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Abstract: The effect of Ebola virus disease (EVD) is fatal and devastating, necessitating several
efforts to identify potent biotherapeutic molecules. This review seeks to provide perspectives on
complementing existing work on Ebola virus (EBOV) by discussing the role of machine learning (ML)
techniques in the prediction of small molecule inhibitors of EBOV. Different ML algorithms have been
used to predict anti-EBOV compounds, including Bayesian, support vector machine, and random
forest algorithms, which present strong models with credible outcomes. The use of deep learning
models for predicting anti-EBOV molecules is underutilized; therefore, we discuss how such models
could be leveraged to develop fast, efficient, robust, and novel algorithms to aid in the discovery
of anti-EBOV drugs. We further discuss the deep neural network as a plausible ML algorithm for
predicting anti-EBOV compounds. We also summarize the plethora of data sources necessary for
ML predictions in the form of systematic and comprehensive high-dimensional data. With ongoing
efforts to eradicate EVD, the application of artificial intelligence-based ML to EBOV drug discovery
research can promote data-driven decision making and may help to reduce the high attrition rates of
compounds in the drug development pipeline.

Keywords: drug discovery; deep learning; artificial intelligence; big data; Ebola virus; classifiers;
machine learning

1. Introduction

Since the emergence of Ebola virus disease (EVD), concerted efforts have been em-
ployed in the quest to identify inhibitors as potential biotherapeutic molecules. EVD is a
deadly zoonotic disease caused by the Ebola virus from the filoviridae family [1]. Although
the exact source of EBOV remains unknown, it believed to be animal-borne and associated
with monkeys, chimpanzees, and apes, including humans [2]. EBOV is transmitted from
human to human via direct contact or contact with the body fluid of an infected person [3].
A person infected with EVD shows symptoms of fever, aches, and pains such as severe
headache; gastrointestinal symptoms, including diarrhea and vomiting; and multiple organ
dysfunction syndromes [4]. The Ebola virus (EBOV) is an enveloped, single-stranded,
negative-sense RNA virus [5]. It forms a threadlike shape, with a uniform diameter of
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80 nm and a typical length between 970 nm and 1200 nm [6]. The genome of EBOV
encodes seven structural proteins comprising nucleoprotein (NP), polymerase cofactor
(VP35), Virion matrix protein (VP40), Glycoprotein, transcription activator (VP30), VP24,
and RNA-dependent RNA-polymerase (L) [7].

A total of 33,604 Ebola virus infections in humans were recorded, with an average
death rate of 43.8%, constituting more than 14,000 deaths, during the 2014–2016 outbreak
in Guinea, Liberia, and Sierra Leone, as well as the 2018–2020 outbreak in Congo [3]. There
is a re-emergence of the outbreak in Guinea and the Democratic Republic of Congo [8].
The highly virulent and lethal nature of EVD highlights the need to develop therapeutic
agents that could limit the spread of the virus. This had led to several efforts to prioritize
compounds in the search for small molecule inhibitors of the Ebola virus [9].

Currently, there are two Food and Drug Administration (FDA)-approved treatments
for the Ebola virus. The first, Inmazeb, is a mixture of three monoclonal antibodies that
targets the glycoprotein of the Ebola virus and blocks attachment and entry of the virus [10].
The second is a human monoclonal antibody, Ebanga, which blocks the binding of the virus
to the cell receptor [11]. Nonetheless, several EVD drug discovery studies are underway.

The advancement in large-scale biological experiments and data collection initiatives
has spurred in silico studies geared towards the identification of small molecule inhibitors
of disease targets [12]. Big data describes a voluminous amount of data that can be
analyzed computationally to unravel trends and patterns [13,14]. Big data-driven drug
development was employed in drug repurposing of FDA-approved drugs against other
disease targets [12,15,16]. Other advanced applications of big data include the integration of
gene expression analysis, cellular screening systems, and healthcare informatics to identify
chemical structures of therapeutic relevance [17].

With the growth of chemical data from high-throughput screening for a target of
interest, the search for a small molecule to interact with these targets is essential. Artificial
intelligence (AI) and machine learning approaches provide a faster alternative to categorize
compounds that possess therapeutic indications [18–20]. Big data has therefore heavily
influenced the recent drug discovery paradigm. This article discusses perspectives on the
role that AI plays in the identification of small molecule inhibitors and ML approaches
utilized in the search for small molecule inhibitors of EVD. Furthermore, it highlights
large-scale databases containing multitudes of bioactive compounds that could be utilized
to train machine learning models. It also shows how novel ML techniques such as deep
neural networks could be leveraged to develop efficient and robust models to prioritize
compounds with high propensity to possess anti-Ebola virus activity.

