In Vitro Antiviral Effect and Potential Neuroprotection of Salvadora persica L. Stem Bark Extract against Lipopolysaccharides-Induced Neuroinflammation in Mice: LC-ESI-MS/MS Analysis of the Methanol Extract
Abstract
:1. Introduction
2. Results
2.1. Recognition of the Chemical Profile of Salvadora persica Extract by LC-ESI-MS/MS Analysis
2.2. Antiviral Activity
2.2.1. Cytotoxicity of SPE on the Vero-E6 Cells
2.2.2. Antiviral Activity of SPE
2.3. In Vivo Study
2.3.1. Effect on the AChE Activity
2.3.2. Effect of SPE on the LPS-Induced Oxidative Stress Markers
2.3.3. Effect of SPE on the Relative Gene Expression of IL-6, TNF-α, and iNOS
2.3.4. Effect of SPE on the Proapoptotic Gene Expression
2.3.5. Histopathological Data
3. Discussion
4. Materials and Methods
4.1. Chemicals and Media
4.2. Plant Collection and Preparation of Extract
4.3. LC-ESI-MS/MS Analysis of SPE
4.4. In Vitro Antiviral Potential
4.4.1. Viruses and Cell Lines
4.4.2. MTT Cytotoxicity Assay
4.4.3. Plaque Assay
4.5. In Vivo Protective Effect against LPS-Induced Neuroinflammation in Mice
4.5.1. Animals
4.5.2. Experimental Groups
4.5.3. Biochemical Assessment
4.5.3.1. Evaluation of Acetylcholinesterase (AChE) Activity
4.5.3.2. Estimation of Malondialdehyde (MDA) Level
4.5.3.3. Estimation of Superoxide Dismutase (SOD) Level
4.5.3.4. Estimation of Catalase (CAT) Level
4.5.3.5. Determination of Caspase-3, Interleukin-6 (IL-6), Tumor Necrosis Factor-Alpha (TNF-α), Inducible Nitric Oxide Synthase (iNOS), and c-Jun Genes Expression by Quantitative Real-Time PCR (qRT-PCR)
4.6. Histopathological Analysis
4.7. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mukhara, D.; Oh, U.; Neigh, G.N. Neuroinflammation. Handb. Clin. Neurol. 2020, 175, 235–259. [Google Scholar] [PubMed]
- Hopper, A.T.; Campbell, B.M.; Kao, H.; Pintchovski, S.A.; Staal, R.G. Recent developments in targeting neuroinflammation in disease. Annu. Rep. Med. Chem. 2012, 47, 37–53. [Google Scholar]
- Sarker, S.D.; Nahar, L. Medicinal Natural Products: A Disease-Focused Approach; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Khatak, M.; Khatak, S.; Siddqui, A.; Vasudeva, N.; Aggarwal, A.; Aggarwal, P. Salvadora persica. Pharmacogn. Rev. 2010, 4, 209–214. [Google Scholar] [CrossRef]
- Khan, A.L.; Asaf, S.; Lubna; Al-Rawahi, A.; Al-Harrasi, A. Decoding first complete chloroplast genome of toothbrush tree (Salvadora persica L.): Insight into genome evolution, sequence divergence and phylogenetic relationship within Brassicales. BMC Genom. 2021, 22, 312. [Google Scholar] [CrossRef] [PubMed]
- Mansour, H.; Alsamadany, H.; Al-Hasawi, Z.M. Genetic diversity and genetic structure of Salvadora persica L., rare plant species in Rabigh province, Saudi Arabia: Implications for conservation. J. Taibah Univ. Sci. 2020, 14, 881–888. [Google Scholar] [CrossRef]
- Mekhemar, M.; Geib, M.; Kumar, M.; Hassan, Y.; Dörfer, C. Salvadora persica: Nature’s gift for periodontal health. Antioxidants 2021, 10, 712. [Google Scholar] [CrossRef]
