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Abstract: Anti-cancer drug design has been acknowledged as a complicated, expensive, time-
consuming, and challenging task. How to reduce the research costs and speed up the development
process of anti-cancer drug designs has become a challenging and urgent question for the pharmaceu-
tical industry. Computer-aided drug design methods have played a major role in the development of
cancer treatments for over three decades. Recently, artificial intelligence has emerged as a powerful
and promising technology for faster, cheaper, and more effective anti-cancer drug designs. This study
is a narrative review that reviews a wide range of applications of artificial intelligence-based methods
in anti-cancer drug design. We further clarify the fundamental principles of these methods, along
with their advantages and disadvantages. Furthermore, we collate a large number of databases,
including the omics database, the epigenomics database, the chemical compound database, and drug
databases. Other researchers can consider them and adapt them to their own requirements.
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1. Introduction

In recent years, many companies have ramped up their R&D (research and develop-
ment) efforts for anti-cancer drugs [1]. There is a growing number of large and long-term
clinical trials providing a possible therapeutic opportunity for more cancer patients [2,3].
Recently, the American Cancer Society announced that the three-year survival rate for lung
cancer from 2014 to 2021 was raised from 21% to almost 31% [4]. The efficacy of targeted
therapies and immunotherapeutics has been investigated in a variety of solid tumors [5].
Thus, a greater investment in targeted therapies and immunotherapeutics to realize the
benefits of precision medicine will benefit the long-term survival of cancer patients [6–8].

The anti-cancer drug design and discovery workflow comprises target recognition,
hit exploration, hit-to-lead development, lead optimization, preclinical drug candidate
identification, and preclinical and clinical research [9–11]. Despite the improvements in
tumor biotechnology and the advances in cancer mechanism research, the development
of novel and effective anti-cancer drugs from scratch remains an arduous, expensive, and
time-consuming process [12] that will require close multidisciplinary collaborations, in-
cluding medicinal chemistry, computational chemistry, biology, pharmacology, and clinical
research [13]. Statistically, it can take more than 10–17 years and almost 2.8 billion dollars
to bring a new drug into clinical practice [14,15]. Apart from that, only 10% of the tested
compounds in clinical trials reach the market [16].

It is especially difficult to design anti-cancer drugs due to challenges such as un-
druggable targets [17], chemoresistance in oncology [18], tumor heterogeneity [19], and
metastasis [20]. The conventional drug design approaches may seem poorly effective. With
so many challenges still to be faced, the treatment effects among cancer patients are actually
suboptimal. Thus, more effective anti-cancer drug design strategies are urgently needed.
They will reduce the cost of drug development and the time required for clinical trials.
They can also help increase the global life expectancy and improve human health [4].
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Computer-aided drug design (CADD) is a method that began in the early 1980s [21].
The use of computer-aided methods to guide drug screening is emerging as an important
component in the practice of drug design [22–25]. This approach enabled medicinal
chemists to calculate the interactions between a ligand and receptors and to design and
optimize lead compounds by computer simulation [26]. The typical role of CADD in drug
design is to screen out large compound libraries into smaller clusters of predicted active
compounds based on computational chemistry. It can greatly speed up the process of
anti-drug design and save a huge amount of time and money [27].

In the context of the rapid development of computer hardware and artificial intelli-
gence techniques, researchers in academia and the pharmaceutical industry are turning to
artificial intelligence to improve drug design processes [28]. Artificial intelligence (AI) refers
to the simulation of human intelligence in machines that are programmed to think and act
like humans [15]. A common presumption about artificial intelligence is that its goal is to
build machines with a similar capacity for “understanding” [29]. Artificial intelligence is
now used in many applications for cancer research, such as image classification of abnormal
cancer cells [30], prediction of target protein structures [31], and prediction of drug–protein
interactions [32]. These studies demonstrate that artificial intelligence techniques have the
power to revolutionize anti-cancer drug design processes. Some applications using artificial
intelligence in anti-cancer drug design processes are illustrated in Figure 1. This paper
reviewed some of the advances in anti-cancer drug design based on artificial intelligence,
presented some of the most classic examples, and clarified the fundamental principles of
these methods.
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Figure 1. Some applications of artificial intelligence in anti-cancer drug design. The bottom (de novo
drug design) is usually implemented using the deep learning-based models listed above. Recently,
reinforcement learning has been used often. The above workflow example of a graphical chemical
structure with an O–C–O connection is an iterative chemical graph generation process [33].

2. Method

The present study is a narrative review of the literature. We performed searches in the
US National Library of Medicine (PubMed) to find original articles. The search strategy
used in PubMed is shown in Table 1. We mainly focused on the articles and reviews
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published in the past decade. The last search of the present narrative review was performed
on 10 December 2022.

Table 1. Search strategies used in the US National Library of Medicine (PubMed), according to
selected descriptors.

Strategy Descriptors Used

#1
(“cancer” [Title/Abstract] AND “artificial
intelligence” [Title/Abstract] AND “drug”

[Title/Abstract]) AND (y_10[Filter])

#2
(“cancer” [Title/Abstract] AND “drug
discovery” [Title/Abstract] AND “AI”
[Title/Abstract]) AND (y_10[Filter])

#3
(“cancer” [Title/Abstract] AND “drug design”

[Title/Abstract] AND “machine learning”
[Title/Abstract]) AND (y_10[Filter])

#4
(“database” [Title/Abstract] AND “drug”

[Title/Abstract] AND “artificial intelligence”
[Title/Abstract]) AND (y_10[Filter])

3. Artificial Intelligence in Anti-Cancer Drug Target Identification

The identification of drug–target interactions (DTIs) is the initial step in anti-cancer
drug design. The strength of drug–target binding is often described by binding affinity
constants, including indicators such as a dissociation constant (Kd), an inhibition constant
(Ki), and a half-maximal inhibitory concentration (IC50) [34]. Since the experimental
determination of DTIs is a time-consuming and expensive process, its computational
prediction is of great interest. Accurate and effective DTI predictions can greatly aid drug
development and accelerate lead or hit compound discovery.