Drug discovery and development are time-consuming and expensive, with numerous
compounds failing at various stages during clinical trials [21,22]. AI and ML approaches
applied to various stages of the drug development pipeline provide data-driven decision
making and can reduce the timeline for drug development via predictions [18,23]. These
predictions are faster and cheaper than wet laboratory experiments, which are laborious.
AI approaches in drug discovery result in generating potential lead-like ligands for drug
targets, and when predictions are based on suitable data, the likelihood of potent thera-
peutic compounds going into clinical trial stages increases [24]. ML is any technique that
makes computers learn from previous data observations and improve their behavior for a
given task [25]. ML models change their inputs into meaningful outputs, a process that is
learned from exposure to known examples of input and output data. ML is categorized
into three, namely supervised, unsupervised, and reinforcement learning [26]. Numerous
ML algorithms have been exploited in the paradigm of drug discovery. The use of ML in
drug discovery addresses the issue of drug candidate identification via the prediction of
drug–target interactions [27]. More so, molecules emanating from de novo design generate
chemical structures with desirable characteristics, which are leveraged computationally for
the synthesis of novel molecules [28].
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2. Machine Learning Algorithms Deployed in Ebola Virus Drug Discovery

ML algorithms are key determinants of the effectiveness and efficiency of ML in drug
discovery. As such, employing an appropriate learning algorithm that is suitable for the
respective application is prudent. Notable algorithms include artificial neural networks
(ANN) [29,30], decision trees (DT) [31,32], support vector machines (SVM) [33], and cluster
analysis (CA) [34–36].

Several reports have thus employed some of these algorithms in EBOV drug dis-
covery. One of such earlier reports was a study by Erkins et al. in 2015, in which two
different anti-EBOV-predicting Bayesian ML models were trained [9] on two groups of
datasets comprising the viral pseudotype entry and the EBOV replication assays, with
both constituting 868 compounds [37]. The trained models were then used to screen the
MicroSource (http://www.msdiscovery.com/spectrum.html) (accessed on 26 January 2023)
library of drugs to predict potential anti-EBOV compounds. For each of the training assay
data, molecules with IC50 values < 50 µM were classified as actives and all others were
considered inactive. The half-maximal inhibitory concentration (IC50) is a quantitative
measure that shows how much of a particular inhibitory substance is required to inhibit a
particular biological process by half, thus providing a measure of the drug’s efficacy [38].
The Bayesian model was trained on this dataset together with two other ML algorithms
comprising SVM and Recursive Partitioning Forest using a 5-fold cross-validation tech-
nique. The Bayesian model performed the best, with a receiver operating characteristic
(ROC) value of 0.86. The MicroSource library with 2320 drugs was scored with the trained
Bayesian model, predicting tilorone, quinacrine, and pyronaridine tetraphosphate as po-
tential anti-EBOV drugs. Tilorone, quinacrine, and pyronaridine tetraphosphate which
had the highest scores from the ML predictions were experimentally validated in vitro and
found to possess EC50 values of 350, 420, and 230 nM, respectively. These EC50 values were
much lower than the positive control, chloroquine, with EC50 value of 4.0 µM. [9]. EC50 is
a measure of the pharmacological effectiveness of a compound. It is the concentration of
a compound at which the biological response is half of the maximum response [39]. The
three compounds with lower EC50 values are able to achieve the same biological effect at
lower concentration, indicating that they are more effective.

Moreover, the Bayesian approach employed in the prediction of activity spectra of
substances [40] can be used to predict the antiviral activity of compounds to facilitate the
identification of potentially bioactive molecules against the EBOV protein VP24 [41,42].

So far, the Bayesian, SVM, and recursive partitioning forest are the available algorithms
that have been used to develop models to predict potential anti-EBOV compounds. Other
machine learning algorithms, including single-layer artificial neural networks, decision
trees, and logistic regression, have also been applied to other fields of EVD other than pre-
dicting biotherapeutic compounds [43,44]. For instance, an ensemble of the aforementioned
algorithms was used to predict the disease prognosis and outcomes of EBOV patients with
appreciable levels of performance [44].