- Alali, F.; Hudaib, M.; Aburjai, T.; Khairallah, K.; Al-Hadidi, N. GC-MS Analysis and Antimicrobial Activity of the Essential Oil from the Stem of the Jordanian Toothbrush Tree Salvadora persica. Pharm. Biol. 2005, 42, 577–580. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.; Sharma, P.K. Traditional use, phytochemicals and pharmacological activity of Salvadora persica: A Review. Curr. Nutr. Food Sci. 2021, 17, 302–309. [Google Scholar] [CrossRef]
- Owis, A.I.; El-Hawary, M.S.; El Amir, D.; Refaat, H.; Alaaeldin, E.; Aly, O.M.; Elrehany, M.A.; Kamel, M.S. Flavonoids of Salvadora persica L.(meswak) and its liposomal formulation as a potential inhibitor of SARS-CoV-2. RSC Adv. 2021, 11, 13537–13544. [Google Scholar] [CrossRef]
- Ibrahim, I.I.; Moussa, A.A.; Chen, Z.; Zhang, J.; Cao, W.G.; Yu, C. Bioactive phenolic components and antioxidant activities of water-based extracts and flavonoid-rich fractions from Salvadora persica L. leaves. Nat. Prod. Res. 2022, 36, 2591–2594. [Google Scholar] [CrossRef]
- Farag, M.; Abdel-Mageed, W.M.; Basudan, O.; El-Gamal, A. Persicaline, a new antioxidant sulphur-containing imidazoline alkaloid from Salvadora persica roots. Molecules 2018, 23, 483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohtani, K.; Kasai, R.; Yamasaki, K.; Tanaka, O.; Kamel, M.; Assaf, M.; El-Shanawani, M.; Ali, A. Lignan glycosides from stems of Salvadora persica. Phytochemistry 1992, 31, 2469–2471. [Google Scholar] [CrossRef]
- Sofrata, A.; Santangelo, E.M.; Azeem, M.; Borg-Karlson, A.K.; Gustafsson, A.; Pütsep, K. Benzyl isothiocyanate, a major component from the roots of Salvadora persica is highly active against Gram-negative bacteria. PLoS ONE 2011, 6, e23045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haque, M.M.; Alsareii, S.A. A review of the therapeutic effects of using miswak (Salvadora persica) on oral health. Saudi Med. Med. J. 2015, 36, 530. [Google Scholar] [CrossRef]
- Feng, S.T.; Wang, Z.Z.; Yuan, Y.H.; Sun, H.M.; Chen, N.H.; Zhang, Y. Mangiferin: A multipotent natural product preventing neurodegeneration in Alzheimer’s and Parkinson’s disease models. Pharmacol. Res. 2019, 146, 104336. [Google Scholar] [CrossRef]
- Wu, X.; Yan, Y.; Zhang, Q. Neuroinflammation and Modulation Role of Natural Products after Spinal Cord Injury. J. Inflamm. Res. 2021, 14, 5713–5737. [Google Scholar] [CrossRef] [PubMed]
- Bello-Morales, R.; Andreu, S.; López-Guerrero, J.A. The role of herpes simplex virus type 1 infection in demyelination of the central nervous system. Int. J. Mol. Sci. 2020, 21, 5026. [Google Scholar] [CrossRef] [PubMed]
- Verzosa, A.L.; McGeever, L.A.; Bhark, S.-J.; Delgado, T.; Salazar, N.; Sanchez, E.L. Herpes simplex virus 1 infection of neuronal and non-neuronal cells elicits specific innate immune responses and immune evasion mechanisms. Front. Immunol. 2021, 12, 644664. [Google Scholar] [CrossRef]
- Álvarez, D.M.; Castillo, E.; Duarte, L.F.; Arriagada, J.; Corrales, N.; Farías, M.A.; Henríquez, A.; Agurto-Muñoz, C.; González, P.A. Current antivirals and novel botanical molecules interfering with herpes simplex virus infection. Front. Microbiol. 2020, 11, 139. [Google Scholar] [CrossRef]