3.1. Artificial Intelligence Efficiently Elevates the Prediction Accuracy of DTI

Traditionally, the computational methods for DTI predictions have included molecular
docking simulation and machine learning-based methods. However, these studies would
be expensive, time-consuming, and difficult to conduct without knowing the 3D structures
of the drug targets. Peng et al. developed a novel end-to-end learning framework based
on heterogeneous graph convolutional networks (EEG)-DTI for DTI predictions. A graph
convolutional network-based model was used to learn the low-dimensional feature rep-
resentations of drugs and targets and predict the DTI based on the learned features. It
achieved a promising DTI prediction performance even when the 3D structures of the drug
targets were not used [35]. To further improve the prediction performance, Shao et al. con-
sidered the DTI prediction as a link prediction problem and proposed an end-to-end model
based on the heterogeneous graph with attention mechanism (DTI-HETA), which outper-
formed the state-of-the-art models [36]. Meanwhile, to address the explanation problem of
deep learning, Yang et al. proposed a drug–target interaction prediction method based on
mutual learning mechanisms without 3D structural information and with explanation [37].

3.2. Artificial Intelligence Could Integrate Data from Multiple Sources to Help with Anti-Drug
Target Identification

Drug target identification is a key step in drug development. However, most previous
studies were confined to a single data type and did not integrate multiple data types.
Thus, they were vulnerable to data-specific noise and needed to be improved in terms
of practicality and accuracy [38]. Recently, there has been a growing number of methods
within similarity-based or data-driven frameworks that attempt to use artificial intelligence
to improve the predictive power by integrating multiple different data types. Madhukar
et al. developed a Bayesian-based machine learning method (BANDIT), which achieved
approximately 90% target prediction accuracy on more than 2000 small molecules by inte-
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grating six types of data, including growth inhibition data, gene expression data, adverse
reaction data, chemical structure data, and drug data [39]. Olayan et al. proposed a method
named DDR to investigate how to predict drug–target interactions more efficiently by using
data from different sources, which included eight drug similarity networks and eight target
similarity networks. The drug similarity networks included the following: gene expression
similarity, disease-based similarity, drug side effect-based similarity, chemical structure
fingerprint-based similarity, etc. The target similarity networks included the following:
gene ontology-based similarity, protein sequence-based similarity, etc. [40]. The above
studies illustrated that integrating data from multiple sources through artificial intelligence
could increase the biological explanation of drug target prediction and prediction accuracy.

3.3. Artificial Intelligence Could Help Predict the Druggability of Anti-Cancer Drug Targets

The selection of drug targets is also a very critical step in the cancer drug design
process, and it has a great impact on the success rate of later clinical trials. Therefore, many
related methods were developed. Raies et al. proposed a prediction model called Drug-
nomeAI to address the problem of targeted drug synthesis. The stochastic semi-supervised
machine learning framework was used to develop DrugnomeAI for predicting the drug-
gability of drug targets in the human exome. It also demonstrated how the application
of DrugnomeAI can predict the druggability of drug targets in oncology diseases [41].
In recent years, an increasing number of studies have identified synthetic lethality (SL)
as a promising approach for the discovery of anticancer drug targets [42]. However, the
wet experimental screening for SL has problems, including high costs, batch effects, and
off-target results. Wang et al. designed a new model based on a graph neural network
(GNN) called KG4SL. It incorporates knowledge graph (KG) messaging into a graph neural
network prediction. The experimental results demonstrated a significant beneficial effect of
incorporating KG into the GNN for SL predictions [43]. The Table 2 below lists some of the
methods for anti-cancer drug target identification based on artificial intelligence that have
been developed in recent years.

Table 2. Methods for anti-cancer drug target identification based on artificial intelligence.

Model Data Source Code References

EEG-DTI Luo dataset [44], Yamanishi dataset [45] https://github.com/MedicineBiology-AI/EEG-DTI
(5 July 2022) [35]

DTI-HETA Yamanishi dataset https://github.com/ZhangyuXM/DTI-HETA
(13 October 2022) [36]

ML-DTI Metz dataset, KIBA dataset, Davis dataset,
[46–48], Drugbank

https://github.com/guaguabujianle/ML-DTI.git
(19 June 2021) [37]

DDR Yamanishi dataset, KEGG BRITE, BRENDA,
SuperTarget, DrugBank

https://bitbucket.org/RSO24/ddr/
(22 November 2017) [40]

DrugnomeAI TCRD, StringDB, CTDbase,
InterPro, OMIM

https://github.com/astrazeneca-cgr-publications/
DrugnomeAI-release
(4 November 2022)

[41]

KG4SL SynLethDB https://github.com/JieZheng-ShanghaiTech/KG4SL
(12 September 2021) [43]

