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Abstract: Multiple myeloma (MM) is a challenging hematological cancer which typically grows in
bone marrow. MM accounts for 10% of hematological malignancies and 1.8% of cancers. The recent
treatment strategies have significantly improved progression-free survival for MM patients in the
last decade; however, a relapse for most MM patients is inevitable. In this review we discuss current
treatment, important pathways for proliferation, survival, immune suppression, and resistance that
could be targeted for future treatments.
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1. The Pathogenesis of Multiple Myeloma

Multiple myeloma (MM) is a mature B-cell neoplasm that is characterized by un-
controlled growth of plasma cells (PCs) in bone marrow (BM) which leads to excessive
secretion of antibodies. The progression of MM is a multistep process that starts with an
asymptomatic premalignant condition known as monoclonal gammopathy of undeter-
mined significance (MGUS), in which BM produces abnormal PCs and secretes M protein
instead of normal antibodies [1]. With the increase in oncogenic mutations, MGUS evolves
into smoldering MM (SMM), which is characterized by a higher serum level of M protein
and a higher percentage of clonal PCs. About 50% of patients with SMM show a constant
increase of M protein and develop MM [2]. While both MGUS and SMM are asymptomatic,
complications of accumulated proteins may start to affect the kidneys [3]. Almost 20–40%
of MM patients have renal disease by the time of diagnosis [4].

The complexity of MM is attributed to the clinical and biological heterogeneity of
the disease that further genetically evolves during its progression [5]. MM cells have
a wide range of genetic changes including point mutations, insertions, deletions, multi-
ploidy, and chromosomal translocations [6]. For example, trisomic MM and patients with
t(11;14) are considered standard-risk patients. On the other hand, MM patients with t(4;14),
t(14;16), t(14;20), p53 mutation, gain 1q, or del(17p) are considered to be high-risk [7,8].
Moreover, the bone marrow microenvironment (BMM) plays an important role in disease
development, progression, and resistance [9]. All these factors enhance different signaling
pathways that contribute to proliferation, survival, invasion, angiogenesis, and osteoclas-
togenesis [10]. There are many signaling pathways that protect against apoptosis and
support MM growth which become activated through the adhesion of MM to the BMM.
These activated pathways include phosphatidylinositol-3-kinase (PI3K)/protein kinase B
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(AKT)/mammalian target of rapamycin (mTOR), and nuclear factor kappa B (NF-κB), janus
kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3), which support
MM growth and protect against apoptosis (Figure 1). The activation of these pathways
leads to upregulation and secretion of several cytokines and factors from both MM and
BMM cells such as interleukin-6 (IL-6), insulin-like growth factor-1, VEGF, tumor necrosis
factor alpha (TNF-α), and transforming growth factor-β [11,12].
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Figure 1. Major signaling pathways in MM. MM receives several survival and proliferation signals:
JAK2/STAT3 pathway activates antiapoptotic proteins and activates NF-κB, the PI3K/AKT/mTOR
pathways become activated when stromal-derived factor 1 α (SDF-1α) binds to CXCR4 and/or antigen
binds to B-cell receptor (BCR). The RAS/MEK/ERK pathway becomes activated by BCR and CD19.
Wnt/β-catenin pathway activation enhances differentiation, survival, migration, and antiapoptotic
signals. Ras: rat sarcoma; Raf: rapidly accelerated fibrosarcoma; MEK: mitogen-activated protein
kinase kinase. Created by Biorender.com.

The BMM contains several specialized cells that are responsible for skeletal integrity,
immunity, and blood formation [13,14] (Figure 2). Its compartments are classified into
niches: the immune niche, the vascular niche and the endosteal niche [15]. Each niche
contains various cell types such as B-cells, T-cells, myeloid-derived suppressor cells, os-
teoclasts, natural killer (NK) cells, mesenchymal stem cells, BM stromal cells (BMSCs),
osteoblasts, and endothelial progenitor cells [16].

BMSCs are a heterogeneous cell population that supports hematopoiesis in normal
conditions. They play an important role in supporting the survival, proliferation, and
drug resistance of MM [17]. They communicate with MM in several ways. The direct cell
adhesion contact through adhesion molecules such as very late antigen 4 (VLA-4), vascular
cell adhesion protein, lymphocyte function-associated antigen-1, and intercellular adhesion
molecule 1 stimulates IL-6 secretion by BMSCs [18] and mediates drug resistance through
cellular-adhesion-mediated drug resistance (CAM-DR) [19]. Stromal cell-derived factor-1α
(SDF-1α), a chemokine produced by BMSCs, plays an important role in embryogenesis,
angiogenesis, hematopoiesis, and inflammation [20,21]. It stimulates homing and migration
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of cells through G protein-coupled receptor C-X-C chemokine receptor type 4 (CXCR4) [22].
The SDF-1α/CXCR4 axis plays an important role in survival, angiogenesis, metastasis,
invasion, and adhesion in MM (Figure 2) [23]. It has been shown that the SDF-1α level
in MM is elevated and this elevation contributes to activating several signaling pathways
and induces mitogen-activated protein kinase kinase1/2, AKT phosphorylation, mitogen-
activated protein kinase (MAPK), and NF-κB in MM cell lines and patient samples [24,25].
The SDF-1α/CXCR4 axis mediates drug resistance through different pathways that are
involved in CAM-DR, affecting adhesion molecules, enhancing IL-6 mediated drug re-
sistance, and stimulating pathways including MAP/extracellular signal-regulated kinase
(ERK), wingless/integrated3 (Wnt3)/Ras homolog family member A/Ras homologous
-associated protein kinase, and Ras homologous/Ras homologous -kinase [26–30].
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1: lymphocyte function-associated antigen-1; ICAM-1: intercellular adhesion molecule 1; IGF-1:
insulin-like growth factor-1. Created by Biorender.com.

