Artificial Intelligence, Machine Learning, and Big Data for Ebola Virus Drug Discovery
Abstract
:1. Introduction
2. Machine Learning Algorithms Deployed in Ebola Virus Drug Discovery
3. Limitations on the Use of Conventional ML Models to Predict Anti-EBOV Compounds
4. Deep Neural Network as an Efficient and Robust Alternative to Predict Anti-EBOV Compounds
5. Data Sources for Ebola Machine Learning Studies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Emanuel, J.; Marzi, A.; Feldmann, H. Filoviruses: Ecology, Molecular Biology, and Evolution. Adv. Virus Res. 2018, 100, 189–221. [Google Scholar] [PubMed]
- Sivanandy, P.; Jun, P.H.; Man, L.W.; Wei, N.S.; Mun, N.F.K.; Yii, C.A.J.; Ying, C.C.X. A systematic review of Ebola virus disease outbreaks and an analysis of the efficacy and safety of newer drugs approved for the treatment of Ebola virus disease by the US Food and Drug Administration from 2016 to 2020. J. Infect. Public Health 2022, 15, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Jacob, S.T.; Crozier, I.; Fischer, W.A.; Hewlett, A.; Kraft, C.S.; de La Vega, M.-A.; Soka, M.J.; Wahl, V.; Griffiths, A.; Bollinger, L.; et al. Ebola virus disease. Nat. Rev. Dis. Prim. 2020, 6, 13. [Google Scholar] [CrossRef] [Green Version]
- Rajak, H.; Jain, D.K.; Singh, A.; Sharma, A.K.; Dixit, A. Ebola virus disease: Past, present and future. Asian Pac. J. Trop. Biomed. 2015, 5, 337–343. [Google Scholar] [CrossRef] [Green Version]
- Farman, A. Ebola, the Negative Stranded RNA Virus. In Some RNA Viruses; Badshah, S.L., Ed.; IntechOpen: Rijeka, Croatia, 2020; p. Ch. 5. ISBN 978-1-83962-926-6. [Google Scholar]
- Wan, W.; Kolesnikova, L.; Clarke, M.; Koehler, A.; Noda, T.; Becker, S.; Briggs, J.A.G. Structure and assembly of the Ebola virus nucleocapsid. Nature 2017, 551, 394–397. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, A.I. Ebola Virus Disease: From Origin to Outbreak; Academic Press: Cambridge, MA, USA, 2016; pp. 23–37. ISBN 9780128042304. [Google Scholar]
- World Health Organization Ebola Virus Disease. Available online: https://www.who.int/news-room/fact-sheets/detail/ebola-virus-disease (accessed on 26 January 2023).
- Ekins, S.; Freundlich, J.S.; Clark, A.M.; Anantpadma, M.; Davey, R.A.; Madrid, P. Machine learning models identify molecules active against the Ebola virus in vitro. F1000Research 2015, 4, 1091. [Google Scholar] [CrossRef]
- Markham, A. REGN-EB3: First Approval. Drugs 2021, 81, 175–178. [Google Scholar] [CrossRef]
- Lee, A. Ansuvimab: First Approval. Drugs 2021, 81, 595–598. [Google Scholar] [CrossRef]
- Qian, T.; Zhu, S.; Hoshida, Y. Use of big data in drug development for precision medicine: An update. Expert Rev. Precis. Med. Drug. Dev. 2019, 4, 189–200. [Google Scholar] [CrossRef]
- Brown, N.; Cambruzzi, J.; Cox, P.J.; Davies, M.; Dunbar, J.; Plumbley, D.; Sellwood, M.A.; Sim, A.; Williams-Jones, B.I.; Zwierzyna, M.; et al. Big Data in Drug Discovery. Prog. Med. Chem. 2018, 57, 277–356. [Google Scholar]
- Mallappallil, M.; Sabu, J.; Gruessner, A.; Salifu, M. A review of big data and medical research. SAGE Open. Med. 2020, 8, 2050312120934839. [Google Scholar] [CrossRef]
- Glicksberg, B.S.; Li, L.; Chen, R.; Dudley, J.; Chen, B. Leveraging Big Data to Transform Drug Discovery. Methods Mol. Biol. 2019, 1939, 91–118. [Google Scholar]
- Zhu, H. Big Data and Artificial Intelligence Modeling for Drug Discovery. Annu. Rev. Pharmacol. Toxicol. 2020, 60, 573–589. [Google Scholar] [CrossRef] [Green Version]