4. Artificial Intelligence in the Screening of Anti-Cancer Drug Hit Compounds

After the identification of therapeutic targets for anti-cancer drugs, we need to screen
for anti-cancer drug hit compounds, which are molecules with initial activities against a
specific target or linkage of action [49]. The discovery of computer-aided hit compounds is
mainly through high-throughput screening. High-throughput screening can be performed
in the following two ways: structure-based screening and ligand-based screening [50].
Fragment-based screening methods are also effective for the discovery of hit compounds,
as shown in recent studies [51]. High-throughput screening techniques have been highly
successful in many R&D projects, but the efficiency of screening compounds by the millions

https://github.com/MedicineBiology-AI/EEG-DTI
https://github.com/ZhangyuXM/DTI-HETA
https://github.com/guaguabujianle/ML-DTI.git
https://bitbucket.org/RSO24/ddr/
https://github.com/astrazeneca-cgr-publications/DrugnomeAI-release
https://github.com/astrazeneca-cgr-publications/DrugnomeAI-release
https://github.com/JieZheng-ShanghaiTech/KG4SL
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has reached a bottleneck, and the cost is also significant [52]. With the proliferation of
GPUs, increased computer power, and the rapid development of artificial intelligence
technologies, more virtual hit compound screening tools have been developed to enrich
the drug design toolkit.

4.1. Structure-Based Screening of Hit Compounds Using Artificial Intelligence

Structure-based virtual screening uses docking and scoring to select molecules that
have good binding affinity with a target protein [53]. This strategy is an important tool for
anti-cancer drug design, but many of the current docking procedures are time-consuming
and pose challenges for large-scale virtual screening. Lu et al. accelerated the evaluation
process through structure screening with the help of deep learning models. They con-
structed a deep learning model to predict molecular docking scoring [54]. Yasuo et al. used
artificial intelligence to propose a new structure-based virtual screening method for hit
compounds, called SIEVE-Score, which provided substantial improvements over other
state-of-the-art virtual screening methods [55].

4.2. Ligand-Based Screening of Hit Compounds Using Artificial Intelligence

Ligand-based screening is based on taking small molecules with known activities and
searching for structures with similar physical or chemical characteristics in a compound
library as candidates. Krasoulis et al. proposed an end-to-end method called DENVIS,
a scalable and novel algorithm for high-throughput screening using graphical neural
networks with atomic and surface protein pocket features. By conducting experiments on
two benchmark databases, DENVIS was much faster than other models [56]. This method
was not only advantageous in terms of speed and had an impressive success rate, but it was
also easy to use. Generally, most of these methods could only receive one representative
molecular structure as a search template [57], which may result in data waste. To address
this problem, Hutter developed a cumulative molecular fingerprinting algorithm that can
take all structure data into account in the calculation, effectively improving the utilization
of experimental data and achieving an organic combination of molecular fingerprinting
and experimental data. It inherited the speed advantage of the former method with higher
information utilization [58].

4.3. Fragment-Based Screening of Hit Compounds Using Artificial Intelligence

In recent years, the rise of emerging technologies such as high-throughput screen-
ing (HTS) and combinatorial chemistry (CC) has led to the gradual systematization of
drug discovery from the randomized screening of known drugs [59]. These methods can
significantly increase the speed of drug discovery and shorten the process of new drug
development, but the high cost of screening has also increased the research burden on
small drug development companies and research institutions. Therefore, many researchers
are focusing on fragment-based drug design (FBDD) [60]. Compared with the traditional
screening methods, FBDD starts with small molecular fragments, which greatly reduces
the size of the required screening compound library, circumvents the undesirable ADMET
properties of molecules, and enhances the diversity of the designed structures [61]. In
addition, FBDD has potential advantages for the drug design of difficult targets and has
gradually developed into a mainstream drug design method in small drug development
companies and research units [62]. To ligate fragments rationally, it is necessary to know
where the fragments bind in a pocket. Currently, the main computational prediction meth-
ods are molecular docking, functional group mapping, and molecular structure splitting
and reconstruction. These methods are more or less limited by computational costs and
manual judgement and cannot fully utilize the structural data of protein–ligand complexes.
To solve this problem, Didier Rognan’s group proposed the method POEM, which is based
on the recognition and matching of the pocket environment in which the fragments are
located [63]. Another challenge of FBDD is linking fragments to generate interest libraries
of compounds for specific drug targets. To address this issue, Yang et al. proposed a model
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based on automatic fragment linking with deep conditional transformer neural networks
called SyntaLinker [64]. Caburet et al. screened the activity of NDM-1 β-lactamase in-
hibitors using the FBDD method. They finally found 37 fragments for pharmacophore
establishment, which was proven to be accurate and efficient. Table 3 lists all of these
methods [65].

Table 3. Artificial intelligence-based screening methods of anti-cancer drug hit compounds.

Model Data Source Code References

SECSE PDB http://github.com/KeenThera/SECSE (15 July 2022) [54]

SIEVE-Score ChEMBL, ZINC https://github.com/sekijima-lab/SIEVE-Score
(15 November 2019) [55]

DENVIS PDB, DUD-E, LIT-PCBA https://github.com/deeplab-ai/denvis
(3 October 2022) [56]

DMMFP ChEMBL, DUD-E, ZINC https://github.com/michahutter/multimolecule_
fingerprints (28 April 2022) [58]

POEM ChEMBL, ZINC, PDB https://github.com/kimeguida/POEM
(30 December 2022) [63]

SyntaLinker ChEMBL https://github.com/YuYaoYang2333/SyntaLinker
(18 June 2021) [64]

5. Artificial Intelligence in De Novo Anti-Cancer Drug Design

The chemical space of drug-like molecules is extremely vast; the number is estimated
to be 1023~1060 [66]. Therefore, it is nearly impossible to completely mine the entire chemi-
cal space using computational methods. In this context, finding specific lead compounds in
the vast chemical space is a major challenge. With the rapid development of computational
power and experimental techniques, high-throughput screening (HTS) and virtual screen-
ing (VS) methods can effectively evaluate molecules in large compound libraries with a
wide variety of filters [67,68].