Other cytokines and growth factors secreted from BMSCs suppress the immune
response and facilitate MM immune evasion. One of the most important cytokines in
MM is IL-6, which is secreted by different BM cells including BMSCs, osteoclasts, and
macrophages [31]. IL-6 secretion stimulates the JAK/STAT3 pathway, which leads to
increased survival and proliferation through the upregulation of Mcl-1, Bcl-xL, Bcl-2, c-Myc,
and cyclin D1 [32–35]. As MM progresses, osteoclast activity increases, which in turn
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causes bone lesions. During disease progression, an imbalance occurs in receptor activator
of NF-κB ligand (RANKL), and osteoprotegerin [36].

In autologous hematopoietic progenitor cell (HPC) transplantation, plerixafor, a specific
antagonist of SDF-1α binding to CXCR4, was approved in 2008 to induce hematopoietic stem
cells (HSCs) and progenitor cells (HPCs) trafficking. It has been shown that it augments
granulocyte colony-stimulating factor (G-CSF)-induced mobilization of HSCs and HPCs [37,38].

2. The Existing Therapies for MM

In the 1960s, oral melphalan, an alkylating agent, in combination with prednisone was
considered the frontline treatment for MM [39,40]. Then, FDA-approved thalidomide, an
immunomodulatory agent (IMiDs), was introduced in MM therapy. Thalidomide enhanced
the overall survival (OS) and showed longer progression-free survival (PFS) regardless of
patient age when used in combination with melphalan and prednisolone (clinical trial #
NCT00232934, and ISRCTN90692740) [41,42]. Additionally in the 1980s, autologous stem
cell transplantation (ASCT) followed by a high dose of therapy was introduced and became
the standard of care among younger patients with normal renal function [43,44].

The discovery and the introduction of proteasome inhibitors (PIs) in 2003 has tremen-
dously improved PFS in patients [45]. Bortezomib became the first line of treatment for
MM in newly diagnosed MM (NDMM) patients. For relapsed and refractory MM (RRMM)
patients, it was used in combination with melphalan and prednisone (Table 1) [46]. After the
success of bortezomib, other PIs such as carfilzomib and ixazomib were approved for the
MM treatment. In the TOURMALINE-MM1 trial (NCT01564537), oral ixazomib was tested
in combination with lenalidomide and dexamethasone (IRd) on RRMM patients and it has
significantly improved the PFS (20.6 months in the IRd group vs. 14.7 months in the Rd
group (lenalidomide and dexamethasone) at a median follow-up of 14.7 months). The over-
all response rate (ORR) was 78% in the IRd group and 72% in the Rd group. The median
OS was not reached at a median follow-up of approximately 23 months. The additional
adverse effects between the two groups were limited and there was a similar quality of life
between the IRd and the Rd groups [47].

Table 1. FDA-approved medications for MM from 2006 to 2013.

Drug Year Treatment Adverse Effects Refs.

Thalidomide 2006 NDMM somnolence, constipation, neuropathy, VTE, and rash [48,49]

Lenalidomide 2006 Received one
prior therapy

neutropenia, thrombocytopenia, leukopenia, lymphopenia, febrile neutropenia,
deep vein thrombosis, pulmonary embolism, atrial fibrillation, constipation,

diarrhea, fatigue, pneumonia, hypokalemia, hypocalcemia, muscle weakness,
neuropathy, and depression

[50]

Doxorubicin 2007 RRMM thrombocytopenia, neutropenia, anemia, fatigue, pyrexia, nausea, vomiting,
mucositis/stomatitis diarrhea, and hand foot syndrome [49,51]

Bortezomib 2008 NDMM
asthenic conditions, diarrhea, constipation, PSN, vomiting, nausea psychiatric

disorders, pyrexia, anorexia, thrombocytopenia, leukopenia, neuralgia,
neutropenia, and anemia

[49,52]

Plerixafor 2008 MM diarrhea, vomiting, nausea, fatigue, headache, injection site reactions,
dizziness, and arthralgia [49,53]

Carfilzomib 2012 RRMM fatigue, anemia, nausea, thrombocytopenia, dyspnea, diarrhea, pyrexia,
pneumonia, ARF, pyrexia, and CHF [54]

Pomalidomide 2013 RRMM asthenia, fatigue, neutropenia, anemia, constipation, diarrhea, nausea, URTI,
dyspnea, back pain, and pyrexia [55]

NDMM: newly diagnosed multiple myeloma; RRMM: relapsed/refractory multiple myeloma; NTE: non-
transplant-eligible; TE: transplant eligible; Td: thalidomide, dexamethasone; Rd: lenalidomide, dexametha-
sone; V: bortezomib; PLD-V: pegylated liposomal doxorubicin, bortezomib; MP: melphalan, prednisone;
VMP: bortezomib, melphalan, prednisone; G-CSF: granulocyte-colony-stimulating factor; Plerix-G-CSF: plerix-
afor, granulocyte-colony-stimulating factor; Pd: pomalidomide, dexamethasone; VTE: venous thromboembolism;
PSN: Peripheral sensory neuropathy; ARF: acute renal failure; CHF: congestive heart failure; URTI: Upper
respiratory tract infection.
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The introduction of a new generation of IMiDs such as lenalidomide in 2005, in
combination with PIs, increased survival from 14.8 to 30.9 months [56]. Currently, a triple
therapy (PI, IMiD, and corticosteroids) is the first line of treatment for MM followed
by autologous stem cell transplant (ASCT). Lenalidomide is usually recommended as a
maintenance therapy for MM patients [57]. A combination of bortezomib, lenalidomide,
and dexamethasone (VRd) was tested on NDMM in the SWOG-S077 phase III clinical
trial (NCT00644228) versus Rd. There was a significant improvement in median PFS
(43 months in VRd group vs. 30 months in Rd group) and in median OS (75 months in
VRd vs. 64 months in the control group). The ORR was 82% in the VRd group vs. 72%
in the Rd group [58]. The next generation IMiD, pomalidomide is shown to be effective
and is one of the treatment options that is usually considered in combination after the first
relapse for patients who are refractory to lenalidomide [59]. It was first approved in 2013
in combination with dexamethasone for RRMM patients [60]. Then, it was approved in
combination with anti-CD38 monoclonal antibody and a steroid for RRMM patients who
have previously received two therapies including lenalidomide and bortezomib [60–63].