A more recent application of ML in EBOV drug discovery is the work by Rajput
and Kumar (2022) [45] in which SVM, random forest, and artificial neural networks were
employed using tenfold cross-validation (Table 1). In their report, the best predictive model
showed a Pearson’s correlation coefficient ranging from 0.83 to 0.98 on training/testing
(T274) dataset. These models were subsequently cross-validated for robustness using
William’s plot, following which the models were integrated into a web server. Another
such recent application of ML in EBOV drug discovery is a report from our group (Table 1)
where predictive models developed using five algorithms comprising random forest (RF),
SVM, naïve Bayes (NB), k-nearest neighbor (kNN), and logistic regression were used to
predict potential anti-Ebola virus small molecule inhibitors of EBOV glycoprotein and
VP40 [46]. Our study employed EBOV cell entry inhibitors from the PubChem database
as training data, where RF, LR, and SVM models also showed plausible performances
with overall accuracy values of 0.89, 0.84, and 0.86, respectively. These three models were
implemented as a web server known as “EBOLApred” which assigns a confidence score to

http://www.msdiscovery.com/spectrum.html
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the predicted bioactivity validated using the applicability domain concept [46]. Collectively,
these reports highlight the crucial role of ML in EBOV drug discovery, leaving room for
further exploration.

Table 1. Machine learning algorithms employed anti-EBOV research work with their varying perfor-
mances. The models consisted of support vector machines (SVM), recursive partitioning forest (RPF),
random forest models (RF), artificial neural network (ANN), naïve Bayes models (NB) and k-nearest
neighbor models (kNN). Evaluation metrics included accuracy (ACC), Pearson correlation coefficient
(PCC), mean absolute error (MAE), and root-mean-square error (RMSE).

Applications (URLs) Model Used ACC PCC MAE RMSE

Anti-EBOV machine learning models [9]
(http://molsync.com/ebola/) (accessed on

26 January 2023)

Bayesian model 0.82–0.86

RPF 0.75–0.85

SVM 0.73–0.76

Anti-Ebola initiative [45]
(https://bioinfo.imtech.res.in/manojk/antiebola)

(accessed on 26 January 2023)

SVM 0.83 0.33 0.47

RF 0.98 0.19 0.28

ANN 0.95 0.23 0.29

EBOLApred [46]
(http://197.255.126.13:8000/) (accessed on

26 January 2023)

RF 0.80

SVM 0.86

NB 0.65

kNN 0.80

3. Limitations on the Use of Conventional ML Models to Predict Anti-EBOV Compounds

Conventional ML algorithms have certain drawbacks when used to predict Ebola
virus inhibitors. One significant issue is the high dimensional data required to predict
inhibitors. The complexity of the data needed to predict inhibitors poses a challenge for
most conventional ML models to manage [47]. Another limitation is that predictive models
may not be able to generalize well to new data. These models are often trained on a limited
set of data and may not perform well when applied to new or unseen data [48]. This is
particularly problematic when dealing with diseases such as Ebola, where the amount
of data available may be limited. The risk of overfitting exists when using conventional
ML techniques to predict Ebola virus inhibitors. Even while these models may perform
well on training data, they have trouble generalizing to fresh data [49]. To overcome these
limitations, researchers may need to turn to more advanced machine learning techniques
such as deep learning, which have shown to be more effective in handling large and
complex data [50]. Additionally, the use of more diverse and comprehensive data sets can
also help to improve the accuracy of predictions. With the ongoing efforts to combat EVD, it
is crucial to continue to develop and improve predictive models to aid in the identification
of potential drug candidates and management of the disease.

4. Deep Neural Network as an Efficient and Robust Alternative to Predict
Anti-EBOV Compounds

Deep learning has become the most dominant component of ML and an emerging
technique for accelerating the prediction of small molecules of therapeutic relevance [51–54].
Deep learning algorithms are classic models in pattern recognition tasks, and due to their
robustness, good performance, and simple form, they are widely used in solving nonlinear
classification problems [55,56]. In a comparative study of various screening methods on the
ChEMBL database as the benchmark, deep learning outperformed the other seven screening
methods for the mean area under the curve (AUC) across 1230 drug targets [48]. The AUC
of deep learning (0.830) surpassed the threshold of 0.8 for commercial models used for
virtual screening of compounds, thus having the potential to become a standard method in
drug design [52]. Another comparative study corroborated the efficiency of the deep neural

