Novel Indole-Tethered Chromene Derivatives: Synthesis, Cytotoxic Properties, and Key Computational Insights
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Cytotoxicity Studies
2.3. Molecular Docking Studies
2.4. Molecular Dynamics Simulations
2.5. ADME, Drug-Likeness Analysis
3. Materials and Methods
3.1. Chemical Synthesis
3.1.1. Method of the Synthesis of Novel Indole-Tethered Chromenes 4a–j
3.1.2. 2-Amino-7,7-dimethyl-4-(1-methyl-1H-indol-2-yl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (4a)
3.1.3. 2-Amino-4-(1-ethyl-1H-indol-2-yl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (4b)
3.1.4. 2-Amino-4-(5-fluoro-1-methyl-1H-indol-2-yl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (4c)
3.1.5. 2-Amino-4-(1-ethyl-5-fluoro-1H-indol-2-yl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (4d)
3.1.6. 2-Amino-7,7-dimethyl-4-(1-methyl-5-nitro-1H-indol-2-yl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (4e)
3.1.7. 2-Amino-4-(1-ethyl-5-nitro-1H-indol-2-yl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (4f)
3.1.8. 2-Amino-4-(5-methoxy-1-methyl-1H-indol-2-yl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (4g)
3.1.9. 2-Amino-4-(1-ethyl-5-methoxy-1H-indol-2-yl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (4h)
3.1.10. 2-Amino-4-(5-bromo-1-methyl-1H-indol-2-yl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (4i)
3.1.11. 2-Amino-4-(5-bromo-1-ethyl-1H-indol-2-yl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (4j)
3.2. Assay of Cytotoxicity
3.3. Computational Studies
3.3.1. Molecular Modeling
3.3.2. Molecular Dynamics Simulations
3.3.3. ADME and Drug-Likeness Predictions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A Review on Recent Advances in Nitrogen-Containing Molecules and Their Biological Applications. Molecules 2020, 25, 1909. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.; Goel, N. Heterocyclic Compounds: Importance in Anticancer Drug Discovery. Anti-Cancer Agents Med. Chem. 2022, 22, 3196–3207. [Google Scholar] [CrossRef]
- Nehra, B.; Mathew, B.; Chawla, P.A. A Medicinal Chemist’s Perspective Towards Structure Activity Relationship of Heterocycle Based Anticancer Agents. Curr. Top. Med. Chem. 2022, 22, 493–528. [Google Scholar] [CrossRef]
- Mahmoud, E.; Hayallah, A.M.; Kovacic, S.; Abdelhamid, D.; Abdel-Aziz, M. Recent progress in biologically active indole hybrids: A mini review. Pharm. Rep: PR 2022, 74, 570–582. [Google Scholar] [CrossRef]
- Martino, E.; Casamassima, G.; Castiglione, S.; Cellupica, E.; Pantalone, S.; Papagni, F.; Rui, M.; Siciliano, A.M.; Collina, S. Vinca alkaloids and analogues as anti-cancer agents: Looking back, peering ahead. Bioorg. Med. Chem. Lett. 2018, 28, 2816–2826. [Google Scholar] [CrossRef]
- Eleutherakis-Papaiakovou, E.; Kanellias, N.; Kastritis, E.; Gavriatopoulou, M.; Terpos, E.; Dimopoulos, M.A. Efficacy of Panobinostat for the Treatment of Multiple Myeloma. J. Oncol. 2020, 2020, 7131802. [Google Scholar] [CrossRef]