- Cha, Y.; Erez, T.; Reynolds, I.J.; Kumar, D.; Ross, J.; Koytiger, G.; Kusko, R.; Zeskind, B.; Risso, S.; Kagan, E.; et al. Drug repurposing from the perspective of pharmaceutical companies. Br. J. Pharmacol. 2018, 175, 168–180. [Google Scholar] [CrossRef] [Green Version]
- Dara, S.; Dhamercherla, S.; Jadav, S.S.; Babu, C.H.M.; Ahsan, M.J. Machine Learning in Drug Discovery: A Review. Artif. Intell. Rev. 2022, 55, 1947–1999. [Google Scholar] [CrossRef]
- Sarker, I.H.; Furhad, M.H.; Nowrozy, R. AI-Driven Cybersecurity: An Overview, Security Intelligence Modeling and Research Directions. SN Comput. Sci. 2021, 2, 173. [Google Scholar] [CrossRef]
- Priya, S.; Tripathi, G.; Singh, D.B.; Jain, P.; Kumar, A. Machine learning approaches and their applications in drug discovery and design. Chem. Biol. Drug. Des. 2022, 100, 136–153. [Google Scholar] [CrossRef]
- Xue, H.; Li, J.; Xie, H.; Wang, Y. Review of Drug Repositioning Approaches and Resources. Int. J. Biol. Sci. 2018, 14, 1232–1244. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.; Gao, W.; Hu, H.; Zhou, S. Why 90% of clinical drug development fails and how to improve it? Acta Pharm. Sin. B 2022, 12, 3049–3062. [Google Scholar] [CrossRef]
- Vamathevan, J.; Clark, D.; Czodrowski, P.; Dunham, I.; Ferran, E.; Lee, G.; Li, B.; Madabhushi, A.; Shah, P.; Spitzer, M.; et al. Applications of machine learning in drug discovery and development. Nat. Rev. Drug. Discov. 2019, 18, 463–477. [Google Scholar] [CrossRef]
- Bender, A.; Cortés-Ciriano, I. Artificial intelligence in drug discovery: What is realistic, what are illusions? Part 1: Ways to make an impact, and why we are not there yet. Drug. Discov. Today 2020, 26, 511–524. [Google Scholar] [CrossRef] [PubMed]
- Helm, J.M.; Swiergosz, A.M.; Haeberle, H.S.; Karnuta, J.M.; Schaffer, J.L.; Krebs, V.E.; Spitzer, A.I.; Ramkumar, P.N. Machine Learning and Artificial Intelligence: Definitions, Applications, and Future Directions. Curr. Rev. Musculoskelet. Med. 2020, 13, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, G.; Dlugolinsky, S.; Bobák, M.; Tran, V.; López García, Á.; Heredia, I.; Malík, P.; Hluchý, L. Machine Learning and Deep Learning frameworks and libraries for large-scale data mining: A survey. Artif. Intell. Rev. 2019, 52, 77–124. [Google Scholar] [CrossRef] [Green Version]
- Rifaioglu, A.S.; Atas, H.; Martin, M.J.; Cetin-Atalay, R.; Atalay, V.; Doğan, T. Recent applications of deep learning and machine intelligence on in silico drug discovery: Methods, tools and databases. Brief. Bioinform. 2019, 20, 1878–1912. [Google Scholar] [CrossRef] [Green Version]
- Schneider, G.; Clark, D.E. Automated De Novo Drug Design: Are We Nearly There Yet? Angew. Chem. Int. Ed. 2019, 58, 10792–10803. [Google Scholar] [CrossRef]
- Deng, J.; Yang, Z.; Ojima, I.; Samaras, D.; Wang, F. Artificial intelligence in drug discovery: Applications and techniques. Brief. Bioinform. 2022, 23, bbab430. [Google Scholar] [CrossRef]
- Jiménez-Luna, J.; Grisoni, F.; Schneider, G. Drug discovery with explainable artificial intelligence. Nat. Mach. Intell. 2020, 2, 573–584. [Google Scholar] [CrossRef]
- Blower, E.P.; Cross, P.K. Decision Tree Methods in Pharmaceutical Research. Curr. Top. Med. Chem. 2006, 6, 31–39. [Google Scholar] [CrossRef]