- Dong, H.; Wang, Z.; Zhao, D.; Leng, X.; Zhao, Y. Antiviral strategies targeting herpesviruses. J. Virus Virus Erad. 2021, 7, 100047. [Google Scholar] [CrossRef]
- Pohl, F.; Kong Thoo Lin, P. The potential use of plant natural products and plant extracts with antioxidant properties for the prevention/treatment of neurodegenerative diseases: In vitro, in vivo and clinical trials. Molecules 2018, 23, 3283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binsuwaidan, R.; Sultan, A.A.; Negm, W.A.; Attallah, N.G.; Alqahtani, M.J.; Hussein, I.A.; Shaldam, M.A.; El-Sherbeni, S.A.; Elekhnawy, E. Bilosomes as nanoplatform for oral delivery and modulated in vivo antimicrobial activity of lycopene. Pharmaceuticals 2022, 15, 1043. [Google Scholar] [CrossRef] [PubMed]
- Habib, C.N.; Mohamed, M.R.; Tadros, M.G.; Tolba, M.F.; Menze, E.T.; Masoud, S.I. The potential neuroprotective effect of diosmin in rotenone-induced model of Parkinson’s disease in rats. Eur. J. Pharmacol. 2022, 914, 174573. [Google Scholar] [CrossRef]
- Brinza, I.; Abd-Alkhalek, A.M.; El-Raey, M.A.; Boiangiu, R.S.; Eldahshan, O.A.; Hritcu, L. Ameliorative effects of rhoifolin in scopolamine-induced amnesic zebrafish (Danio rerio) model. Antioxidants 2020, 9, 580. [Google Scholar] [CrossRef] [PubMed]
- Halkier, B.A.; Gershenzon, J. Biology and biochemistry of glucosinolates. Annu. Rev. Plant Biol. 2006, 57, 303–333. [Google Scholar] [CrossRef] [Green Version]
- Verkerk, R.; Schreiner, M.; Krumbein, A.; Ciska, E.; Holst, B.; Rowland, I.; De Schrijver, R.; Hansen, M.; Gerhäuser, C.; Mithen, R. Glucosinolates in Brassica vegetables: The influence of the food supply chain on intake, bioavailability and human health. Mol. Nutr. Food Res. 2009, 53, S219. [Google Scholar] [CrossRef]
- Angeloni, C.; Hrelia, S.; Malaguti, M. Neuroprotective effects of Glucosinolates. In Glucosinolates; Springer: Berlin/Heidelberg, Germany, 2017; pp. 275–299. [Google Scholar]
- Mohamad, K.A.; El-Naga, R.N.; Wahdan, S.A. Neuroprotective effects of indole-3-carbinol on the rotenone rat model of Parkinson’s disease: Impact of the SIRT1-AMPK signaling pathway. Toxicol. Appl. Pharmacol. 2022, 435, 115853. [Google Scholar] [CrossRef]
- Ayaz, M.; Sadiq, A.; Junaid, M.; Ullah, F.; Ovais, M.; Ullah, I.; Ahmed, J.; Shahid, M. Flavonoids as prospective neuroprotectants and their therapeutic propensity in aging associated neurological disorders. Front. Aging Neurosci. 2019, 11, 155. [Google Scholar] [CrossRef] [Green Version]
- Slyshenkov, V.S.; Shevalye, A.A.; Moiseenok, A.G. Pantothenate prevents disturbances in the synaptosomal glutathione system and functional state of synaptosomal membrane under oxidative stress conditions. Neurochem. J. 2007, 1, 235–239. [Google Scholar] [CrossRef]
- Ghosh, I.; Sankhe, R.; Mudgal, J.; Arora, D.; Nampoothiri, M. Spermidine, an autophagy inducer, as a therapeutic strategy in neurological disorders. Neuropeptides 2020, 83, 102083. [Google Scholar] [CrossRef]