However, both traditional HTS and vs. methods that are based on molecular dock-
ing can only screen the known compound library to find molecules that satisfy specific
properties [69]. De novo drug design and virtual screening are very similar in the sense
that they both search for molecules that meet specific requirements in the chemical space.
However, their processes are very different. Instead, de novo drug design is a molecule
generation method that generates and optimizes a molecule by ultimately using artificial
intelligence [70]. Molecular generation methods include variational auto-encoders (VAEs),
the recurrent neural network (RNN), the generative adversarial network (GAN), and deep
reinforcement learning (DRL) [71].

5.1. Application of Variational Auto-Encoder to De Novo Design of Anticancer Drugs

The variational auto-encoder (VAE) is an important type of generative model that was
proposed by Diederik P. Kingma and Max Welling in 2013 [72]. Born et al. constructed
a hybrid VAE model to generate candidate molecules with anti-cancer drug properties.
The model was able to generate molecules with strong inhibitory effects against specific
diseases. The generated molecules were similar to existing drugs in terms of structure,
synthesizability, and solubility [73]. Hong et al. proposed a molecular structure tree genera-
tion model in which the molecules were generated by gradually adding substructures [74].
The proposed model was based on a VAE architecture, which used an encoder to map
molecules into the latent vector space and then built an autoregressive generative model
as a decoder to generate new molecules from a Gaussian distribution. It showed that
the model can generate efficient and new molecules and that the optimized model can
effectively improve the properties of the molecules. Samanta et al. proposed the NEVAE
method, which solved the problems of current methods. For instance, existing models can

http://github.com/KeenThera/SECSE
https://github.com/sekijima-lab/SIEVE-Score
https://github.com/deeplab-ai/denvis
https://github.com/michahutter/multimolecule_fingerprints
https://github.com/michahutter/multimolecule_fingerprints
https://github.com/kimeguida/POEM
https://github.com/YuYaoYang2333/SyntaLinker
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only generate molecules with the same number of atoms but fail to utilize a large number
of macromolecules in the training process, limiting the diversity of the generated molecules.
In addition, they cannot provide the spatial coordinates of the generated atoms [75].

5.2. Application of the Recurrent Neural Network to De Novo Design of Anti-Cancer Drugs

The recurrent neural network (RNN) model uses basic units, such as atoms or frag-
ments of molecules, as the basic vocabulary and generates molecules in a temporal order.
The output probability of the next atom character generated by the RNN model depends
on the previous generated atom. The RNN-based model has been widely used to process
time-series-related data, such as language, text, video, etc. [76]. Grisoni et al. proposed
a new bidirectional RNN molecular generation model, or BIMODAL, that can be used
for SMILES generation and data enhancement [77]. The model performed bidirectional
molecular design by alternate learning, and the model was compared with other bidirec-
tional RNNs. BIMODAL was promising in terms of molecular novelty, backbone diversity,
and chemical and biological relevance of the generated molecules and was superior to
the state-of-the-art methods [78,79]. To address problems such as the poor performance
of DL on small training datasets, Krishnan et al. designed a de novo drug design method
based on RNN generative models and migration learning to generate molecules with not
only the desired drug-like properties but also target specificity [80]. In addition, Moret
et al. combined the RNN generation model with three optimization methods, namely data
augmentation, temperature sampling, and transfer learning. This method can generate
new molecules with the desired properties with a small amount of data [81].

5.3. Application of Generative Adversarial Network to De Novo Design of Anti-Cancer Drugs

The generative adversarial network (GAN) is an unsupervised learning method pro-
posed by Goodfellow in 2014. It consists of the following two networks: the generative
network G, which is used to fit the data distribution, and the discriminative network D,
which is used to determine whether the input is “real” or not. In the training process,
the generative network G tries to “cheat” D by accepting random noise to imitate the real
images in the training set, while D tries to distinguish the real data from the output of
the generative network as much as possible, thus forming a game process between the
two networks. Ideally, the game results in a generative model that can be “faked” [82].
Maziarka et al. proposed the Mol-Cycle GAN method. Mol-Cycle GAN is a conditional
generative adversarial network-based method for de novo drug design and synthesis
optimization of molecules through a generative model. It can solve the problem of difficult-
to-synthesize compounds given a starting molecule. It can also generate molecules with
similar structures and desired properties [83]. ABbbasi et al. proposed a feedback-based
GAN framework that implemented an optimization strategy by connecting an encoder–
decoder, a GAN, and a predictor depth model with a feedback loop. The results showed
that molecules with high binding affinity can be generated by the GAN optimization
model [84].

5.4. Application of Deep Reinforcement Learning to De Novo Design of Anti-Cancer Drugs

Even though a variety of drug generation models have been developed, they all focus
on the following two points: molecular representation and optimization strategies [71].
Deep reinforcement learning (DRL) is an artificial intelligence technique that combines
the perceptual capabilities of deep learning with the decision-making capabilities of re-
inforcement learning to solve decision-making problems in high dimensional and state
spaces [85]. A novel computational strategy, called ReLeaSE, was proposed by Tropsha
for designing molecules with desired properties from scratch. ReLeaSE was built on deep
learning (DL) and reinforcement learning (RL) methods by integrating two deep neural
networks (generative and predictive), which were trained to generate novel libraries of
molecules with specified properties [86]. Goel et al. combined RNN and reinforcement
learning to propose a molecule generation model named MoleGuLAR that can perform
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multi-objective optimization of molecules in terms of drug-like properties and binding
affinity. In particular, they proposed a new alternating reward strategy where the reward
function changes dynamically as different molecules are generated, allowing the model to
alternately explore different chemical intervals and sample more reasonable molecules [87].
Table 4 shows some of these methods.