- Schöning, V.; Hammann, F. How far have decision tree models come for data mining in drug discovery? Expert Opin. Drug. Discov. 2018, 13, 1067–1069. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Pérez, R.; Bajorath, J. Evolution of Support Vector Machine and Regression Modeling in Chemoinformatics and Drug Discovery. J. Comput. Aided. Mol. Des. 2022, 36, 355–362. [Google Scholar] [CrossRef]
- Ma, J.; Wang, J.; Ghoraie, L.S.; Men, X.; Haibe-Kains, B.; Dai, P. A Comparative Study of Cluster Detection Algorithms in Protein–Protein Interaction for Drug Target Discovery and Drug Repurposing. Front. Pharmacol. 2019, 10, 109. [Google Scholar] [CrossRef]
- Lund, B.; Ma, J. A review of cluster analysis techniques and their uses in library and information science research: And clustering. Perform. Meas. Metr. 2021, 22, 161–173. [Google Scholar] [CrossRef]
- Jaeger, A.; Banks, D. Cluster analysis: A modern statistical review. WIREs Comput. Stat. 2022, n/a, e1597. [Google Scholar] [CrossRef]
- Jiang, X.; Kopp-Schneider, A. Summarizing EC50 estimates from multiple dose-response experiments: A comparison of a meta-analysis strategy to a mixed-effects model approach. Biom. J. 2014, 56, 493–512. [Google Scholar] [CrossRef]
- Madrid, P.B.; Chopra, S.; Manger, I.D.; Gilfillan, L.; Keepers, T.R.; Shurtleff, A.C.; Green, C.E.; Iyer, L.V.; Dilks, H.H.; Davey, R.A.; et al. A systematic screen of FDA-approved drugs for inhibitors of biological threat agents. PLoS ONE 2013, 8, e60579. [Google Scholar] [CrossRef] [Green Version]
- Aykul, S.; Martinez-Hackert, E. Determination of half-maximal inhibitory concentration using biosensor-based protein interaction analysis. Anal. Biochem. 2016, 508, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Parasuraman, S. Prediction of activity spectra for substances. J. Pharmacol. Pharmacother. 2011, 2, 52–53. [Google Scholar]
- Kwofie, S.K.; Broni, E.; Teye, J.; Quansah, E.; Issah, I.; Wilson, M.D.; Miller, W.A.; Tiburu, E.K.; Bonney, J.H.K. Pharmacoinformatics-based identification of potential bioactive compounds against Ebola virus protein VP24. Comput. Biol. Med. 2019, 113, 103414. [Google Scholar] [CrossRef]
- Darko, L.K.S.; Broni, E.; Amuzu, D.S.Y.; Wilson, M.D.; Parry, C.S.; Kwofie, S.K. Computational Study on Potential Novel Anti-Ebola Virus Protein VP35 Natural Compounds. Biomedicines 2021, 9, 1796. [Google Scholar] [CrossRef]
- Loubet, P.; Palich, R.; Kojan, R.; Peyrouset, O.; Danel, C.; Nicholas, S.; Conde, M.; Porten, K.; Augier, A.; Yazdanpanah, Y. Development of a prediction model for ebola virus disease: A retrospective study in nzérékoré ebola treatment center, Guinea. Am. J. Trop. Med. Hyg. 2016, 95, 1362–1367. [Google Scholar] [CrossRef] [Green Version]
- Colubri, A.; Silver, T.; Fradet, T.; Retzepi, K.; Fry, B.; Sabeti, P. Transforming Clinical Data into Actionable Prognosis Models: Machine-Learning Framework and Field-Deployable App to Predict Outcome of Ebola Patients. PLoS Negl. Trop. Dis. 2016, 10, e0004549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajput, A.; Kumar, M. Anti-Ebola: An initiative to predict Ebola virus inhibitors through machine learning. Mol. Divers. 2022, 26, 1635–1644. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.; Agyenkwa-Mawuli, K.; Agyapong, O.; Wilson, M.D.; Kwofie, S.K. EBOLApred: A machine learning-based web application for predicting cell entry inhibitors of the Ebola virus. Comput. Biol. Chem. 2022, 101, 107766. [Google Scholar] [CrossRef] [PubMed]