http://molsync.com/ebola/
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network (DNN) over other ML methods, including support vector machines, random
forests, naïve Bayes, and logistic regression models [57]. The superiority of DNN was
further demonstrated in a report by Wallach et al. in 2015, in which AtomNet, a structure-
based bioactivity prediction for small molecules, was built using a deep convolutional
neural network and was shown to outperform Smina [58]. AtomNet was even shown to
also predict active compounds for drug targets that have no known modulators [58,59]. In
a separate report by Bilsland et al. in 2015, 3517 compounds were used to train a neural
network in a machine learning-based virtual screening study, leading to the identification
of potential senescence agonists [60]. The resulting classification model in the report was
subsequently employed to screen about 2 million lead-like compounds, of which 147 hits
were identified [61]. Among the 147 hits, CB-20903630, a benzimidazolone, demonstrated
low micromolar IC50 via in vitro assays, and could be explored in the development of
selective cell cycle inhibitors [60]. In 2020, Rifaioglu et al. [61] also employed a deep
convolutional neural network to develop DEEPScreen, a drug–target interaction (DTI)
predictive model. DEEPScreen predicted JAK proteins as new targets of the drug cladribine,
which were confirmed experimentally [61]. Altogether, these reports highlight robust
performance of deep learning; as such, its role in current-day drug design cannot be
overemphasized.

Deep learning models have been used to predict inhibitors of drug targets [62,63].
With the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2), the
search for highly efficacious compounds to inhibit the activities of the virus has become
more urgent and needful [64–66]. Among such reports is a study by Ton et al., in which
Deep Docking (DD), a novel deep learning platform for structure-based virtual screening
(SBVS) was developed and applied to screen 1.3 billion compounds to identify 1000 po-
tential compounds for the SAR-CoV-2 main protease (Mpro) [67]. Though these predicted
compounds need experimental validation, they serve as an essential prioritized list for fur-
ther development. In another report, HIV-1 sequence data and drug resistance assays for 18
antiretroviral therapy (ART) drugs were used to develop three deep learning architectures
to predict drug resistance [68]. The report identified a convolutional neural network as
the best architecture when compared to multilayer perceptron and bidirectional recurrent
neural networks [68]. A report by Yao et al. in 2020 and Wang et al. in 2021 also employed
an artificial neural network (ANN) to develop an ontology-based model for predicting
the side-effect of compounds, which was employed to evaluate the traditional Chinese
medicine (TCM) prescriptions officially recommended for the treatment of coronavirus
disease 2019 (COVID-19) [55,69].

Apart from antiviral compound prediction, deep learning has also been employed
in other drug discovery efforts. One of such efforts was a study by Zhavoronkov et al.
in 2019 [66], in which a DNN-based generative reinforcement learning model was devel-
oped to predict Discoidin domain receptor 1 (DDR 1) inhibitors. Two of the predicted
compounds from the model strongly inhibited DDR1 activity in vitro, with IC50 of 10 and
21 nM [70]. In a recent report, Bhagwati et al. in developed a DNN model from the ChEMBL
datasets to virtually screen the Mabridge database (https://www.maybridge.com) (ac-
cessed on 26 January 2023) [71]. The model from their report identified potential inhibitory
molecules of renin protein, a protein involved in the development of hypertension and
other cardiovascular diseases. In total, 8701 compounds were used for the training, of
which 2628 compounds were classified as active. After validation, the DNN model had
an accuracy of 99.83% and a Matthew correlation coefficient (MCC) value of 0.975, which
represents a strong correlation between the actual and the predicted classification [71].

Deep learning algorithms, despite their outstanding performance in comparison to
several machine learning algorithms in the prediction of small molecules or inhibitors of
drug targets [72], are yet to be implemented in the quest to identify anti-EBOV compounds.
DNN learns meaningful representations from data through successive layers. The layered
representations are learned through models called neural networks, structured in layers
stacked on top of each other. DNN can be viewed as a model that maps input to targets via

https://www.maybridge.com
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a deep sequence of data transformations that are learned by exposure to examples [56]. It
is therefore worth utilizing DNN models to predict anti-EBOV compounds since they have
been shown to produce better performance.