Table 4. Methods for de novo anti-cancer drug design through artificial intelligence.

Model Data Source Code References

PaccMannRL TCGA, ChEMBL, GDSC, CCLE https://github.com/PaccMann/
(10 February 2022) [73]

ACGT QM9, ZINC https://github.com/gicsaw/ARAE_SMILES
(14 October 2022) [74]

NEVAE QM9, ZINC https://github.com/Networks-Learning/nevae
(22 November 2019) [75]

BIMODAL ChEMBL https://github.com/ETHmodlab/BIMODAL
(3 June 2020) [77]

Mol-CycleGAN ChEMBL, ZINC https://github.com/ardigen/mol-cycle-gan
(6 February 2019) [83]

GAN-Drug-Generator ChEMBL, ZINC
https:

//github.com/larngroup/GAN-Drug-Generator
(13 April 2022)

[84]

ReLeaSE ChEMBL, ZINC https://github.com/isayev/ReLeaSE
(9 December 2021) [86]

MoleGuLAR ChEMBL, ZINC https://github.com/devalab/MoleGuLAR
(21 October 2021) [87]

6. Artificial Intelligence in Anti-Cancer Drug Repurposing

Effective identification of new indications from approved or established clinical drugs
plays a critical role in drug discovery. Such a process is also known as drug reposition-
ing. Despite tremendous efforts in academic and pharmacological research worldwide,
current anti-cancer therapies have achieved success in only a few tumor types. The ap-
plication of drug repositioning in tumor therapies is a hot topic in current research. In
theory, repurposing is faster, safer, easier, and less expensive than the known barriers to
developing new molecular entities. Opportunities for drug repurposing are often based
on incidental observations or time-consuming preclinical drug screens that are not usually
hypothesis-driven. Indeed, the widespread use of histology technologies, improved elec-
tronic medical record systems, improved data storage, data meaning, machine learning
algorithms, and computational modeling have provided unprecedented knowledge of the
biological mechanisms of cancer and drug modes of action, providing broad availability of
both disease-related and drug-related data. Drug repositioning strategies are often catego-
rized as “target-center” and “disease-center” methods for predicting unknown drug–target
and drug–disease interactions.

6.1. Artificial Intelligence in Anti-Drug Repositioning Based on the Interaction between a Drug
and a Target

Many artificial intelligence-based methods have been used to predict drug–target
relationships, as described above. At present, predicting drug–target relationships is one
of the main approaches for drug repurposing. To achieve personalized drug repurposing
using genomic information, Cheng et al. developed a genome-wide localization system
network algorithm (GPSnet) [88]. This method uses patient-specific DNA and RNA se-
quencing profiles of specific targets to obtain disease modules for repurposing drugs. They
validated that the approved arrhythmia and heart failure drug Ouabain specifically targets
the HIF1α/LEO1-mediated cellular metabolic pathways in lung adenocarcinomas, showing
potential anti-tumor activities. Wang et al. proposed a deep learning framework through
kernel-based data integration, known as DeepDRK [89]. The model was trained on over

https://github.com/PaccMann/
https://github.com/gicsaw/ARAE_SMILES
https://github.com/Networks-Learning/nevae
https://github.com/ETHmodlab/BIMODAL
https://github.com/ardigen/mol-cycle-gan
https://github.com/larngroup/GAN-Drug-Generator
https://github.com/larngroup/GAN-Drug-Generator
https://github.com/isayev/ReLeaSE
https://github.com/devalab/MoleGuLAR
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20,000 pairs of pan-cancer cell line anti-cancer drug pairs. These pairs were characterized
by using kernel-based similarity matrices that integrate multi-source and multi-omics data,
including genomics, transcriptomics, epigenomics, chemical properties of compounds,
and known drug–target interactions. They provided a computational approach to predict
cancer cell responses to drugs by integrating pharmacogenomic data, offering an alternative
approach to repurposing drugs in cancer precision therapy.

6.2. Artificial Intelligence in Anti-Drug Repositioning Based on the Interaction between Drugs
and Diseases

Predicting drug–disease interactions is essential for disease-centric drug repurpos-
ing. The current identification of drug–disease interactions is mainly based on similarity
and network, respectively. For the similarity-based methods, Zhang et al. proposed a
multiscale drug–disease topology learning framework (MTRD). By learning the representa-
tive properties of drug–disease, this method explored a new therapeutic effect of existing
drugs based on the relevant similarity and association information of drug–disease node
pairs. [90]. Jarada et al. proposed a novel framework based on deep learning, known
as SNF-NN, to predict new drug–disease interactions using drug-related similarity infor-
mation, disease-related similarity information, and known drug–disease interactions [91].
Luo et al. proposed a new computational method named MBiRW [92], which uses com-
bined similarity measurements and a birandom walk (BiRW) algorithm to identify potential
new indications for known drugs. This method was based on the assumption that similar
drugs are usually associated with similar diseases. Moreover, Sadeghi et al. proposed a new
model named DR-HGNN for drug repositioning using multiple labeling of heterogeneous
graph neural networks [93]. Doshi et al. proposed a graph neural network-based drug
repositioning model called GDRnet [94], which was able to efficiently screen the database
for existing drugs and predict their unknown therapeutic effects. Table 5 shows some of
the methods mentioned above.