- Ács, N.; Gambino, M.; Brøndsted, L. Bacteriophage enumeration and detection methods. Front. Microbiol. 2020, 11, 2662. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, E.J.; Manguiat, K.; Wood, H.; Drebot, M. Two detailed plaque assay protocols for the quantification of infectious SARS-CoV-2. Curr. Protoc. Microbiol. 2020, 57, cpmc105. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J.L. Alzheimer’s disease. N. Engl. J. Med. 2004, 351, 56–67. [Google Scholar] [CrossRef]
- Qin, L.; Wu, X.; Block, M.L.; Liu, Y.; Breese, G.R.; Hong, J.S.; Knapp, D.J.; Crews, F.T. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 2007, 55, 453–462. [Google Scholar] [CrossRef] [Green Version]
- Alotaibi, B.; Mokhtar, F.A.; El-Masry, T.A.; Elekhnawy, E.; Mostafa, S.A.; Abdelkader, D.H.; Elharty, M.E.; Saleh, A.; Negm, W.A. Antimicrobial activity of Brassica rapa L. flowers extract on gastrointestinal tract infections and antiulcer potential against indomethacin-induced gastric ulcer in rats supported by metabolomics profiling. J. Inflamm. Res. 2021, 14, 7411. [Google Scholar] [CrossRef]
- Alexandris, A.; Walker, L.; Liu, A.; McAleese, K.; Johnson, M.; Pearce, R.; Gentleman, S.; Attems, J. Cholinergic deficits and galaninergic hyperinnervation of the nucleus basalis of Meynert in Alzheimer’s disease and Lewy body disorders. Neuropathol. Appl. Neurobiol. 2020, 46, 264–278. [Google Scholar] [CrossRef]
- Eldufani, J.; Blaise, G. The role of acetylcholinesterase inhibitors such as neostigmine and rivastigmine on chronic pain and cognitive function in aging: A review of recent clinical applications. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2019, 5, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Saify, Z.S.; Sultana, N. Role of acetylcholinesterase inhibitors and Alzheimer Disease. In Drug Design and Discovery in Alzheimer’s Disease; Elsevier: Amsterdam, The Netherlands, 2014; pp. 387–425. [Google Scholar]
- Tyagi, E.; Agrawal, R.; Nath, C.; Shukla, R. Influence of LPS-induced neuroinflammation on acetylcholinesterase activity in rat brain. J. Neuroimmunol. 2008, 205, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, E.; Agrawal, R.; Nath, C.; Shukla, R. Effect of melatonin on neuroinflammation and acetylcholinesterase activity induced by LPS in rat brain. Eur. J. Pharmacol. 2010, 640, 206–210. [Google Scholar] [CrossRef]
- Bargi, R.; Asgharzadeh, F.; Beheshti, F.; Hosseini, M.; Sadeghnia, H.R.; Khazaei, M. The effects of thymoquinone on hippocampal cytokine level, brain oxidative stress status and memory deficits induced by lipopolysaccharide in rats. Cytokine 2017, 96, 173–184. [Google Scholar] [CrossRef]
