol. Assays were carried out in triplicate and
the values are mean ± SD of three independent experiments.

3. Discussion

Bacterial infectious diseases are a major cause of premature death, compromised
health, and sometimes disability caused by permanent sequelae [48–50]. Outbreaks of
bacterial infection, usually associated with multidrug resistance, are increasingly reported
and may soon be responsible for millions of deaths per year [51–53]. Furthermore, the
increase in hard-to-treat or untreatable bacteria also threatens medical procedures such
as surgery, care for premature infants, organ transplants, treatment of numerous chronic
diseases, including cancer, and also multiple dental procedures [13,54–56]. The impact
of the drug resistance crisis is such that it was included within the group of the top
ten global health threats [57]. Compounding the problem, unlike in the past when new
antibiotics were available if existing ones became ineffective, the number of new antibiotics
in development is dangerously low [1]. It is necessary to devise methodologies that extend
the life of antibiotics currently in use. The development of inhibitors of mechanisms of
resistance that can be administered in combination with the cognate antibiotic can be
a viable strategy to treat resistant bacteria [11,13]. Although there are no inhibitors of
resistance to aminoglycosides in clinical use, this course of action has already been proven
successful for β-lactamase-mediated resistance to β-lactams [58].

While plazomicin is a new aminoglycoside antibiotic, there are already enzymes that
can inactivate it. AAC(2′)-Ia catalyzes the inactivation of plazomicin by acetylation and
reduces its potency [28]. Following the steps of previous work indicating that selected
metal ions interfere with the acetylation reaction [37–40,42,43,59], we tested the effect of
Ag+. We chose this ion because, unlike other metals, previous work showed that ionophores
were not necessary to observe reversion of resistance in growing bacterial cells when tested
as a potential inhibitor of aminoglycoside resistance mediated by AAC(6′)-Ib [42]. Pla-
zomicin was readily acetylated in vitro in a soluble extract of cells containing a recombinant
clone harboring aac(2′)-Ia. The AAC(2′)-Ia activity results in resistance to plazomicin as
determined by measuring MIC values for E. coli cells carrying recombinant clones that
include the gene expressed under the control of the natural or the constitutive blaTEM pro-
moters. Since both recombinant plasmids were generated using the same plasmid vector,
the gene dosage in both strains must be identical. Therefore, the similarity of the MIC
values showed by both strains suggests that the described transcriptional regulation of
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expression of aac(2′)-Ia [60] does not impact resistance levels in the conditions used in our
assays. The effect of silver acetate was also identical in the strains harboring the structural
gene expressed under the control of both promoters. When plazomicin was present at 4 or
8 µg/mL, the concentrations needed to overcome resistance were as low as 1 and 2 µM,
respectively. It is worth noting that it has been described that silver ions potentiate the
effect of aminoglycoside and other antibiotics by mechanisms still in discussion. There
is consensus that silver ions increase membrane permeability, which can enhance the ef-
fect of antibiotics against Gram-negative bacteria [61–63]. It has also been suggested that
silver-mediated increased production of reactive oxygen species is one of the causes of
potentiation of the aminoglycoside antibacterial effect [62]. However, this latter possibility
has not been confirmed. Our prior [42] and present results indicate that silver ions also
enhance the action of aminoglycosides by interfering with enzymatic inactivation, at least
in the case of two aminoglycoside-modifying enzymes (AAC(6′)-Ib and AAC(2′)-Ia). We
conclude that silver ions potentiate aminoglycosides by multiple mechanisms that result
in the observed phenotypic conversion to susceptibility. These facts, taken together with
the confirmation that plazomicin retains its bactericidal action when acting in concert with
Ag+1 to inhibit the growth of resistant bacteria and that the combination plazomicin/silver
acetate at the active concentrations does not exhibit cytotoxicity, make these mixes excellent
candidates to extend the useful life of plazomicin and other aminoglycosides.

4. Materials and Methods
4.1. Bacterial Strains and Plasmids

Escherichia coli TOP10 F- mcrA ∆(mrr-hsdRMS-mcrBC) Φ80lacZ∆M15 ∆lacX74 recA1
araD139 ∆(ara-leu)7697 galU galK rpsL(StrR) endA1 nupG was transformed with the plasmid
pUC57AAC2Ia and used for all assays. The plasmid pUC57AAC2Ia was constructed insert-
ing the P. stuartii aac(2′)-Ia gene (accession number L06156, nucleotides 12-820) [60] into the
BamHI/HindIII sites of pUC57. The plasmid pUC57PBLAAAC2Ia was generated fusing
the blaTEM promoter and Shine-Dalgarno sequences, fragment encompassing nucleotides
4154-4225 (reverse complement, accession number J01749) [64] to the aac(2′)-Ia open read-
ing frame (fragment encompassed by nucleotides 264-810, accession number L06156) [60].
Transformation of E. coli TOP10 with pUC57AAC2Ia or pUC57PBLAAAC2Ia was per-
formed as recommended by the supplier of the competent cells (Invitrogen, Waltham,
MA, USA).