Table 5. Methods for anti-cancer drug repurposing based on artificial intelligence.

Model Data Source Code References

GPSnet DrugBank, TTD, PharmGKB, ChEMBL,
BindingDB, UniProt, TCGA

https://github.com/ChengF-Lab/GPSnet
(16 December 2018) [88]

DeepDRK CTRP, GDSC, TCGA, DrugBank, KEGG https://github.com/wangyc82/DeepDRK
(16 January 2021) [89]

MBiRW Drugbank, OMIM http://github.com//bioinfomaticsCSU/MBiRW
(19 December 2016) [92]

DR-HGNN Drugbank, CTD, SIDER https://github.com/sshaghayeghs/DR_HGNN
(26 April 2022) [93]

GDRnet Drugbank, Hetionet, GNBR, STRING,
IntAct, DGIdb

https://github.com/siddhant-doshi/GDRnet
(27 December 2021) [94]

7. Artificial Intelligence-Assisted Accurate Prediction of Anti-Cancer Drug Reactions

Drug reactions are related to their ADMET properties, which may influence drug
sensitivity, drug toxicity, and drug–drug interactions [95,96]. The accurate prediction
of drug reactions can effectively increase the success rate of clinical trials and improve
patient outcomes. With the rapid development of artificial intelligence technologies, more
and more related studies are being proposed at the drug design stage using artificial
intelligence techniques.

7.1. Artificial Intelligence Aids in Predicting the ADMET Properties of Anti-Cancer Drugs

To explore drug reactions, the ADMET properties should be accurately predicted first.
Several ADMET properties, including Caco-2 permeability, carcinogenicity, blood–brain
barrier permeability, and plasma protein binding, are included in previous studies. For

https://github.com/ChengF-Lab/GPSnet
https://github.com/wangyc82/DeepDRK
http://github.com//bioinfomaticsCSU/MBiRW
https://github.com/sshaghayeghs/DR_HGNN
https://github.com/siddhant-doshi/GDRnet
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instance, Selvaraj et al. reviewed the applications of various machine learning models,
such as SVM regression and partial least squares (PLSs), for the prediction of the Caco-2
permeability coefficient [97]. Li et al. proposed a DeepCarc model to predict the carcino-
genicity of small molecules using deep learning-based model-level representations [98].
Vatansever et al. reviewed the current state-of-the-art methods in AI-guided central nervous
system (CNS) drug discovery, focusing on the blood–brain barrier permeability predic-
tion [99]. To predict the plasma protein binding of a drug, Mulpuru et al. built a prediction
model of a fraction of unbound drug in human plasma using a chemical fingerprint and a
freely available AutoML framework [100].

7.2. Artificial Intelligence Aids in Predicting Anti-Cancer Drug Sensitivity

Anti-cancer drug sensitivity predictions are important in guiding the enrollment of
those patients who may benefit from specific treatments. Chawla et al. developed a
deep neural network named Precily, which uses gene expression data to predict drug
sensitivity for cancer therapy. The model combines the structural properties of drugs with
the pathway specificity of gene expression as features to train the model [101]. Eliseo Papa
et al. built a recommendation system based on the BIKG knowledge graph to predict drug
sensitivity and identified effective patient subgroups early in clinical trials [102]. Gerdes
et al. proposed a model called DRUML, which uses omics data to rank over 400 drugs
based on their anti-tumor cell proliferation efficacy. The results showed that DRUML can
accurately rank anti-cancer drugs based on their efficacy [103].

7.3. Artificial Intelligence Aids in Predicting Toxicity of Anti-Cancer Drugs

Drug toxicity is a central issue to be considered in the drug development process.
Recently, Wang et al. proposed a machine learning classifier that combines chemical
structure (CS) and gene expression (GE) features. In addition, they prioritized the adverse
effects of approved drugs and preclinical small-molecule compounds. The results showed
that integrating GE data with drug CSs can significantly improve the predictability of
adverse effects [104]. However, most of the current studies only predict the occurrence of
adverse drug reactions, not their intensity or frequency. To address this issue, Zhao et al.
designed a novel graphical attention model for predicting drug side effect frequency from
multi-view data. The computational results showed the best performance on the benchmark
dataset, illustrating effectiveness in predicting the frequency of drug side effects [105].

7.4. Artificial Intelligence Can Predict Drug–Drug Interactions

Zhu et al. proposed a unified multi-attribute discriminative representation learning
(MADRL) model for DDI predictions. MADRL uses a generative adversarial network
(GAN) to capture intra-attribute specificity information of DDI attributes and uses them for
DDI predictions. The effectiveness of the MADRL algorithm was validated on a publicly
available dataset [106]. Most methods for predicting drug–drug interactions only predict
whether there is an interaction between two drugs, but it is more relevant to investigate
the hidden mechanisms behind DDIs. Therefore, Zhang et al. proposed a deep learning
method (DDIMDL) that used multiple drug features to predict the types of drug–drug
interaction events and explored their hidden mechanisms [107]. To further increase the
model’s accuracy and biological explanation, Chen et al. developed 3DGT-DDI, which
consists of a 3D graph neural network and a pre-trained textual attention module. The
innovation of the method is that it utilizes a 3D molecular graph structure and location
information to enhance the prediction ability of DDIs. The experiments showed that the
prediction performance of 3DGT-DDI outperformed other baseline models [108]. Table 6
table shows some of the methods mentioned above.
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Table 6. Methods for prediction of cancer drug reactions based on artificial intelligence.