Introducing daratumumab, an anti-CD38, in clinical trials (MAIA, ALCYONE, CAS-
TOR, and POLLUX) with different combinations improved minimal residual disease neg-
ativity (MRD), and PFS [64] (Table 2). In 2019, daratumumab, lenalidomide, and dex-
amethasone (DRd) treatment was approved in NDMM patients who are ineligible for
transplant after phase III MAIA trial (NCT02252172). In this study, DRd showed significant
improvement in PFS (not reached) compared with lenalidomide and dexamethasone (Rd)
(31.9 months). The median OS was not reached at a median follow-up of 56.2 months.
The common adverse effects of this treatment are neutropenia, pneumonia, anemia, and
lymphopenia. Treatment-related-death was 4% in the DRd group compared to 3% in the
Rd control group [65,66]. In addition, daratumumab was tested in combination with borte-
zomib and melphalan-prednisone (D-VMP) in a phase III ALCYONE trial (NCT02195479)
in NDMM patients. The 18-month PFS was 71.6%. At a median follow-up of 16.5 months,
22.3% of the patients were negative for MRD. The common adverse effects were neutropenia,
thrombocytopenia, and anemia [67]. After the CASSIOPEIA phase III trial (NCT02541383)
on ND transplant-eligible MM patients, daratumumab was approved to be used in combi-
nation with bortezomib, thalidomide, and dexamethasone (D-VTd) in 2019. At a median
follow-up of 35.4 months, PFS was not reached versus 46.7 months with the control group.
The most common adverse effects were lymphopenia, hypertension, and neutropenia [68].

Treatment choices differ according to age, cytogenic abnormalities, and eligibility
for transplantation. Maintenance therapy for standard-risk MM patients is lenalidomide.
However, bortezomib is used as a maintenance therapy for high-risk ND patients who
are determined to be eligible for ASCT. ND high-risk patients who are eligible for ASCT
start with three to four cycles of VRd or three to four cycles of quadruplet regimen of
daratumumab, bortezomib, lenalidomide, and dexamethasone (DVRd) [59].

Table 2. FDA-approved medications for MM from 2014 to 2019.

Drug Year Treatment Adverse Effects Name and NCT
Number Refs.

Panobinostat 2015 RRMM pneumonia, diarrhea, arrhythmias, hypophosphatemia and hypokalemia,
ECG change, thrombocytopenia, neutropenia fatigue, and sepsis

PANORAMA1
NCT01023308 [69]

Carfilzomib 2015 RRMM CVE, VTE, ARF, pulmonary toxicities, hypertension, and
thrombocytopenia

ASPIRE
NCT01080391 [70]

Daratumumab 2015 RRMM fatigue, nausea, back pain, pyrexia, URTI, cough, IRs, lymphopenia,
neutropenia, anemia, and thrombocytopenia

SIRIUS
NCT01985126 [71]

Ixazomib 2015 RRMM diarrhea, constipation, thrombocytopenia, PSN, nausea, peripheral
edema, vomiting, and back pain

TOURMALITOURMALINE
NCT01564537 [47]

Elotuzumab 2015 RRMM ARF, pneumonia, nasopharyngitis pyrexia, anemia, pulmonary
embolism, and PSN

ELOQUENT-2
NCT01239797

[72]
[73]

Daratumumab 2016 RRMM URTI, cough, diarrhea, fatigue, nausea, pyrexia, muscle spasm, and
dyspnea, neutropenia, anemia

POLLUX
NCT02076009 [74]

Daratumumab 2016 RRMM URTI, IRs, diarrhea, peripheral edema, Neutropenia, and
thrombocytopenia, anemia

CASTOR
NCT02136134 [75,76]
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Table 2. Cont.

Drug Year Treatment Adverse Effects Name and NCT
Number Refs.

Daratumumab 2019 NTE
NDMM

IRs, URTI, diarrhea, constipation, peripheral edema, nausea, fatigue,
asthenia, dyspnea, pyrexia, muscle spasms, and PSN

MAIA
NTC02252172 [66,77,78]

Selinexor 2019 RRMM Thrombocytopenia, fatigue, nausea, anemia, diarrhea, vomiting,
hyponatremia, neutropenia, leukopenia, constipation, dyspnea, and URTI

STORM
KCP-330-012
NCT02336815

[79,80]

Daratumumab 2019 TE
NDMM

IRs, PSN, constipation, asthenia, nausea, neutropenia, thrombocytopenia,
peripheral edema, pyrexia and paresthesia

CASSIOPEIA
NCT02541383 [81]

NDMM: newly diagnosed multiple myeloma; RRMM: relapsed/refractory multiple myeloma; NTE: non-
transplant-eligible; TE: transplant eligible; ORR: overall response rate; Vd: bortezomib, dexamethasone; PAN-
Vd: panobinostat, bortezomib, dexamethasone; Rd: lenalidomide, dexamethasone; KRd: carfilzomib, lenalido-
mide, dexamethasone; DVd: daratumumab, bortezomib, dexamethasone; DRd: daratumumab, lenalidomide,
dexamethasone; IRd: ixazomib, lenalidomide + dexamethasone; VTd: bortezomib, thalidomide, and dexam-
ethasone; DVTd: daratumumab, bortezomib, thalidomide, dexamethasone; ERd: elotuzumab, lenalidomide,
dexamethasone; Sd: selinexor, dexamethasone; m: months; PFS: progression-free survival; NR: Not Reached;
URTI: Upper respiratory tract infection; PSN: Peripheral sensory neuropathy; IRs: Infusion reactions; VTE: ve-
nous thromboembolic events; CVE: Cardiovascular events, ARF: acute renal failure.