Although deep learning models are effective techniques to predict Ebola virus in-
hibitors, they do have some shortcomings that must be taken into account. The challenge
of hyperparameter tuning is one of the key difficulties [73]. Before training the model,
hyperparameters, which are parameters that govern the model’s behavior, are defined.
The learning rate, the number of hidden layers, and the number of neurons in each layer
are a few examples [74]. It can be difficult to optimize these hyperparameters, since there
are frequently a large number of alternative combinations to explore, and finding the
ideal combination might take a lot of computing effort [74]. Another drawback of using
deep learning models for predicting Ebola virus inhibitors is the lack of computational
tools for reproducibility. Deep learning models are frequently complicated and tricky to
comprehend, and it might be difficult to replicate the outcomes of a certain study or experi-
ment [75]. Due to this, it may be challenging to confirm a research’s findings or corroborate
a similar study in another environment. This lack of reproducibility can pose a significant
challenge when predicting inhibitors, where accurate and reproducible results are crucial.
Furthermore, deep learning models are also computationally expensive; they require a
significant amount of computational power and time to train [76]. This can be a significant
obstacle, especially for researchers working in resource-constrained environments. Lastly,
selecting the right ML model out of other predictive models can be a difficult task, as the
performance of a model can vary depending on the specific task and dataset. Different
models may perform well on different metrics, such as accuracy, precision, recall, F1 score,
and AUC-ROC [77]. Some models may perform well on a specific subset of the data but
poorly on the rest of it, which highlights the importance of considering the distribution and
characteristics of the data. Furthermore, there may be trade-offs between different metrics,
such as a model with high accuracy but low recall, and it is important to consider the
specific requirements and goals of the task when selecting a model [77]. Overall, selecting
the right ML model requires a thorough understanding of the data, the task, and the specific
metrics that are relevant for that task.

5. Data Sources for Ebola Machine Learning Studies

Finding anomalies or patterns and correlations within a large dataset to predict out-
comes is a relevant technique in drug discovery [78]. With the advancement in the studies
of the composition, structure, and interactions of cellular molecules, much information
about drugs and targets is generated. Molecules with their structural features and biologi-
cal activity data are curated in various databases for use in ML [79]. Many databases are
available with increasing numbers of data sizes due to the accessibility of high-throughput
data from around the globe [80]. As data and statistics about drugs and targets are gath-
ered, it sets the pace for drug discovery studies. There are a number of databases with
bioassay data on EVD that could be exploited for machine learning projects. Notable
amongst such databases are PubChem [81], ChEMBL [82], BindingDB [83], DrugRepV [84]
and Ebolabase [85], as highlighted in Figure 1. A search for the Ebola virus on PubChem
yielded 597 bioassay data, whereas ChEMBL yielded 47 bioassay data assays (Table 2) that
can be exploited for ML-based EBOV drug discovery studies. A search for Ebola virus data
via BindingDB produced only 2, while a total of 868 compounds in DrugRepV were experi-
mentally validated for anti-Ebola activities. A more comprehensive Ebola–human–drug
interaction database was also recently created by Muthaiyan et al. in 2021 [85], curating
270 human proteins that interacted with EBOV, a database that was exploited for training
models. Altogether, these datasets could be pooled to train ML models towards predicting
anti-EBOV compounds with a good degree of therapeutic potential.
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Figure 1. Schematic highlighting the integration of available resources and machine learning models
(ML) to aid in potential anti-EBOV molecule prediction.

Table 2. Ebola virus-related bioassay data available in ChEMBL [72]. The table consists of numbers
of compounds, the description of the assays, and IDs. Assays with number of compounds less than
100 were excluded.

ChEMBL ID Description No. of Compounds

CHEMBL3562085
PubChem BioAssay. qHTS Assay for Identifying

Compounds that block Entry of Ebola Virus: Screen1,
ratio channel. (Class of assay: confirmatory).

558

CHEMBL3562152
PubChem BioAssay. qHTS Assay for Identifying

Compounds that block Entry of Ebola Virus: Screen2,
ratio channel. (Class of assay: confirmatory).

1822

CHEMBL3562088
PubChem BioAssay. qHTS Assay for Identifying

Compounds that block Entry of Ebola Virus: Screen1,
green channel. (Class of assay: confirmatory).

570

CHEMBL3562112
PubChem BioAssay. qHTS Assay for Identifying

Compounds that block Entry of Ebola Virus: Screen1,
blue channel. (Class of assay: confirmatory).