- Ton AM, M.; Campagnaro, B.P.; Alves, G.A.; Aires, R.; Côco, L.Z.; Arpini, C.M.; Guerra e Oliveira, T.; Campos-Toimil, M.; Meyrelles, S.S.; Pereira TM, C. Oxidative stress and dementia in Alzheimer’s patients: Effects of synbiotic supplementation. Oxidative Med. Cell. Longev. 2020, 2020, 2638703. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Shen, Q.; Lai, Y.; Park, S.Y.; Ou, X.; Lin, D.; Jin, M.; Zhang, W. Anti-inflammatory effects of curcumin in microglial cells. Front. Pharmacol. 2018, 9, 386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, P.; Wang, T.; Li, W.; Muhammad, I.; Wang, H.; Sun, X.; Yang, Y.; Li, J.; Xiao, T.; Zhang, X. Baicalin alleviates lipopolysaccharide-induced liver inflammation in chicken by suppressing TLR4-mediated NF-κB pathway. Front. Pharmacol. 2017, 8, 547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhat, A.H.; Dar, K.B.; Anees, S.; Zargar, M.A.; Masood, A.; Sofi, M.A.; Ganie, S.A. Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomed. Pharmacother. 2015, 74, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-Y.; Cao, J.-B.; Zhang, L.-M.; Li, Y.-F.; Mi, W.-D. Deferoxamine attenuates lipopolysaccharide-induced neuroinflammation and memory impairment in mice. J. Neuroinflamm. 2015, 12, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Dabbagh, B.; Elhaty, I.A.; Murali, C.; Al Madhoon, A.; Amin, A. Salvadora persica (Miswak): Antioxidant and promising antiangiogenic insights. Am. J. Plant Sci. 2018, 9, 1228. [Google Scholar] [CrossRef] [Green Version]
- Beurel, E.; Jope, R.S. Lipopolysaccharide-induced interleukin-6 production is controlled by glycogen synthase kinase-3 and STAT3 in the brain. J. Neuroinflamm. 2009, 6, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Yu, K.; Ma, Y.; Li, X.; Wu, X.; Liu, W.; Li, X.; Shen, J.; Wang, H. Lipopolysaccharide increases IL-6 secretion via activation of the ERK1/2 signaling pathway to up-regulate RANKL gene expression in MLO-Y4 cells. Cell Biol. Int. 2017, 41, 84–92. [Google Scholar] [CrossRef]
- Chu, X.; Zhou, S.; Sun, R.; Wang, L.; Xing, C.; Liang, R.; Kong, Q. Chrysophanol relieves cognition deficits and neuronal loss through inhibition of inflammation in diabetic mice. Neurochem. Res. 2018, 43, 972–983. [Google Scholar] [CrossRef]
- MacPherson, K.P.; Sompol, P.; Kannarkat, G.T.; Chang, J.; Sniffen, L.; Wildner, M.E.; Norris, C.M.; Tansey, M.G. Peripheral administration of the soluble TNF inhibitor XPro1595 modifies brain immune cell profiles, decreases beta-amyloid plaque load, and rescues impaired long-term potentiation in 5xFAD mice. Neurobiol. Dis. 2017, 102, 81–95. [Google Scholar] [CrossRef] [Green Version]
- Means, J.C.; Gerdes, B.C.; Kaja, S.; Sumien, N.; Payne, A.J.; Stark, D.A.; Borden, P.K.; Price, J.L.; Koulen, P. Caspase-3-dependent proteolytic cleavage of tau causes neurofibrillary tangles and results in cognitive impairment during normal aging. Neurochem. Res. 2016, 41, 2278–2288. [Google Scholar] [CrossRef] [Green Version]
- Thakur, A.; Wang, X.; Siedlak, S.L.; Perry, G.; Smith, M.A.; Zhu, X. c-Jun phosphorylation in Alzheimer disease. J. Neurosci. Res. 2007, 85, 1668–1673. [Google Scholar] [CrossRef] [PubMed]