- Bai, Z.; Krishnaiah, P.R. Reduction of Dimensionality. In Encyclopedia of Physical Science and Technology, 3rd ed.; Meyers, R.A., Ed.; Academic Press: New York, NY, USA, 2003; pp. 55–73. [Google Scholar] [CrossRef]
- Hussain, J.N. High Dimensional Data Challenges in Estimating Multiple Linear Regression. J. Phys. Conf. Ser. 2020, 1591, 012035. [Google Scholar] [CrossRef]
- Peng, Y.; Nagata, M.H. An empirical overview of nonlinearity and overfitting in machine learning using COVID-19 data. Chaos Solitons Fractals 2020, 139, 110055. [Google Scholar] [CrossRef]
- Wang, H.; Hu, X. Deep Learning in Bioinformatics and Biomedicine. Methods 2023, 209, 38–39. [Google Scholar] [CrossRef]
- Carpenter, K.A.; Cohen, D.S.; Jarrell, J.T.; Huang, X. Deep learning and virtual drug screening. Future Med. Chem. 2018, 10, 2557–2567. [Google Scholar] [CrossRef] [Green Version]
- Unterthiner, T.; Mayr, A.; Klambauer, G.; Steijaert, M.; Wegner, J.; Ceulemans, H.; Hochreiter, S. Deep learning as an opportunity in virtual screening. Adv. Neural Inf. Process. Syst. 2014, 27, 1–9. [Google Scholar]
- Goh, G.B.; Hodas, N.O.; Vishnu, A. Deep learning for computational chemistry. J. Comput. Chem. 2017, 38, 1291–1307. [Google Scholar] [CrossRef] [Green Version]
- Nag, S.; Baidya, A.T.K.; Mandal, A.; Mathew, A.T.; Das, B.; Devi, B.; Kumar, R. Deep learning tools for advancing drug discovery and development. 3 Biotech 2022, 12, 110. [Google Scholar] [CrossRef]
- Wang, Z.; Li, L.; Yan, J.; Yao, Y. Evaluating the Traditional Chinese Medicine (TCM) Officially Recommended in China for COVID-19 Using Ontology-Based Side-Effect Prediction Framework (OSPF) and Deep Learning. 2020. Available online: https://Www.Preprints.Org/Manuscript/202002.0230/V1 (accessed on 26 January 2023).
- Chen, H.; Engkvist, O.; Wang, Y.; Olivecrona, M.; Blaschke, T. The rise of deep learning in drug discovery. Drug. Discov. Today 2018, 23, 1241–1250. [Google Scholar] [CrossRef]
- Lenselink, E.B.; Ten Dijke, N.; Bongers, B.; Papadatos, G.; Van Vlijmen, H.W.T.; Kowalczyk, W.; Ijzerman, A.P.; Van Westen, G.J.P. Beyond the hype: Deep neural networks outperform established methods using a ChEMBL bioactivity benchmark set. J. Cheminform. 2017, 9, 45. [Google Scholar] [CrossRef] [Green Version]
- Wallach, I.; Dzamba, M.; Heifets, A. AtomNet: A Deep Convolutional Neural Network for Bioactivity Prediction in Structure-based Drug Discovery. arXiv 2015, arXiv:1510.02855. [Google Scholar]
- Stecula, A.; Hussain, M.S.; Viola, R.E. Discovery of novel inhibitors of a critical brain enzyme using a homology model and a deep convolutional neural network. J. Med. Chem. 2020, 63, 8867–8875. [Google Scholar] [CrossRef]
- Bilsland, A.E.; Pugliese, A.; Liu, Y.; Revie, J.; Burns, S.; McCormick, C.; Cairney, C.J.; Bower, J.; Drysdale, M.; Narita, M.; et al. Identification of a Selective G1-phase Benzimidazolone Inhibitor by a Senescence-Targeted Virtual Screen Using Artificial Neural Networks. Neoplasia 2015, 17, 704–715. [Google Scholar] [CrossRef] [Green Version]
- Rifaioglu, A.S.; Nalbat, E.; Atalay, V.; Martin, M.J.; Cetin-Atalay, R.; Doǧan, T. DEEPScreen: High performance drug-target interaction prediction with convolutional neural networks using 2-D structural compound representations. Chem. Sci. 2020, 11, 2531–2557. [Google Scholar] [CrossRef] [Green Version]