2.1. Mechanism of Action of Proteasome Inhibitors

PIs kill myeloma cells through different pathways (Figure 3). Inhibition of proteosomes
leads to the accumulation of ubiquitinated proteins that would otherwise be degraded in the
proteosome. This leads to the accumulation of these proteins in the endoplasmic reticulum
(ER), which in turn causes ER stress, which leads to ER stress-dependent apoptosis and
activation of the Jun amino-terminal kinases (JNKs) pathway, increasing the Fas ligand,
caspase 8, and caspase 3 [82,83]. Furthermore, mitochondrial injury occurs due to the
direct effect of ubiquitinated proteins and the indirect effect of the ER stress that releases
reactive oxygen species (ROS) [84]. The direct apoptosis effect of PIs can also occur through
accumulation and phosphorylation of P53, which stimulates pro-apoptotic proteins such as
Bcl-2-associated X protein (Bax), NADPH oxidase activator (NOXA), cytochrome-c release,
and inhibition of the antiapoptotic protein Mcl-1 [85,86].

Bortezomib is the first-generation FDA-approved PI that reversibly inhibits the
chymotrypsin-like activity of the proteasomes [87]. Bortezomib has been shown to in-
hibit NF-κB, which in turn inhibits its downstream pathways and their products, including
IL-6, vascular endothelial growth factor (VEGF), c-Myc, and cyclin D1 [88]. On the other
hand, bortezomib has been shown to induce constitutive NF-κB activity which could be
due to the difference in response among different cell clones [89,90] (reviewed in [86]).
In addition, bortezomib ameliorates CAM-DR by inhibiting the expression of adhesion
molecules such as VLA-4. Therefore, it resensitizes MM cells to treatment [91]. Even though
introducing bortezomib has numerous benefits for patients, several side effects such as
peripheral neuropathy may occur. The second-generation PI, carfilzomib, which does not
cross the blood–brain barrier may have lower incidence of neuropathy. However, caution
should be taken in using carfilzomib in elderly patients as it has shown cardiovascular side
effects (reviewed at [92]). Similarly, ixazomib showed lower neurotoxicity than bortezomib
as well as more efficacy in clinical trials [93].

2.2. Mechanism of Action of Immunomodulatory Drugs

IMiDs target some proteins for ubiquitination and proteasomal degradation through
binding with cereblon ubiquitin ligase, forming an E3 ubiquitin ligase complex with DNA
damage-binding protein 1, Cullin-4A, and RING box protein-1 (Figure 4). They target
IKAROS family zinc finger 1 and 3 (IKZF1 and IKZF3), which are transcription factors that
play an important role in lymphocyte biology. IKZF3 is an essential transcription factor in
plasma cell development and therefore its degradation affects MM progression [94].
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Another protein that has been shown to be degraded by IMiDs is casein kinase
1 alpha (CK1α), which plays an important role in the pathogenesis of MM. CK is one of
the serine/threonine kinases that is important in cell survival and has been shown to be
important in different types of cancer including MM [95]. Manni et al. have shown that
CK1α is overexpressed in most patients’ samples and its inhibition leads to apoptosis, a
decrease in β-catenin and AKT expression, and an increase in p53 and p21 expression.
In addition, the same group showed that CK1α inhibition enhances the cytotoxicity of
bortezomib and lenalidomide on MM [96]. Interestingly, both CK1α and CK2 have been
shown to sustain activation of important signaling pathways such as JAK/STAT, NF-κB,
and PI3K/AKT [95,97,98]. IMiDs also inhibit the proliferation of PCs by inhibiting the
cyclin-dependent kinase pathway through inducing P21 [99]. Moreover, IMiDs induce
direct apoptosis in PCs by activation of Fas-mediated cell death [100,101]. Moreover,
Hideshima et al. showed that IMiDs inhibit the kinase activity of p53-related protein kinase
(TP53RK), which correlate negatively with MM patients’ survival. TP53RK phosphorylate
serine 15 of p53, which in turn affects MM growth. The binding of IMiDs to TP53RK
triggers apoptosis by inducing pro-apoptotic protein Bim. It also affects the metastasis of
MM cells by inhibiting c-Myc protein [102].

The treatment of IMiDs helps in restoring the immune homeostasis. Several mecha-
nisms have been proposed for IMiDs-mediated immune restoration, for example thalido-
mide stimulates the proliferation of T-cells and increases the secretion of interferon-gamma
(IFN-γ) and interleukin-2 (IL-2) [103,104]. Along these lines, lenalidomide has been shown
to stimulate T-cell-mediated cytotoxicity, induction of T-cell proliferative responses to
allogeneic dendritic cells, and suppresses expression of programmed cell death protein-1
(PD-1) [105,106]. In addition, lenalidomide and pomalidomide suppress forkhead box
P3 transcription factor and T regulatory cell expansion [107]. Moreover, lenalidomide
enhances the expression of Fas ligand on NK cells and increases granzyme secretion which
correlates to an increase in Ab-dependent cellular cytotoxicity (ADCC) [100]. Lenalido-
mide and pomalidomide inhibit the expression of adhesion molecules and inhibit the
RANKL/osteoprotegerin ratio, which leads to inhibition of osteoclast formation [108].

2.3. Mechanism of Action of Histone Deacetylase Inhibitors

Dysregulation in epigenetics including histone acetylation has been shown in different
types of cancer including MM [109,110]. Mithraprabhu et al. have shown that class I histone
deacetylase (HDAC) is significantly upregulated in MM patients’ samples compared with
normal PCs [111]. Moreover, upregulation of HDAC1 was correlated with poor prognosis
and shorter OS [111].