Model Data Source Code References

DeepCarc CPDB, Pubchem, Drugbank https://github.com/TingLi2016/DeepCarc
(6 July 2022) [98]

Precily CCLE, MSigDB, GDSC, Pubchem https://github.com/SmritiChawla/Precily
(26 August 2022) [101]

DRUML PharmacoDB, DepMap portal, PRIDE
dataset, DrugBank, ChEMBL

https://github.com/CutillasLab/DRUMLR
(24 March 2022) [103]

MGPred SIDER, STITCH, DrugBank, PubChem https://github.com/zhc940702/MGPred
(6 May 2018) [105]

DLADE cTAKES, EHR and PubMed article https://github.com/qinxiao (7 October 2022) [109]

MADRL KEEG, SIDER, CTD, DrugBank https://github.com/AdverseDDI/MADRL
(18 January 2022) [106]

DDIMDL DrugBank, KEGG https://github.com/YifanDengWHU/DDIMDL
(1 May 2021) [107]

3DGT-DDI DrugBank, DDI extraction 2013 https://github.com/hehh77/3DGT-DDI
(21 February 2022) [108]

8. Data Sources of Artificial Intelligence to Anti-Cancer Drug Designs

A large number of artificial intelligence-based algorithms, including deep learning,
have become powerful tools in AI-assisted anti-cancer drug design [110,111]. Scientists
are developing algorithms that can learn and analyze large amounts of data with superhu-
man efficiency to speed up the anti-cancer drug design process [112]. However, artificial
intelligence is not universal and requires large amounts of reliable data or training experi-
ences [113]. Nowadays, there are some specific databases for artificial intelligence-based
anti-cancer drug design. They are listed in Table 7.

Table 7. Different data sources for anti-cancer drug design.

Database Website

BindingDB https://www.bindingdb.org/bind (24 December 2022)
BRENDA https://www.brenda-enzymes.org/ (1 February 2023)

CCLE https://sites.broadinstitute.org/ccle/ (23 December 2019)
chEMBL https://www.ebi.ac.uk/chembldb (12 July 2022)

CPDB https://www.nlm.nih.gov/databases/download/cpdb.html (12 October 2022)
CPTAC https://proteomics.cancer.gov/programs/cptac (7 February 2023)

CTDbase http://ctdbase.org (1 February 2023)
CTRP https://portals.broadinstitute.org/ctrp.v2.1/ (7 February 2023)

DepMap https://depmap.org/portal/ (14 December 2022)
DGIdb www.dgidb.org. (21 October 2020)

Drugbank https://www.drugbank.com/ (7 February 2023)
DUD-E http://dude.docking.org/ (14 July 2012)
GDSC https://www.cancerrxgene.org/ (July 2022)
GEO https://www.ncbi.nlm.nih.gov/geo/ (7 February 2023)
HCA https://data.humancellatlas.org/ (7 February 2023)

Hetionet https://het.io/ (7 February 2023)
IntAct https://www.ebi.ac.uk/intact/ (December 2021)

InterPro https://www.ebi.ac.uk/interpro (November 2022)
JingleBells http://jinglebells.bgu.ac.il/ (7 February 2023)

KEGG https://www.genome.jp/kegg/ (1 January 2023)
LIT-PCBA https://drugdesign.unistra.fr/LIT-PCBA/ (7 February 2023)
MSigDB https://www.gsea-msigdb.org/gsea/msigdb/ (August 2022)
OMIM https://www.omim.org. (5 February 2023)

https://github.com/TingLi2016/DeepCarc
https://github.com/SmritiChawla/Precily
https://github.com/CutillasLab/DRUMLR
https://github.com/zhc940702/MGPred
https://github.com/qinxiao
https://github.com/AdverseDDI/MADRL
https://github.com/YifanDengWHU/DDIMDL
https://github.com/hehh77/3DGT-DDI
https://www.bindingdb.org/bind
https://www.brenda-enzymes.org/
https://sites.broadinstitute.org/ccle/
https://www.ebi.ac.uk/chembldb
https://www.nlm.nih.gov/databases/download/cpdb.html
https://proteomics.cancer.gov/programs/cptac
http://ctdbase.org
https://portals.broadinstitute.org/ctrp.v2.1/
https://depmap.org/portal/
www.dgidb.org
https://www.drugbank.com/
http://dude.docking.org/
https://www.cancerrxgene.org/
https://www.ncbi.nlm.nih.gov/geo/
https://data.humancellatlas.org/
https://het.io/
https://www.ebi.ac.uk/intact/
https://www.ebi.ac.uk/interpro
http://jinglebells.bgu.ac.il/
https://www.genome.jp/kegg/
https://drugdesign.unistra.fr/LIT-PCBA/
https://www.gsea-msigdb.org/gsea/msigdb/
https://www.omim.org
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Table 7. Cont.