- Karki, N.; Verma, N.; Trozzi, F.; Tao, P.; Kraka, E.; Zoltowski, B. Predicting Potential SARS-COV-2 Drugs-In Depth Drug Database Screening Using Deep Neural Network Framework SSnet, Classical Virtual Screening and Docking. Int. J. Mol. Sci. 2021, 22, 1573. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, T.; Xi, H.; Juhas, M.; Li, J. Deep Learning Driven Drug Discovery: Tackling Severe Acute Respiratory Syndrome Coronavirus 2. Front. Microbiol. 2021, 12, 739684. [Google Scholar] [CrossRef]
- Zhang, H.; Saravanan, K.M.; Yang, Y.; Hossain, M.T.; Li, J.; Ren, X.; Pan, Y.; Wei, Y. Deep Learning Based Drug Screening for Novel Coronavirus 2019-nCov. Interdiscip. Sci. Comput. Life Sci. 2020, 12, 368–376. [Google Scholar] [CrossRef]
- Beck, B.R.; Shin, B.; Choi, Y.; Park, S.; Kang, K. Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model. Comput. Struct. Biotechnol. J. 2020, 18, 784–790. [Google Scholar] [CrossRef]
- Bung, N.; Krishnan, S.R.; Bulusu, G.; Roy, A. De novo design of new chemical entities (NCEs) for SARS-CoV-2 using artificial intelligence. ChemRxiv 2020, 13, 575–585. [Google Scholar]
- Ton, A.T.; Gentile, F.; Hsing, M.; Ban, F.; Cherkasov, A. Rapid Identification of Potential Inhibitors of SARS-CoV-2 Main Protease by Deep Docking of 1.3 Billion Compounds. Mol. Inform. 2020, 39, e2000028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steiner, M.C.; Gibson, K.M.; Crandall, K.A. Drug resistance prediction using deep learning techniques on HIV-1 sequence data. Viruses 2020, 12, 560. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Wang, Z.; Li, L.; Lu, K.; Liu, R.; Liu, Z.; Yan, J. An Ontology-Based Artificial Intelligence Model for Medicine Side-Effect Prediction: Taking Traditional Chinese Medicine as an Example. Comput. Math. Methods Med. 2019, 2019, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Zhavoronkov, A.; Ivanenkov, Y.A.; Aliper, A.; Veselov, M.S.; Aladinskiy, V.A.; Aladinskaya, A.V.; Terentiev, V.A.; Polykovskiy, D.A.; Kuznetsov, M.D.; Asadulaev, A.; et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat. Biotechnol. 2019, 37, 1038–1040. [Google Scholar] [CrossRef]
- Bhagwati, S.; Siddiqi, M.I. Deep neural network modeling based virtual screening and prediction of potential inhibitors for renin protein. J. Biomol. Struct. Dyn. 2022, 40, 4612–4625. [Google Scholar] [CrossRef]
- Wang, M.; Hou, S.; Wei, Y.; Li, D.; Lin, J. Discovery of novel dual adenosine A1/A2A receptor antagonists using deep learning, pharmacophore modeling and molecular docking. PLoS Comput. Biol. 2021, 17, e1008821. [Google Scholar] [CrossRef]
- Mahdaddi, A.; Meshoul, S.; Belguidoum, M. EA-based hyperparameter optimization of hybrid deep learning models for effective drug-target interactions prediction. Expert Syst. Appl. 2021, 185, 115525. [Google Scholar] [CrossRef]
- Koutsoukas, A.; Monaghan, K.J.; Li, X.; Huan, J. Deep-learning: Investigating deep neural networks hyper-parameters and comparison of performance to shallow methods for modeling bioactivity data. J. Cheminform. 2017, 9, 42. [Google Scholar] [CrossRef] [Green Version]
- Isdahl, R.; Gundersen, O.E. Out-of-the-Box Reproducibility: A Survey of Machine Learning Platforms. eScience: San Diego, CA, USA, 2019; pp. 86–95. [Google Scholar] [CrossRef]
- Thompson, N.C.; Greenewald, K.; Lee, K.; Manso, G.F. The Computational Limits of Deep Learning. 2020. Available online: http://arxiv.org/abs/2007.05558 (accessed on 26 January 2023).