Removal of the acetyl group from the lysine residue on histone by HDACs causes
transcription repression (Figure 5). HDACs affect different proteins via deacetylation
either directly or indirectly by affecting the function of the chaperone protein that is
needed for their stabilization. HDACs cause hyperacetylation and therefore destabilization
for the chaperone protein heat shock protein 90 (HSP90), which inhibits its association
with CXCR4 leading to proteasomal degradation of CXCR4 in acute myeloid leukemia
(AML) cells [112,113]. HDACs also cause degradation of protein phosphatase 3 catalytic
subunit alpha (PPP3CA), which is overexpressed in MM, and patients show poor prognosis
when it is overexpressed. As HDAC6 plays an important role in the aggresomal protein
degradation, its inhibition significantly synergizes with proteasomal inhibition in MM [114].
Hideshima et al. have shown that a selective HDAC6 inhibitor increased the cytotoxicity of
bortezomib in vitro and overcame its resistance through JNK activation and ER stress [115].
In 2015, panobinostat was approved for treatment of RRMM patients in combination with
dexamethasone. HDAC inhibitors (HDACis) have been shown to affect the acetylation of
histone and non-histone proteins; they therefore affect different cell processes including
apoptosis, survival, angiogenesis, and the cell cycle [116,117].
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3. The Development of Immunotherapies in MM

Currently, there are rapid advances in immunotherapy to treat different types of
cancer including MM. Several approaches for immunotherapies have been developed
such as inhibiting immune check points, targeting antigens, development of antibody–
drug conjugates, chimeric antigen receptor (CAR)-T cells, CAR-NK cell therapy, or using
bispecific antibodies or bispecific T-cell engagers antibodies (BiTEs) to attach to more than
one target [118]. It is important in immunotherapy to have a specific target, which ideally
are surface proteins that are only expressed on target cells to minimize the side effects.
MM cells express B-cell maturation antigen (BCMA), CD56, CD117, CD150 (or SLAMF1,
signaling lymphocytic activation molecule1), CD48 (SLAMF2), CD229 (SLAMF3), CD352
(SLAMF6), CD319 (SLAMF7 or CS1), CD86, CD184, CD200, and CD272 [119–122]. BCMA,
a tumor necrosis factor receptor superfamily 17 (TNFRSF17) member, is one of the most
studied antigens for development of immunotherapies [123].

3.1. Monoclonal Antibodies

Monoclonal antibodies can be used to target surface markers on cancer cells or block
immune checkpoints between immune and cancer cells. Daratumumab (anti-CD38) is the
first monoclonal antibody that was approved to treat MM in 2015. CD38 is a type II trans-
membrane glycoprotein that is highly expressed in MM and other hematological malignan-
cies, and it is expressed on myeloid and lymphoid cells [124]. It has been shown that dara-
tumumab induces ADCC, complement-dependent cytotoxicity [125], and Ab-dependent
cellular phagocytosis (ADCP) [126]. Moreover, immune profiling of daratumumab in
patients’ samples from two clinical trials (NCT00574288 [GEN501] and NCT01985126
[SIRIUS]) showed that daratumumab exerts immunomodulatory effects via suppression
of the immunosuppressive cells such as myeloid-derived suppressor, regulatory T-, and
regulatory B-cells [127]. In addition, it enhances the expansion of T-helper cells and cyto-
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toxic T-cells [127]. Another anti-CD38 antibody, isatuximab, has been approved for RRMM
and NDMM patients, and shown a significant increase in ORR in different clinical trials
(Table 3). It is being tested in quadruple therapy regimen with lenalidomide, bortezomib,
and dexamethasone in a phase III clinical trial (NCT03617731) [128]. There was a significant
improvement in minimal residual disease negativity (50% vs. 36% in the control group).
Moreover, addition of isatuximab has significantly improved the very good partial response
(VGPR): 77% vs. 61% in the control group [128].

Table 3. FDA-approved medications for MM from 2017 to 2022.

Drug Year Treatment Adverse Effects Name & NCT
Number Refs.

Isatuximab 2020 RRMM neutropenia, IRs, pneumonia, URTI, and diarrhea ICARIA-MM
NCT02990338 [62]

Daratumumab 2020 RRMM

URTI, constipation, nausea, fatigue, pyrexia, PSN,
diarrhea, cough, insomnia, vomiting, back pain,

muscle spasms, dyspnea, neutropenia,
thrombocytopenia, and anemia

COLUMBA
NCT03277105 [129]

Belantamab
mafodotin 2020 RRMM keratopathy, decreased visual acuity, nausea, blurred

vision, pyrexia, IRs, and fatigue
DREAMM-2

NCT 03525678 [130,131]

Carfilzomib 2020 RRMM

IRs, anemia, diarrhea, fatigue, hypertension, pyrexia,
respiratory tract infection, thrombocytopenia,

anemia, neutropenia, lymphopenia, cough, dyspnea,
insomnia, hypertension, headache, and back pain

EQUULEUS
NCT01998971CANDOR

NCT03158688
[132]

Selinexor 2020 RRMM

Nausea, fatigue, decreased appetite, diarrhea, PSN,
URTI, decreased weight, cataract, vomiting,

thrombocytopenia, lymphopenia,
hypophosphatemia, anemia, hyponatremia,

and neutropenia.

BOSTON
NCT03110562 [78,133]

Melphalan
flufenamide 2021 RRMM fatigue, nausea, diarrhea, pyrexia, neutropenia,

thrombocytopenia, anemia, and pneumonia
HORIZON

NCT02963493 [134]

Idecabtagene
vicleucel 2021 RRMM

CRS, neurologic toxicities, hemophagocytic
lymphohistiocytosis/macrophage activation

syndrome, prolonged cytopenias, infections, fatigue,
musculoskeletal pain, and
hypogammaglobulinemia.