Database Website

Open Targets https://www.opentargets.org/ (19 January 2023)

PDB https://www.rcsb.org/docs/general-help/organization-of-3d-structures-in-the-protein-data-bank
(31 August 2022)

PharmacoDB https://pharmacodb.ca/ (7 February 2023)
PharmGKB https://www.pharmgkb.org/ (7 February 2023)

portal https://help.hcltechsw.com/digital-experience/9.5/plan/db_domains.html (7 February 2023)
PubChem https://pubchem.ncbi.nlm.nih.gov/ (7 February 2023)

QM9 https://paperswithcode.com/dataset/qm9 (7 February 2023)
reactome https://reactome.org/ (7 December 2022)
repoDB https://repodb.net/ (7 February 2023)

scRNASeqDB https://bioinfo.uth.edu/scrnaseqdb/ (7 February 2023)
SEER https://seer.cancer.gov/ (27 October 2022)
SIDER http://sideeffects.embl.de (7 February 2023)

STITCH http://stitch.embl.de/ (7 February 2023)
STRING https://string-db.org/ (7 February 2023)

SuperTarget http://insilico.charite.de/supertarget/ (7 February 2023)
SynLethDB http://synlethdb.sist.shanghaitech.edu.cn/v2/#/ (14 October 2022)

TCGA https://portal.gdc.cancer.gov/ (10 January 2023)
TCRD http://juniper.health.unm.edu/tcrd (7 February 2023)
TTD https://db.idrblab.net/ttd/ (29 September 2021)

UniProt https://www.uniprot.org/ (7 February 2023)
ZINC http://zinc15.docking.org/ (7 February 2023)

9. Successful Cases Applying AI in Anti-Cancer Drug Design

To depict how AI facilitates the development of anticancer drugs, we list some of the
anticancer drugs that have successfully entered human phase 2/3 clinical trials in the last
5 years in Table 8. For instance, Recursion identified REC-2282 as a potential candidate for
the treatment of diseases caused by mutations in the NF2 gene through its proprietary AI-
driven drug discovery platform, Recursion OS. REC-2282 is a permeable, orally bioavailable,
small-molecule HDAC inhibitor that is being developed for the treatment of meningiomas
with mutations in the NF2 gene. This molecule appears to be well tolerated, including in
patients that have been administering it over several years, and different from other HDAC
inhibitors in that it may reduce cardiotoxicity. It was granted both orphan drug status
and fast-track status by the U.S. FDA [114]. Relay Therapeutics developed the FGFR2-
specific inhibitor RLY-4008 by analyzing the dynamic balance of protein conformations
through an artificial intelligence platform. Preclinical studies have shown that RLY-4008
exhibits high selectivity for FGFR2 targets in cancer cell lines, shrinking tumors with
minimal impact on other targets [115]. Breg developed a new drug, BPM 31510, through
an artificial intelligence platform that is currently in clinical testing. The drug restructures
the metabolism of cancer cells so that patients do not have to undergo chemotherapy,
allowing cancer cells to die naturally [116]. EXS-21546 is an AI-designed A2A receptor
antagonist. Some tumors produce high levels of adenosine, which binds to and activates the
A2A receptors on immune cells, thereby inhibiting the anti-tumor activity of the immune
system [117]. PHI-101 is an orally available, selective checkpoint kinase 2 (Chk2) inhibitor
designed by an AI-driven drug discovery platform [118].

https://www.opentargets.org/
https://www.rcsb.org/docs/general-help/organization-of-3d-structures-in-the-protein-data-bank
https://pharmacodb.ca/
https://www.pharmgkb.org/
https://help.hcltechsw.com/digital-experience/9.5/plan/db_domains.html
https://pubchem.ncbi.nlm.nih.gov/
https://paperswithcode.com/dataset/qm9
https://reactome.org/
https://repodb.net/
https://bioinfo.uth.edu/scrnaseqdb/
https://seer.cancer.gov/
http://sideeffects.embl.de
http://stitch.embl.de/
https://string-db.org/
http://insilico.charite.de/supertarget/
http://synlethdb.sist.shanghaitech.edu.cn/v2/#/
https://portal.gdc.cancer.gov/
http://juniper.health.unm.edu/tcrd
https://db.idrblab.net/ttd/
https://www.uniprot.org/
http://zinc15.docking.org/
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Table 8. Some of the AI-designed anti-cancer drugs that have successfully entered human phase 2/3
clinical trials in the last 5 years.

Name Chemical Structure Company Therapeutic Area Target/Function Phase

REC-2282
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10. Conclusions and Prospects of Future Challenges

This review focuses on work that has been performed in the past decade on anti-cancer
drug design based on artificial intelligence. Compared to other reviews, our study collated
a large number of databases and source codes. It will offer some guidelines for other
researchers to apply to their own research. This means our review has great practicality.

Artificial intelligence (AI) has strong logical reasoning and independent learning abil-
ities that can simulate the thinking process of a human brain. AI technologies, such as
machine learning, can profoundly optimize the existing anti-cancer drug research paradigm.
In recent years, AI has already made unique contributions to the development and treat-
ment of anti-cancer drugs. Artificial intelligence can accelerate the discovery of new drug
molecules and the synthesis of more desirable drug molecules. This process may greatly
accelerate the development of anti-cancer drugs. It is believed that artificial intelligence
will be a powerful driving force for human cancer research and treatment in the future.
However, AI also has several limitations, including a high dependence on data and a
limited explanation. The “black box” behind traditional AI models prevents scientists from
using algorithms for hypothesis validation and mining the logic behind the data. Moreover,
in the drug development process, predicting the underlying logic behind a model is critical
to designing the right drug molecules. In the future, interpretable AI models will be the
new development direction, and the close combination of data and computation will be a
feature of AI-assisted cancer drug development. We believe that AI will bring profound
changes to anti-cancer drug designs.

Our study is also subject to certain limitations. For instance, we only focused on
articles published in the last ten years. In addition, the search was limited to the database
of PubMed. We will address these limitations in future studies.
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