- Waetzig, V.; Czeloth, K.; Hidding, U.; Mielke, K.; Kanzow, M.; Brecht, S.; Goetz, M.; Lucius, R.; Herdegen, T.; Hanisch, U.K. c-Jun N-terminal kinases (JNKs) mediate pro-inflammatory actions of microglia. Glia 2005, 50, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Attallah NG, M.; Negm, W.A.; Elekhnawy, E.; Elmongy, E.I.; Altwaijry, N.; El-Haroun, H.; El-Masry, T.A.; El-Sherbeni, S.A. Elucidation of Phytochemical Content of Cupressus macrocarpa Leaves: In Vitro and In Vivo Antibacterial Effect against Methicillin-Resistant Staphylococcus aureus Clinical Isolates. Antibiotics 2021, 10, 890. [Google Scholar] [CrossRef] [PubMed]
- Tsugawa, H.; Cajka, T.; Kind, T.; Ma, Y.; Higgins, B.; Ikeda, K.; Kanazawa, M.; VanderGheynst, J.; Fiehn, O.; Arita, M. MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods 2015, 12, 523–526. [Google Scholar] [CrossRef]
- Attallah, N.G.; El-Kadem, A.H.; Negm, W.A.; Elekhnawy, E.; El-Masry, T.A.; Elmongy, E.I.; Altwaijry, N.; Alanazi, A.S.; Al-Hamoud, G.A.; Ragab, A.E. Promising Antiviral Activity of Agrimonia pilosa Phytochemicals against Severe Acute Respiratory Syndrome Coronavirus 2 Supported with In Vivo Mice Study. Pharmaceuticals 2021, 14, 1313. [Google Scholar] [CrossRef]
- Alotaibi, B.; Negm, W.A.; Elekhnawy, E.; El-Masry, T.A.; Elseady, W.S.; Saleh, A.; Alotaibi, K.N.; El-Sherbeni, S.A. Antibacterial, Immunomodulatory, and Lung Protective Effects of Boswelliadalzielii Oleoresin Ethanol Extract in Pulmonary Diseases: In Vitro and In Vivo Studies. Antibiotics 2021, 10, 1444. [Google Scholar] [CrossRef]
- Alotaibi, B.; Negm, W.A.; Elekhnawy, E.; El-Masry, T.A.; Elharty, M.E.; Saleh, A.; Abdelkader, D.H.; Mokhtar, F.A. Antibacterial activity of nano zinc oxide green-synthesised from Gardenia thailandica triveng. Leaves against Pseudomonas aeruginosa clinical isolates: In vitro and in vivo study. Artif. Cells Nanomed. Biotechnol. 2022, 50, 96–106. [Google Scholar] [CrossRef]
- Jin, Y.; Peng, J.; Wang, X.; Zhang, D.; Wang, T. Ameliorative effect of ginsenoside Rg1 on lipopolysaccharide-induced cognitive impairment: Role of cholinergic system. Neurochem. Res. 2017, 42, 1299–1307. [Google Scholar] [CrossRef]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef]
- Nandi, A.; Chatterjee, I. Assay of superoxide dismutase activity in animal tissues. J. Biosci. 1988, 13, 305–315. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in vitro. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1984; Volume 105, pp. 121–126. [Google Scholar]
- Freeman, W.M.; Walker, S.J.; Vrana, K.E. Quantitative RT-PCR: Pitfalls and potential. Biotechniques 1999, 26, 112–125. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Negm, W.A.; El-Kadem, A.H.; Elekhnawy, E.; Attallah, N.G.; Al-Hamoud, G.A.; El-Masry, T.A.; Zayed, A. Wound-healing potential of rhoifolin-rich fraction isolated from Sanguisorba officinalis roots supported by enhancing re-epithelization, angiogenesis, anti-inflammatory, and antimicrobial effects. Pharmaceuticals 2022, 15, 178. [Google Scholar] [CrossRef] [PubMed]
# | RT (min) | Precursor m/z | Error ppm | Compound Name | Formula | Adduction Name | MS/MS | Ontology |
---|---|---|---|---|---|---|---|---|
1 | 1.1 | 131.129 | 0 | Agmatine | C5H14N4 | [M + H]+ | 60.0550, 72.0801, 114.0965 | Guanidines |