KarMMa
NCT02658929 [135]

Isatuximab 2021 NTE
NDMM

URTI, bronchitis, cough, diarrhea, IRs, fatigue,
hypertension, thrombocytopenia, and anemia

IKEMA
NCT03275285 [82,136]

Daratumumab 2021 RRMM
IRs, fatigue, pneumonia, upper respiratory tract

infection, and diarrhea, neutropenia,
thrombocytopenia, anemia, and hyperglycemia

APOLLO
NCT03180736 [137]

Daratumumab 2021 RRMM URTI, hypertension, diarrhea, cough, fatigue,
insomnia, pyrexia, nausea, and peripheral edema

PLEIADES
NCT03412565 [138]

Ciltacabtagene
autoleucel 2022 RRMM

pyrexia, cytokine release syndrome,
hypogammaglobulinemia, musculoskeletal pain,

fatigue, infections, diarrhea, nausea, encephalopathy,
headache, coagulopathy, constipation, and vomiting

CARTITUDE-1
NCT03548207 [139]

Teclistamab-cqyv 2022 RRMM CRS, ICANS, fatigue, pneumonia, diarrhea, pyrexia,
neutropenia, thrombocytopenia, and anemia

MajesTEC-1
NCT0314518,
NCT04557098

[140,141]

NDMM: newly diagnosed multiple myeloma; RRMM: relapsed/refractory multiple myeloma; IV: intravenous;
SC: subcutaneous; Pd: pomalidomide, dexamethasone; DPd: daratumumab, pomalidomide, dexamethasone;
Isa-Pd: isatuximab, pomalidomide, dexamethasone; Kd: carfilzomib, dexamethasone; DKd: daratumumab,
carfilzomib, dexamethasone; Isa-Kd: isatuximab, carfilzomib, dexamethasone; Vd: bortezomib, dexamethasone;
SVd: selinexor, bortezomib, dexamethasone; ORR: overall response rate; VGPR: very good partial response;
NR: Not Reached; IRs: Infusion reactions; CRS: cytokine release syndrome; ICANS: immune effector cell-
associated neurotoxicity; URTI: Upper respiratory tract infection; PSN: peripheral sensory neuropathy; ARF: acute
renal failure.

Elotuzumab (anti-SLAMF7) was also approved in 2015 to be used in combination
with lenalidomide and dexamethasone for MM patients who have received at least three
prior therapies. SLAMF7 or CS1 is a type I transmembrane glycoprotein which belongs
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to the Ig superfamily, and it is highly expressed in MM cells (≥95% of cases of MM),
normal PCs, and other immune cells such as dendritic, NK, and some T-cell subsets [142].
Elotuzumab induces ADCC by specific binding to SLAMF7 on MM through its Fab portion,
and engages NK cells through binding of its FC portion with CD16 on NK cells. Therefore,
NK cells become activated and release cytotoxic granules to kill MM cells and release
IFN-γ to stimulate other immune cells [142]. Elotuzumab has been shown to induce
ADCP through binding of its FC portion with Fc-gamma receptors on macrophages [143].
Moreover, elotuzumab inhibited soluble SLAMF7-induced growth of MM in vitro and
in vivo [144]. Additionally, treatment using elotuzumab inhibits the adhesion of myeloma
cells to BMSCs [142].

Immune checkpoints are major contributors of cancer evasion [145]. Targeting in-
hibitory immune checkpoints have revolutionized cancer therapy. There are several im-
mune checkpoint inhibitors that have been shown to inhibit immune function such as
cytotoxic T-lymphocyte antigen 4, T-cell immunoglobulin mucin-3, programmed cell death
1 (PD-1) or its ligand, programmed cell death ligand 1 (PD-L1, also referred to as B7-H1
or CD274) [146]. There are many mAbs targeting immune checkpoints approved by the
FDA to treat different kinds of cancer as they prolong OS [147]. Tamura et al. have shown
that PD-L1 is upregulated in MM and its upregulation is induced by IL-6. Moreover,
PD-L1+ RPMI8226 cells have higher Bcl-2 and FasL expression compared with PD-L1−

RPMI8226 cells and PDL-1 upregulation is associated with drug resistance, higher MM
cell percentages in BM, and higher serum lactate dehydrogenase levels [148]. Stromal-
cell-induced MM growth was abrogated by blocking PD1/PD-L1 and enhanced in com-
bination with lenalidomide ex vivo [149]. Durvalumab and nivolumab, PD-1 inhibitors,
are being tested in combination with other compounds such as IMiDs, daratumumab,
and venetoclax (Bcl-2 inhibitor) [118,150]. A phase Ib KEYNOTE-013 trial (NCT01953692)
for pembrolizumab, a PD-1 inhibitor, in RRMM patients showed 2.7 months PFS and
20.2 months OS after a median follow-up of 19.9 months [151]. In 2017, the FDA terminated
two phase III trials, KEYNOTE-183 (NCT02576977), and KEYNOTE-185 (NCT02579863), in
which pembrolizumab was tested in RRMM and NDMM patients with pomalidomide or
lenalidomide, respectively, in addition to a low dose of dexamethasone. In the trials, there
was an increase of progression risk and death as the PFS in the pembrolizumab-Pd arm
was shorter than in the Pd arm [151].

Siltuximab, an anti-IL-6 monoclonal antibody, was not effective when tested alone or
in combination with dexamethasone in a in a phase II clinical trial, NCT00911859 [152].
Similarly, another phase II clinical study showed that the combination of siltuximab with
bortezomib did not improve PFS or OS of RRMM patients [153]. However, when test-
ing siltuximab on patients with SMM, there was a delay in the progression of high-risk
SMM [154].

3.2. Antibody–Drug Conjugate

To enhance specificity of cytocidal compounds and reduce their off-target effects, an en-
gineered monoclonal antibody is used as a carrier directed toward a tumor-associated anti-
gen. Antibody–drug conjugate (ADC) is one of the exciting and fast evolving approaches
in immunotherapy that enhances specificity. This engineered antibody is conjugated with
the cytotoxic agent (the payload) through a linker, which should be stable in circulation to
guarantee the attachment of the toxic payload until the antibody gets internalized inside
the cell (Figure 6E) [155].

Belantamab mafodotin was the first-in-class monoclonal antibody that was approved
to treat MM [156]. It is an anti-BCMA that is covalently linked to monomethyl auristatin
F, a microtubule inhibitor [157]. There are some other ADCs that have been developed
as anti-BCMA drug conjugates; for example, HDP-101, an anti-BCMA drug conjugate,
has been tested in preclinical trials. It is conjugated to alpha-amanitin, a eukaryotic RNA
polymerase II inhibitor, to inhibit transcription and therefore translation [158–160].
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3.3. Bispecific Antibodies

Bispecific antibodies are monoclonal antibodies that have two binding sites for differ-
ent antigens or two different epitopes on the same antigen (Figure 6D). They work through
four different mechanisms: (1) bind target cell and an immune cell to assist immune re-
sponse, (2) block two signaling pathways to prevent immune escape of cancerous cells,
(3) block two immune checkpoints, and (4) drive connection of protein complexes [161].
The most common mechanism known for bispecific antibodies is to simultaneously bind
two different antigens on two different cells such as a cancer cell and a T-cell to bring them
into proximity and facilitate antitumor immune response [162].