556

CHEMBL3562133
PubChem BioAssay. qHTS Assay for Identifying

Compounds that block Entry of Ebola Virus, Screen1
green channel. (Class of assay: confirmatory).

570

CHEMBL3561981
PubChem BioAssay. qHTS Assay for Identifying

Compounds that block Entry of Ebola Virus: Screen 4,
blue channel. (Class of assay: confirmatory).

168

CHEMBL3562144
PubChem BioAssay. qHTS Assay for Identifying

Compounds that block Entry of Ebola Virus: Screen 4,
green channel. (Class of assay: confirmatory).

170

CHEMBL3562135
PubChem BioAssay. qHTS Assay for Identifying

Compounds that block Entry of Ebola Virus, Screen 1
blue channel. (Class of assay: confirmatory).

556

CHEMBL3562064
PubChem BioAssay. qHTS Assay for Identifying

Compounds that block Entry of Ebola Virus: Screen 2,
blue channel. (Class of assay: confirmatory).

1996
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Table 2. Cont.

ChEMBL ID Description No. of Compounds

CHEMBL3562033
PubChem BioAssay. qHTS Assay for Identifying

Compounds that block Entry of Ebola Virus: Screen 4,
ratio channel. (Class of assay: confirmatory)

170

CHEMBL3562136
PubChem BioAssay. qHTS Assay for Identifying

Compounds that block Entry of Ebola Virus, Screen 2
blue channel. (Class of assay: confirmatory).

1968

CHEMBL3562119
PubChem BioAssay. qHTS Assay for Identifying

Compounds that block Entry of Ebola Virus, Screen 2
green channel. (Class of assay: confirmatory).

2170

CHEMBL3561990
PubChem BioAssay. qHTS Assay for Identifying

Compounds that block Entry of Ebola Virus: Screen 2,
green channel. (Class of assay: confirmatory).

2189

CHEMBL3562146
PubChem BioAssay. qHTS Assay for Identifying

Compounds that block Entry of Ebola Virus, Screen 2
ratio channel. (Class of assay: confirmatory).

1812

CHEMBL3561973
PubChem BioAssay. qHTS Assay for Identifying

Compounds that block Entry of Ebola Virus, Screen 1
ratio channel. (Class of assay: confirmatory).

558

Though the application of ML algorithms tends to hasten the pace in the quest for
biotherapeutic compounds, the absence of vast and diverse datasets to train and test
models on is one of the primary research gaps in the application of machine learning and
big data for Ebola medication development [72]. Despite continuing initiatives to gather
and exchange data, larger and more varied datasets are still required in order to create
reliable and accurate models [86]. This is crucial for creating ML models that generalize
well to new data and can be used in a variety of situations and populations. There is a need
for greater study on the best ways to create and test novel compounds in clinical settings
as well as how to transfer the findings from ML models into new medicines. This entails
creating strategies for discovering novel therapeutic targets, forecasting the effectiveness of
various drugs against the virus, and enhancing the planning and evaluation of clinical trials
for the treatment of Ebola [87]. Additional studies are required to create numerous online
platforms and applications, which are easy to utilize to support high-throughput screening
of drugs with more precision and effectiveness. Overall, the application of big data and
ML techniques have the potential to hasten the identification and creation of novel Ebola
therapeutics, but more work remains to fully fulfill this promise.

6. Conclusions

Machine-learning algorithms such as support vector machines, Bayesian models, and
recurrent partitioning forest have been used to predict potential anti-EBOV molecules
from FDA-approved compounds. The full clinical potential of drug repurposing for EBOV
treatment is yet to be realized. The dearth of available alternative FDA-approved drugs
for the treatment of EBOV is a global concern. ML techniques are cost-effective and time-
efficient strategies in developing predictive models for drugs. It is therefore imperative
to leverage the vast amount of knowledge related to ML and available EBOV bioassay
data to identify EBOV therapeutics to augment existing efforts geared towards eradicating
the disease. The increasing amount of biological and pharmacological data coupled with
existing and new ML methods will certainly provide new perspectives into therapeutic
mechanisms. Furthermore, with increasing biological data, model applicability will be
enhanced as better data integration techniques will emerge. The deep neural network is
robust, with better performance in antiviral prediction, and can be employed to predict
small molecule inhibitors of Ebola virus disease.
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