2 | 1.12 | 146.165 | 0.3 | Spermidine | C7H19N3 | [M + H]+ | 72.0794, 84.08425, 112.1084, 129.1375 | Dialkylamines |
3 | 1.15 | 133.014 | −0.6 | Malic acid | C4H6O5 | [M − H]− | 71.0144, 72.9925, 89.0248, 115.0042 | Beta hydroxy acids derivatives |
4 | 1.17 | 173.045 | −0.8 | Shikimic acid | C7H10O5 | [M − H]− | 73.0265, 93.0345, 111.0066, 138.9140, 154.9062 | Shikimic acids derivatves |
5 | 1.23 | 104.107 | 1.2 | Choline | C5H14NO | [M]+ | 58.0660, 60.0816 | Cholines |
6 | 1.64 | 124.039 | 0.3 | Nicotinic acid | C6H5NO2 | [M + H]+ | 78.0352, 80.05060, 107.0404 | Pyridine carboxylic acids |
7 | 1.65 | 86.096 | −0.3 | Piperidine | C5H11N | [M + H]+ | 69.0710, 86.0969 | Piperidines |
8 | 2.06 | 408.042 | 0.7 | Benzyl glucosinolate | C14H19NO9S2 | [M − H]− | 74.9906, 95.9517, 166.0331, 241.0030, 259.0139, 274.9913 | Alkylglucosinolates |
9 | 2.33 | 220.118 | −0.6 | Pantothenate | C9H17NO5 | [M + H]+ | 90.0526, 202.1076 | Secondary alcohols |
10 | 2.75 | 167.035 | −0.7 | Homogenentisic acid | C8H8O4 | [M − H]− | 108.0210, 109.0304, 122.0345, 123.0485 | 2(hydroxyphenyl) acetic acids |
11 | 2.93 | 137.024 | −1.8 | P-hydroxybenzoic acid | C7H6O3 | [M − H]− | 65.0400, 75.0232, 93.0337 | Hydroxybenzoic acid derivatives |
12 | 4.38 | 390.175 | −0.3 | Syringin | C17H24O9 | [M + NH4]+ | 105.0682, 133.0636, 161.0610, 193.0851, 211.0949 | Phenolic glycosides |
13 | 4.69 | 359.077 | −0.3 | Rosmarinic acid | C18H16O8 | [M − H]− | 72.9911, 123.0408, 133.0296, 161.0247, 179.0321, 197.0480 | Coumaric acids derivatives |
14 | 6.26 | 223.061 | 0.1 | Sinapic acid | C11H12O5 | [M − H]− | 93.0322, 121.0278, 149.0237, 177.0510, 193.0141, 205.0518 | Hydroxycinnamic acids |
15 | 6.51 | 593.151 | 0.7 | Kaempferol-7-O-neohesperidoside | C27H30O15 | [M − H]− | 284.0328, 385.0439 | Flavonoid-7-O- glycosides |
16 | 6.54 | 596.173 | −0.1 | cyanidin-3-O- rutinoside | C27H31O15 | [M]+ | 287.0549, 449.1057 | Anthocyanidin-3-O-glycosides |
17 | 6.74 | 301.071 | −0.4 | Hesperetin | C16H14O6 | [M − H]− | 269.0488, 289.0489, 301.0726 | 4′-O-methylated flavonoids |
18 | 6.81 | 181.050 | 0.7 | Syringaldehyde | C9H10O4 | [M − H]− | 67.0180, 123.0072, 151.0023, 166.0266 | Methoxyphenols |
19 | 6.87 | 167.035 | −0.4 | 5-Methoxysalicylic acid | C8H8O4 | [M − H]− | 108.0208, 124.0111, 152.0111 | M-methoxybenzoic acids derivatives |
20 | 7.23 | 579.170 | −0.2 | Rhoifolin | C27H30O14 | [M + H]+ | 271.0579, 433.1155 | Flavonoid-7-O- glycosides |
21 | 7.54 | 609.181 | −0.6 | Diosmin | C28H32O15 | [M + H]+ | 286.0526, 301.0743, 463.1243 | Flavonoid-7-O- glycosides |
22 | 7.63 | 494.141 | −0.2 | Malvidin-3- galactoside | C23H25O12 | [M]+ | 137.0616, 163.0757, 253.0856, 285.1151, 313.1100, 331.1161 | Anthocyanidin-3-O-glycosides |
23 | 7.94 | 174.056 | 0 | 1-methoxyindole-3-carbaldehyde | C10H9NO2 | [M − H]− | 131.0379, 159.0321 | Indoles |
24 | 8.02 | 137.132 | −5 | Sabinene | C10H16 | [M + H]+ | 65.0379, 94.0376, 122.0327 | Bicyclic monoterpenoids |
25 | 8.12 | 144.045 | −1 | 3-Formylindole | C9H7NO | [M − H]− | 114.0339, 115.0422, 116.0502, 126.0343, 142.0292 | Indoles |