In 2022, the FDA approved Teclistamab as the first bispecific antibody to treat MM
patients who had received at least four prior treatments. It targets both CD3 on T-cells
and BCMA, which is overexpressed on MM cells. Bringing T-cell and MM cells in prox-
imity creates an immunological synapse and initiates cytolytic cascades and stimulates
proinflammatory cytokines. MM cell death and lysis occur after T-cell activation. Teclis-
tamab was approved after a phase I/II MajesTEC-1 trial (NCT04557098) in triple-class
RRMM with five previous therapy lines. The ORR was 63.0% at a median follow-up of
14.1 months with 39.4% of patients showing complete response; PFS was 11.3 months. The
common adverse effects are cytokine release syndrome, thrombocytopenia, neutropenia,
and anemia. Additionally, 14% of patients had neurotoxic events. Currently, a phase III trial
(NCT05083169), which is still recruiting, will be testing the combination of teclistamab with
daratumumab (Tec-Dara) versus DPd (daratumumab, pomalidomide, and dexamethasone)
or DVd (daratumumab, bortezomib, dexamethasone) in RRMM [140,141].

Elranatamab, another bispecific antibody, also targets CD3 and BCMA and is now in a
phase III trial for RRMM. It has been tested as monotherapy as well as in combination in
Magnetis MM clinical trials. It showed a good ORR (around 60%) and it was well tolerated
in patients [163]. Talquetamab, is a bispecific antibody that targets both CD3 and the orphan
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G protein coupled receptor, class C group 5 member D (GPRC5D) that has been shown to
be expressed suggested as tumor load in MM patients [164,165].

3.4. Chimeric Antigen Receptor-Modified T-Cells and NK Cells

CARs are genetically engineered transmembrane receptors designed to recognize and
target specific antigens on cell surfaces. CAR-T cells are generally engineered in vitro after
collecting autologous patients’ T-cells and transducing them with engineered lentivirus
(Figure 6A). With CAR therapy, the immune system of patients can be reprogrammed
and directed to target cancer cells [151]. CARs in general are composed of an extracellu-
lar domain that recognizes antigens such as single-chain variable fragment (scFv), and
an intracellular activation domain (Figure 6B). The first generation of CAR, which was
engineered in 1992, contains only CD3ζ. Then, one costimulatory domain, CD28 or 4-
1BB (second generation), or two costimulatory domains (third generation), were added
to enhance CAR function [123]. After in vitro engineering, CAR cells are reinfused in
patients’ bodies so that they would recognize and attach to specific antigens on tumor
cells (Figure 6C). This engagement stimulates the signaling cascade in engineered cells.
In the case of engineered T-cells, for example, engagement of CAR-T with its target can
stimulate different signaling pathways such as the PI3K and MAPK pathways, which
activate T-cells to release pro-inflammatory cytokines such as IFN-γ, TNF-α, IL-6, and
IL-2 [123,166]. This activation of CAR-T cells is required to exert cytotoxic function and
lysis of tumor cells. However, immune-mediated adverse reactions such as cytokine release
syndrome (CRS) is one of the issues that researchers try to ameliorate by using different
methods such as introducing “suicide” genes [167]. The field of CAR engineering to de-
sign next generation therapies is rapidly moving forward. The fourth generation of CAR
is called T-cells redirected for antigen-unrestricted cytokine-initiated killing, in which a
constitutively expressed chemokine is added to the second generation of CARs. When the
CAR is activated, the cytokine is released to induce tumor killing [168]. To add a third
synergistic signal to CD3ζ CD28, a truncated IL-2 receptor is added with a binding site for
STAT3 and integrated into the second generation of CARs to produce the fifth generation
of CARs [169]. Researchers are improving the CAR-T design by adding other targets in the
same CAR-T construct and testing other costimulatory domains as well as reprogramming
several types of immune cells.

The first clinical trial of an anti-BCMA CAR-T (Construct: anti-BCMA scFv, CD8α
hinge and transmembrane regions, the cytoplasmic portion of the CD28 costimulatory
moiety, and the CD3ζ T-cell activation domain) started in 2014 (NCT02215967) after condi-
tioning with cyclophosphamide and fludarabine. Antimyeloma activity and remissions of
poor prognosis RRMM patients have been reported; however, side effects of CRS were seen
in two patients out of eleven. Moreover, antigen escape has been seen in patients treated
with anti-BCMA CAR-T [170,171].

Various anti-BCMA CAR-T therapies have been developed and investigated in clinical
trials (Table 4). One of the challenges facing immunotherapy targeting antigens is the
antigen escape that has been reported in many targeted antigens, including BCMA, which
leads to relapse of MM patients and shorter durations of remission [172]. For this reason,
researchers are attempting to find a ligand that can bind with more than one antigen.
The BAFF ligand binds with three receptors on mature B cells: BAFF-R, BCMA, and
transmembrane activator and calcium-modulating cyclophilin ligand interactor (TACI).
Therefore, Wong et al. constructed a BAAF ligand-CAR-T cell (Construct: extracellular
BAFF ligand, short spacer, hinge from human IgG1, CD28 transmembrane and signaling
domains, OX40, and CD3ζ), which can interact with all three proteins (BAFF-R, BCMA, and
TACI). BAAF L-CAR-T was significantly activated when co-cultured with U266, RPMI8226,
or MM.1S MM cells. Furthermore, BAAF L-CAR-T showed a significant cytotoxic effects
in vivo using xenograft models injected with MM1.S [173]. A phase I clinical trial is ongoing,
which will study the efficacy of BAAF ligand-CAR-T in MM patients (NCT05546723).
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Table 4. Some of the ongoing CAR-T and CAR-NK trials.