- Dinga, R.; Penninx, B.W.J.H.; Veltman, D.J.; Schmaal, L.; Marquand, A.F. Beyond accuracy: Measures for assessing machine learning models, pitfalls and guidelines. BioRxiv 2019, 743138. [Google Scholar]
- Rodrigues, T.; Bernardes, G.J.L. Machine learning for target discovery in drug development. Curr. Opin. Chem. Biol. 2020, 56, 16–22. [Google Scholar] [CrossRef]
- Papadatos, G.; Gaulton, A.; Hersey, A.; Overington, J.P. Activity, assay and target data curation and quality in the ChEMBL database. J. Comput. Aided. Mol. Des. 2015, 29, 885–896. [Google Scholar] [CrossRef] [Green Version]
- Potemkin, V.; Potemkin, A.; Grishina, M. Internet Resources for Drug Discovery and Design. Curr. Top. Med. Chem. 2018, 18, 1955–1975. [Google Scholar] [CrossRef]
- Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; et al. PubChem substance and compound databases. Nucleic Acids Res. 2016, 44, D1202–D1213. [Google Scholar] [CrossRef]
- Gaulton, A.; Bellis, L.J.; Bento, A.P.; Chambers, J.; Davies, M.; Hersey, A.; Light, Y.; McGlinchey, S.; Michalovich, D.; Al-Lazikani, B.; et al. ChEMBL: A large-scale bioactivity database for drug discovery. Nucleic Acids Res. 2012, 40, D1100–D1107. [Google Scholar] [CrossRef] [Green Version]
- Wassermann, A.M.; Bajorath, J. BindingDB and ChEMBL: Online compound databases for drug discovery. Expert Opin. Drug. Discov. 2011, 6, 683–687. [Google Scholar] [CrossRef]
- Rajput, A.; Kumar, A.; Megha, K.; Thakur, A.; Kumar, M. DrugRepV: A compendium of repurposed drugs and chemicals targeting epidemic and pandemic viruses. Brief. Bioinform. 2021, 22, 1076–1084. [Google Scholar] [CrossRef]
- Muthaiyan, M.; Naorem, L.D.; Seenappa, V.; Pushan, S.S.; Venkatesan, A. Ebolabase: Zaire ebolavirus-human protein interaction database for drug-repurposing. Int. J. Biol. Macromol. 2021, 182, 1384–1391. [Google Scholar] [CrossRef]
- Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput. Sci. 2021, 2, 160. [Google Scholar] [CrossRef]
- Jarada, T.N.; Rokne, J.G.; Alhajj, R. A review of computational drug repositioning: Strategies, approaches, opportunities, challenges, and directions. J. Cheminform. 2020, 12, 46. [Google Scholar] [CrossRef]
Applications (URLs) | Model Used | ACC | PCC | MAE | RMSE |
---|---|---|---|---|---|
Anti-EBOV machine learning models [9] (http://molsync.com/ebola/) (accessed on 26 January 2023) | Bayesian model | 0.82–0.86 | |||
RPF | 0.75–0.85 | ||||
SVM | 0.73–0.76 | ||||
Anti-Ebola initiative [45] (https://bioinfo.imtech.res.in/manojk/antiebola) (accessed on 26 January 2023) | SVM | 0.83 | 0.33 | 0.47 | |
RF | 0.98 | 0.19 | 0.28 | ||
ANN | 0.95 | 0.23 | 0.29 | ||
EBOLApred [46] (http://197.255.126.13:8000/) (accessed on 26 January 2023) | RF | 0.80 | |||
SVM | 0.86 | ||||
NB | 0.65 | ||||
kNN | 0.80 |
ChEMBL ID | Description | No. of Compounds |
---|---|---|
CHEMBL3562085 | PubChem BioAssay. qHTS Assay for Identifying Compounds that block Entry of Ebola Virus: Screen1, ratio channel. (Class of assay: confirmatory). | 558 |
CHEMBL3562152 | PubChem BioAssay. qHTS Assay for Identifying Compounds that block Entry of Ebola Virus: Screen2, ratio channel. (Class of assay: confirmatory). | 1822 |