26 | 8.29 | 177.055 | −0.9 | Coniferaldehyde | C10H10O3 | [M − H]− | 129.0025, 134.0377, 162.0320 | Methoxyphenols |
27 | 8.61 | 163.040 | −0.8 | 2-Hydroxy cinnamic Acid (2-Coumaric acid) | C9H8O3 | [M − H]− | 76.09749, 92.0297, 93.0360, 120.0197 | Hydroxycinnamic acids |
30 | 9.08 | 593.186 | −0.2 | Acacetin-7-O- rutinoside | C28H32O14 | [M + H]+ | 85.0299, 129.0558, 242.0574, 285.0782, 447.1322 | Flavonoid-7-O- glycosides |
31 | 9.12 | 591.171 | 0.2 | Acacetin-7-O- neohesperidoside | C28H32O14 | [M − H]− | 268.0378, 283.0612 | Flavonoid-7-O- glycosides |
32 | 9.27 | 595.202 | 0.8 | Isosakuranetin-7-O-neohesperidoside | C28H34O14 | [M + H]+ | 85.0306, 129.0552, 153.0207, 195.0301, 263.0574, 287.0930, 433.1550, 449.1382 | Flavonoid-7-O- glycosides |
33 | 9.28 | 287.091 | 0.7 | Isosakuranetin | C16H14O5 | [M + H]+ | 91.0548, 153.0187, 161.0641 | 4′-O-methylated flavonoids |
34 | 9.78 | 447.128 | 0.1 | Sissotrin | C22H22O10 | [M + H]+ | 149.0152, 242.0657, 270.0481, 285.0748 | Isoflavonoid O-glycosides |
35 | 10.51 | 269.045 | 0.5 | Apigenin | C15H10O5 | [M − H]− | 117.0353, 148.0222, 151.0004, 254.0616 | Flavones |
36 | 14.00 | 285.075 | −0.2 | Acacetin | C16H12O5 | [M + H]+ | 153.0229, 187.0495, 242.0585, 270.0551 | 4′-O-methylated flavonoids |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Binsuwaidan, R.; Negm, W.A.; Elekhnawy, E.; Attallah, N.G.M.; Ahmed, E.; Magdeldin, S.; Moglad, E.; Mostafa, S.A.; El-Sherbeni, S.A. In Vitro Antiviral Effect and Potential Neuroprotection of Salvadora persica L. Stem Bark Extract against Lipopolysaccharides-Induced Neuroinflammation in Mice: LC-ESI-MS/MS Analysis of the Methanol Extract. Pharmaceuticals 2023, 16, 398. https://doi.org/10.3390/ph16030398
Binsuwaidan R, Negm WA, Elekhnawy E, Attallah NGM, Ahmed E, Magdeldin S, Moglad E, Mostafa SA, El-Sherbeni SA. In Vitro Antiviral Effect and Potential Neuroprotection of Salvadora persica L. Stem Bark Extract against Lipopolysaccharides-Induced Neuroinflammation in Mice: LC-ESI-MS/MS Analysis of the Methanol Extract. Pharmaceuticals. 2023; 16(3):398. https://doi.org/10.3390/ph16030398
Chicago/Turabian StyleBinsuwaidan, Reem, Walaa A. Negm, Engy Elekhnawy, Nashwah G. M. Attallah, Eman Ahmed, Sameh Magdeldin, Ehssan Moglad, Sally Abdallah Mostafa, and Suzy A. El-Sherbeni. 2023. "In Vitro Antiviral Effect and Potential Neuroprotection of Salvadora persica L. Stem Bark Extract against Lipopolysaccharides-Induced Neuroinflammation in Mice: LC-ESI-MS/MS Analysis of the Methanol Extract" Pharmaceuticals 16, no. 3: 398. https://doi.org/10.3390/ph16030398
APA StyleBinsuwaidan, R., Negm, W. A., Elekhnawy, E., Attallah, N. G. M., Ahmed, E., Magdeldin, S., Moglad, E., Mostafa, S. A., & El-Sherbeni, S. A. (2023). In Vitro Antiviral Effect and Potential Neuroprotection of Salvadora persica L. Stem Bark Extract against Lipopolysaccharides-Induced Neuroinflammation in Mice: LC-ESI-MS/MS Analysis of the Methanol Extract. Pharmaceuticals, 16(3), 398. https://doi.org/10.3390/ph16030398