- Ledermann, J.A.; Embleton-Thirsk, A.C.; Perren, T.J.; Jayson, G.C.; Rustin, G.J.S.; Kaye, S.B.; Hirte, H.; Oza, A.; Vaughan, M.; Friedlander, M.; et al. Cediranib in addition to chemotherapy for women with relapsed platinum-sensitive ovarian cancer (ICON6): Overall survival results of a phase III randomised trial. ESMO Open 2021, 6, 100043. [Google Scholar] [CrossRef]
- Manda, V.K.; Avula, B.; Ali, Z.; Khan, I.A.; Walker, L.A.; Khan, S.I. Evaluation of In Vitro Absorption, Distribution, Metabolism, and Excretion (ADME) Properties of Mitragynine, 7-Hydroxymitragynine, and Mitraphylline. Planta Med. 2014, 80, 568–576. [Google Scholar] [CrossRef]
- García Giménez, D.; García Prado, E.; Sáenz Rodríguez, T.; Fernández Arche, A.; De la Puerta, R. Cytotoxic effect of the pentacyclic oxindole alkaloid mitraphylline isolated from Uncaria tomentosa bark on human Ewing’s sarcoma and breast cancer cell lines. Planta Med. 2010, 76, 133–136. [Google Scholar] [CrossRef]
- Chaudhary, A.; Singh, K.; Verma, N.; Kumar, S.; Kumar, D.; Sharma, P.P. Chromenes—A Novel Class of Heterocyclic Compounds: Recent Advancements and Future Directions. Mini Rev. Med. Chem. 2022, 22, 2736–2751. [Google Scholar] [CrossRef]
- Costa, M.; Dias, T.A.; Brito, A.; Proença, F. Biological importance of structurally diversified chromenes. Eur. J. Med. Chem. 2016, 123, 487–507. [Google Scholar] [CrossRef]
- Abd El-Hameed, R.H.; Mohamed, M.S.; Awad, S.M.; Hassan, B.B.; Khodair, M.A.E.-F.; Mansour, Y.E. Novel benzo chromene derivatives: Design, synthesis, molecular docking, cell cycle arrest, and apoptosis induction in human acute myeloid leukemia HL-60 cells. J. Enzym. Inhib. Med. Chem. 2023, 38, 405–422. [Google Scholar] [CrossRef]
- Afifi, T.H.; Riyadh, S.M.; Deawaly, A.A.; Naqvi, A. Novel chromenes and benzochromenes bearing arylazo moiety: Molecular docking, in-silico admet, in-vitro antimicrobial and anticancer screening. Med. Chem. Res. 2019, 28, 1471–1487. [Google Scholar] [CrossRef]
- Lorza, A.M.A.; Ravi, H.; Philip, R.C.; Galons, J.P.; Trouard, T.P.; Parra, N.A.; Von Hoff, D.D.; Read, W.L.; Tibes, R.; Korn, R.L.; et al. Dose-response assessment by quantitative MRI in a phase 1 clinical study of the anti-cancer vascular disrupting agent crolibulin. Sci. Rep. 2020, 10, 14449. [Google Scholar] [CrossRef]
- Kulshrestha, A.; Katara, G.K.; Ibrahim, S.A.; Patil, R.; Patil, S.A.; Beaman, K.D. Microtubule inhibitor, SP-6-27 inhibits angiogenesis and induces apoptosis in ovarian cancer cells. Oncotarget 2017, 8, 67017–67028. [Google Scholar] [CrossRef] [Green Version]
- Malik, M.S.; Alsantali, R.A.; Alzahrani, A.Y.A.; Jamal, Q.M.S.; Hussein, E.M.; Alfaidi, K.A.; Al-Rooqi, M.M.; Obaid, R.J.; Alsharif, M.A.; Adil, S.F.; et al. Multicomponent synthesis, cytotoxicity, and computational studies of novel imidazopyridazine-based N-phenylbenzamides. J. Saudi Chem. Soc. 2022, 26, 101449. [Google Scholar] [CrossRef]