CHEMBL3562088 | PubChem BioAssay. qHTS Assay for Identifying Compounds that block Entry of Ebola Virus: Screen1, green channel. (Class of assay: confirmatory). | 570 |
CHEMBL3562112 | PubChem BioAssay. qHTS Assay for Identifying Compounds that block Entry of Ebola Virus: Screen1, blue channel. (Class of assay: confirmatory). | 556 |
CHEMBL3562133 | PubChem BioAssay. qHTS Assay for Identifying Compounds that block Entry of Ebola Virus, Screen1 green channel. (Class of assay: confirmatory). | 570 |
CHEMBL3561981 | PubChem BioAssay. qHTS Assay for Identifying Compounds that block Entry of Ebola Virus: Screen 4, blue channel. (Class of assay: confirmatory). | 168 |
CHEMBL3562144 | PubChem BioAssay. qHTS Assay for Identifying Compounds that block Entry of Ebola Virus: Screen 4, green channel. (Class of assay: confirmatory). | 170 |
CHEMBL3562135 | PubChem BioAssay. qHTS Assay for Identifying Compounds that block Entry of Ebola Virus, Screen 1 blue channel. (Class of assay: confirmatory). | 556 |
CHEMBL3562064 | PubChem BioAssay. qHTS Assay for Identifying Compounds that block Entry of Ebola Virus: Screen 2, blue channel. (Class of assay: confirmatory). | 1996 |
CHEMBL3562033 | PubChem BioAssay. qHTS Assay for Identifying Compounds that block Entry of Ebola Virus: Screen 4, ratio channel. (Class of assay: confirmatory) | 170 |
CHEMBL3562136 | PubChem BioAssay. qHTS Assay for Identifying Compounds that block Entry of Ebola Virus, Screen 2 blue channel. (Class of assay: confirmatory). | 1968 |
CHEMBL3562119 | PubChem BioAssay. qHTS Assay for Identifying Compounds that block Entry of Ebola Virus, Screen 2 green channel. (Class of assay: confirmatory). | 2170 |
CHEMBL3561990 | PubChem BioAssay. qHTS Assay for Identifying Compounds that block Entry of Ebola Virus: Screen 2, green channel. (Class of assay: confirmatory). | 2189 |
CHEMBL3562146 | PubChem BioAssay. qHTS Assay for Identifying Compounds that block Entry of Ebola Virus, Screen 2 ratio channel. (Class of assay: confirmatory). | 1812 |
CHEMBL3561973 | PubChem BioAssay. qHTS Assay for Identifying Compounds that block Entry of Ebola Virus, Screen 1 ratio channel. (Class of assay: confirmatory). | 558 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwofie, S.K.; Adams, J.; Broni, E.; Enninful, K.S.; Agoni, C.; Soliman, M.E.S.; Wilson, M.D. Artificial Intelligence, Machine Learning, and Big Data for Ebola Virus Drug Discovery. Pharmaceuticals 2023, 16, 332. https://doi.org/10.3390/ph16030332
Kwofie SK, Adams J, Broni E, Enninful KS, Agoni C, Soliman MES, Wilson MD. Artificial Intelligence, Machine Learning, and Big Data for Ebola Virus Drug Discovery. Pharmaceuticals. 2023; 16(3):332. https://doi.org/10.3390/ph16030332
Chicago/Turabian StyleKwofie, Samuel K., Joseph Adams, Emmanuel Broni, Kweku S. Enninful, Clement Agoni, Mahmoud E. S. Soliman, and Michael D. Wilson. 2023. "Artificial Intelligence, Machine Learning, and Big Data for Ebola Virus Drug Discovery" Pharmaceuticals 16, no. 3: 332. https://doi.org/10.3390/ph16030332
APA StyleKwofie, S. K., Adams, J., Broni, E., Enninful, K. S., Agoni, C., Soliman, M. E. S., & Wilson, M. D. (2023). Artificial Intelligence, Machine Learning, and Big Data for Ebola Virus Drug Discovery. Pharmaceuticals, 16(3), 332. https://doi.org/10.3390/ph16030332