4.2. Bacterial Growth

Bacteria were cultured in Lennox L broth (1% tryptone, 0.5% yeast extract, 0.5% NaCl)
with the addition of 2% agar in the case of solid medium. Plazomicin resistance levels were
determined in cation-adjusted Mueller-Hinton broth. Culturing was carried out at 37 ◦C in
a shaker. Growth was assessed determining the optical density at 600 nm (OD600) of the
cultures containing the specified additions. Silver ions were added as silver acetate due to
its adequate solubility in water. Plazomicin was generously supplied by Cipla Therapeutics
(Mumbai, India).

4.3. MIC Determination

MIC values were measured using plazomicin commercial E-strips (Liofilchem S.r.l.,
Roseto degli Abruzzi, Italy) following the recommendations of the supplier on Mueller-
Hinton agar plates. The strips were applied to the Muelle-Hinton agar plates, which were
incubated overnight at 37 ◦C. The next morning, values were determined at the intersection
of the strip MIC reading scale and the growth ellipse.

4.4. Time-Kill Assays

Bacterial cells were cultured in cation-adjusted Mueller-Hinton broth until they reached
107 CFU/mL. At this time the cultures were divided in four aliquots, one of them was left
intact and the others were supplemented with either 8 µg/mL plazomicin, 4 µM silver
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acetate, or both. Incubation was continued at 37 ◦C with shaking and the CFUs were
determined after the indicated times [40].

4.5. Acetyltransferase Assays

Total soluble proteins (enzymatic extracts) were prepared as before [42]. Briefly, cells
were pelleted from cultures by centrifugation and resuspended in a 0.5 mM MgCl2 solution.
The cells were lysed by sonication with a Heat Systems Ultra-sonic, Inc., Model No. H-IA
(Plainview, NY, USA) cell disrupter. The soluble protein fraction was then separated from
unbroken cells, membranes, and cell debris by centrifugation in a microfuge for 10 min at
4 ◦C. The protein concentration of the extracts was measured using a commercial reagent
(Bio-Rad Protein Assay). Acetyltransferase activity was assessed using the phosphocel-
lulose paper binding assay [65]. Soluble extract (120 µg protein) obtained from E. coli
TOP10(pUC57AAC2Ia) cells was added to the reaction mixture (200 mM Tris HCl pH
7.6 buffer, 0.25 mM MgCl2, 330 µM plazomicin, the indicated concentrations of sodium
acetate or silver acetate, and 0.05 µCi of [acetyl-1-14C]-acetyl-coenzyme A (specific activity
60 µCi/µmol). The reaction mixture final volume was 30 µL. Silver ions were added as
silver acetate due to its adequate solubility in water. After incubating the reaction mixture
at 37 ◦C for 30 min, 20 µL were spotted on phosphocellulose paper strips. The unreacted
radioactive substrate [acetyl-1-14C]-acetyl-coenzyme A was removed from the phosphocel-
lulose paper strips by submersion in 80 ◦C water followed by two washes by submersion
in room temperature water. After this treatment, the only radioactive compound bound to
the phosphocellulose paper strips was the acetylated plazomicin. The phosphocellulose
paper strips were then dried and the radioactivity corresponding to enzymatic reaction
product was determined in a scintillation counter.

4.6. Cytotoxicity Assays

Cytotoxicity was assessed on HEK293 cells [66]. The methodology followed was
described previously [67]. Cytotoxicity was determined for of the combination silver
acetate/plazomicin at various concentrations. One thousand cells per well were cultured
on flat-bottom 96-well, black microtiter plates. After 12 h incubation, the testing compounds
were added at the desired concentrations and incubation was continued for 24 h. Following,
the cells were washed with sterile D-PBS, resuspended in the LIVE/DEAD reagent (2 µM
ethidium homodimer 1 and 1 µM calcein-AM) (Molecular Probes), and incubated for
30 min at 37 ◦C. At this moment the fluorescence levels corresponding to dead and live
cells (645 nm and 530 nm, respectively) were measured. The percentage of dead cells was
calculated relative to the untreated cells. Maximum toxicity was calculated treating cells
with 70% methanol for 20 min. Experiments were conducted in triplicate. The results were
expressed as mean ± SD of three independent experiments. HEK293 cells were purchased
from BEI resources (Manassas, VA, USA), catalog number NR-9313.

5. Conclusions

Antibiotic resistance could become the next pandemic. There is an urgent need for
novel strategies to extend the useful life of antibiotics currently in use. The Centers for
Disease Control Antibiotic Resistance Threats in the United States Report of 2019 called
attention to the magnitude of the problem. They warned that relying only on new antibiotics
would be unwise to deal with the crisis [68]. Latest-generation antibiotics such as plazomicin
can quickly be overcome by resistance mechanisms developed by bacteria. The ability of
Ag+ to interfere with the action of AAC(2′)-Ia, an aminoglycoside-modifying enzyme that
mediates the inactivation of plazomicin, makes it an excellent candidate as a plazomicin
adjuvant to eliminate this enzyme as a threat to the effectivity to this antibiotic. The low
cytotoxicity observed at the active concentrations makes the combination plazomicin/Ag+

a viable option for treating multidrug-resistant infections.
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