- Malik, M.S.; Alsantali, R.I.; Alsharif, M.A.; Aljayzani, S.I.; Morad, M.; Jassas, R.S.; Al-Rooqi, M.M.; Alsimaree, A.A.; Altass, H.M.; Asghar, B.H.; et al. Ionic liquid mediated four-component synthesis of novel phthalazinone based indole-pyran hybrids as cytotoxic agents. Arab. J. Chem. 2022, 15, 103560. [Google Scholar] [CrossRef]
- Ilan, Y. Microtubules: From understanding their dynamics to using them as potential therapeutic targets. J. Cell Physiol. 2019, 234, 7923–7937. [Google Scholar] [CrossRef] [Green Version]
- Seddigi, Z.S.; Malik, M.S.; Saraswati, A.P.; Ahmed, S.A.; Babalghith, A.O.; Lamfon, H.A.; Kamal, A. Recent advances in combretastatin based derivatives and prodrugs as antimitotic agents. MedChemComm 2017, 8, 1592–1603. [Google Scholar] [CrossRef]
- Cheng, F.; Li, W.; Liu, G.; Tang, Y. In Silico ADMET Prediction: Recent Advances, Current Challenges and Future Trends. Curr. Top. Med. Chem. 2013, 13, 1273–1289. [Google Scholar] [CrossRef]
- Beck, T.C.; Beck, K.R.; Morningstar, J.; Benjamin, M.M.; Norris, R.A. Descriptors of Cytochrome Inhibitors and Useful Machine Learning Based Methods for the Design of Safer Drugs. Pharmaceuticals 2021, 14, 472. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701–1718. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [Green Version]
Entry | Solvent | Temperature (°C) | Catalyst (0.3 eq) | Time (min) | Yield (%) |
---|---|---|---|---|---|
1 | Ethanol | 60–65 | pyridine | 120 | 65 |
2 | Methanol | 60–65 | pyridine | 120 | 70 |
3 | Acetonitrile | 60–65 | pyridine | 240 | 72 |
4 | DMF | 60–65 | pyridine | 180 | 68 |
5 | Ethanol | 60–65 | DBU | 60 | 85 |
6 | Methanol | 60–65 | DBU | 100 | 80 |
7 | Acetonitrile | 60–65 | DBU | 120 | 75 |
8 | DMF | 60–65 | DBU | 120 | 75 |
9 | Ethanol | 70–75 | DBU | 55 | 83 |
10 | Ethanol | 50–55 | DBU | 180 | 85 |
Entry | Solvent | Temperature in °C | Amount of DBU | Time (min) | Yield (%) |
---|---|---|---|---|---|
1 | Ethanol | 60–65 | 0.1 eq | 240 | 85 |
2 | Ethanol | 60–65 | 0.3 eq | 60 | 85 |
3 | Ethanol | 60–65 | 0.5 eq | 50 | 80 |
Compound | IC50 Values | ||
---|---|---|---|
A549 | PC-3 | MCF-7 | |
4a | 19.6 ± 0.11 | 18.6 ± 0.19 | 19.2 ± 0.23 |
4b | 22.3 ± 0.18 | 21.4 ± 0.25 | 20.9 ± 0.31 |
4c | 8.1 ± 0.25 | 9.1 ± 0.39 | 8.4 ± 0.17 |
4d | 7.9 ± 0.16 | 8.9 ± 0.22 | 8.6 ± 0.22 |
4e | na | na | 58.9 ± 0.48 |
4f | na | na | 62.8 ± 0.34 |
4g | 10.5 ± 0.17 | 11.2 ± 0.28 | 12.6 ± 0.32 |
4h | 11.9 ± 0.29 | 12.7 ± 0.33 | 12.1 ± 0.26 |
4i | 25.3 ± 0.25 | 29.8 ± 0.34 | 26.1 ± 0.19 |
4j | 30.2 ± 0.22 | 31.5 ± 0.27 | 29.4 ± 0.21 |
Dox | 0.8 ± 0.06 | 0.6 ± 0.04 | 0.7± 0.08 |
Compd | Binding Affinity (Kcal/mol) | Hydrogen Bond | Hydrogen Bond Length (Angstrom) | Van der Waals Interaction | Other Interactions |
---|---|---|---|---|---|
4c | −6.4 | A:ASN18:HD22-:UNL1:N2 | 2.64 | ASN228,VAL74,VAL78,GLY81,THR82,TYR83 | Pi-Alkyl = ALA19 Halogen = THR225 |
A:ARG229:HH11-:UNL1:F1 | 2.47 | ||||
:UNL1:H15-A:GLU77:O | 1.93 | ||||
:UNL1:C18-A:GLN15:OE1 | 3.42 | ||||
A:THR225:HG1-:UNL1 | 3.18 | ||||
4d | −6.1 | A:ASN228:HD21-:UNL1:N2 | 2.36 | GLY81,ALA19,ARG229,THR225,TYR224 | Halogen GLU77,ASN18 |
:UNL1:H15-A:GLN15:OE1 | 2.36 | ||||
A:VAL78:CA–:UNL1:F1 | 3.20 | ||||
Control | −5.6 | :UNL1:H12–A:GLU22:OE1 | 2.71 | VAL74,VAL78,ASN18,TYR83,ARG229,ASN228 | Pi-Alkyl = ALA19Pi-Anion = TYR224 |
:UNL1:H13–A:GLU22:OE1 | 2.56 | ||||
:UNL1:C1–A:GLN15:OE1 | 3.68 | ||||
:UNL1:C8–A:THR225:OG1 | 3.54 |
Compd | Inhibition of Cytochrome Enzymes | TPSA Value | Log Kp (cm/s) | Follow Drug-likeness Filter | ||||
---|---|---|---|---|---|---|---|---|
CYP 1A2 | CYP 2C19 | CYP 2C9 | CYP 2D6 | CYP 3A4 | ||||
4a | Y | Y | Y | N | Y | 81.4 | −6.33 | 5 |
4b | Y | Y | Y | N | Y | 81.4 | −6.2 | 5 |
4c | Y | Y | Y | N | Y | 81.4 | −6.37 | 5 |
4d | N | Y | Y | N | Y | 81.4 | −6.24 | 5 |
4e | N | Y | Y | N | Y | 126.86 | −6.73 | 5 |
4f | N | Y | Y | N | Y | 126.86 | −6.6 | 5 |
4g | N | Y | Y | N | Y | 90.27 | −6.54 | 5 |
4h | N | Y | Y | N | Y | 90.27 | −6.41 | 5 |
4i | Y | Y | Y | N | Y | 81.08 | −6.32 | 5 |
4j | N | Y | Y | N | Y | 81.04 | −6.2 | 5 |
Control | Y | Y | Y | Y | Y | 129.54 | −7.02 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malik, M.S.; Ather, H.; Asif Ansari, S.M.; Siddiqua, A.; Jamal, Q.M.S.; Alharbi, A.H.; Al-Rooqi, M.M.; Jassas, R.S.; Hussein, E.M.; Moussa, Z.; et al. Novel Indole-Tethered Chromene Derivatives: Synthesis, Cytotoxic Properties, and Key Computational Insights. Pharmaceuticals 2023, 16, 333. https://doi.org/10.3390/ph16030333
Malik MS, Ather H, Asif Ansari SM, Siddiqua A, Jamal QMS, Alharbi AH, Al-Rooqi MM, Jassas RS, Hussein EM, Moussa Z, et al. Novel Indole-Tethered Chromene Derivatives: Synthesis, Cytotoxic Properties, and Key Computational Insights. Pharmaceuticals. 2023; 16(3):333. https://doi.org/10.3390/ph16030333
Chicago/Turabian StyleMalik, M. Shaheer, Hissana Ather, Shaik Mohammad Asif Ansari, Ayesha Siddiqua, Qazi Mohammad Sajid Jamal, Ali H. Alharbi, Munirah M. Al-Rooqi, Rabab S. Jassas, Essam M. Hussein, Ziad Moussa, and et al. 2023. "Novel Indole-Tethered Chromene Derivatives: Synthesis, Cytotoxic Properties, and Key Computational Insights" Pharmaceuticals 16, no. 3: 333. https://doi.org/10.3390/ph16030333
APA StyleMalik, M. S., Ather, H., Asif Ansari, S. M., Siddiqua, A., Jamal, Q. M. S., Alharbi, A. H., Al-Rooqi, M. M., Jassas, R. S., Hussein, E. M., Moussa, Z., Obaid, R. J., & Ahmed, S. A. (2023). Novel Indole-Tethered Chromene Derivatives: Synthesis, Cytotoxic Properties, and Key Computational Insights. Pharmaceuticals, 16(3), 333. https://doi.org/10.3390/ph16030333