Name/Target Combination Patients’
Status Trial Number Phase Recruiting Status

Anti-BCMA/GPRC5D RRMM NCT05509530 Phase II Recruiting

APRIL CAR-T cells
BCMA/TACI

Positive
RRMM

NCT04657861 Early Phase I Recruiting

Dual Specificity
CD38 and BCMA RRMM NCT03767751 Phase I Unknown

Anti-BCMA Fludarabine
Cyclophosphamide MM NCT03322735 Phase I Unknown

SLAMF7 CAR-T MM NCT04499339 Phase I/IIa Recruiting

CXCR4 modified
anti-BCMA CAR T-cells MM NCT04727008 Early Phase I Not yet recruiting

CD19-CD22 CAR-T-cells RRMM NCT04714827 Phase I/II Recruiting

BCMA/CD19 Dual-Target CAR-T RRMM NCT04182581 Early Phase I Unknown

CD 70 CAR T CD70 Positive
RRMM NCT04662294 Early Phase I Recruiting

Anti-CD38 CAR-T RRMM NCT03464916 Phase I Completed

Bispecific CAR Targeting CS1 and
BCMA RRMM NCT03464916 Phase I Completed

Anti-BCMA
clarithromycin,
lenalidomide,

dexamethasone
NDMM NCT04287660 Phase III Recruiting

Anti-BCMA CAR-NK RRMM NCT03940833 Phase I/II Unknown

Anti-BCMA CAR-NK Fludarabine
Cytoxan RRMM NCT05008536 Early Phase I Recruiting

Anti-BCMA CAR-NK
Cyclophosphamide

Fludarabine
Daratumumab

MM NCT05182073 Phase I Recruiting

NDMM: newly diagnosed multiple myeloma; RRMM: relapsed/refractory multiple myeloma.

Currently, idecabtagene (BCMA CAR-T) and ciltacabtagene autoleucel are the only
CAR-Ts approved to treat RRMM. Idecabtagene vicleucel (ide-cel; bb2121) was approved
in March 2021 after the phase II KarMMa trial (NCT03361748) on RRMM patients who
received ≥3 prior regimens. The ORR was 73.0% at a median follow-up of 11.3 months
with PFS around 8.6 months. The common adverse effects are CRS, cytopenias, and
neurotoxicity [135]. Likewise, ciltacabtagene autoleucel (cilta-cel), which contains two anti-
BCMA-targeting single domains was approved in 2022 after a phase Ib/II CARTITUDE-1
trial (NCT03548207) on double refractory MM patients who received four or more prior
lines of therapy, including a PI, an IMiD, and an anti-CD38 monoclonal antibody. The ORR
was 100% at a median follow-up of 9 months. PFS was 6 months with 76% CR and 21%
had VGPR. The common adverse effects are CRS, neutropenia, thrombocytopenia, and
leukopenia [139].

Even though anti-BCMA CAR-T showed promising results in MM clinical trials, there
are concerns about toxicity, CRS, and aplasia [174,175]. Therefore, NK cells could be better
candidates [176]. CAR-NK trafficking of CAR-NK cells to the BM is challenging. To solve
this issue, Yu et al. have an exciting in vivo study with a xenograft mouse model in
which they modified anti-BMCA CAR-NK cells to express CXCR4 to enable the CAR-NK
infiltration in the BM. For the CAR-NK construct, they used BCMA-specific scFv binding
domain and compared two intracellular activation domains: CD3ζ and DAP12. There
was no statistically significant difference in the performance of CAR-NK between the
two activation domains. Expressing CXCR4 in NK cells significantly increased migration
towards SDF-1α in vitro and promoted their migration toward BM in vivo. Moreover,
expressing CXCR4 in anti-BCMA CAR-NK significantly inhibited tumor burden after
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42 days [177]. An early phase I trial started in June 2021 and the final data was expected to
be collected in December 2022 (NCT04727008). Other clinical trials for anti-BMCA CAR-NK
are still recruiting patients (Table 4).

4. Glance into the Future

Even though the MM survival rate has improved with current treatments, generally
19–25% patients do not respond to PIs during the first-time treatment and almost 50% of
RRMM patients do not respond to PIs, which leads to a serious problem [118]. The OS of
RRMM patients is about 8 months [46,118]. Therefore, it is necessary to find new treatments
and combination strategies to overcome drug resistance and improve survival for MM
patients. Several new targets have been identified, and new molecules have been developed.
Some of these molecules have been introduced in the clinical trial and some are still in the
pre-clinical phase.

4.1. Targeting the Apoptotic Pathway in MM

Apoptosis, a regulated cell death, is an essential mechanism in regulating development
and maintaining homeostasis, plays a crucial role in preventing oncogenesis. The unre-
strained growth of MM can occur due to the loss of control of apoptosis that happens
through upregulation of antiapoptotic proteins such as Mcl-1, Bcl-2, and Bcl-xL all of
which protect against genomic instability. Activation of different signaling cascades such
as JAK2/STAT3, NF-κB, PI3K/AKT/mTOR, and Wnt/β-catenin pathways through the
tumor microenvironment leads to upregulation of antiapoptotic proteins.

The efforts of targeting different molecules in apoptotic and survival pathways has
shown promising results. Many small molecules that can inhibit survival and/or stimulate
apoptosis have been developed, some of which are still in clinical trials.

Bcl-2 Family Inhibitors

The Bcl-2 family is one of the most important targets, and their inhibitors are either
in clinical or in preclinical stages. For example, venetoclax, a Bcl-2 inhibitor, is approved
for the treatment of hematological malignancies including chronic lymphocytic leukemia,
AML, and small lymphocytic lymphoma [178,179]. There are around 25 clinical trials
for venetoclax with different drug combinations ongoing in MM [180]. In a phase III
BELLINI clinical trial (NCT02755597) for RRMM patients, a significant improvement in
PFS could not be achieved when venetoclax was used in combination with bortezomib
and dexamethasone [181]. However, the study showed that venetoclax is more effective in
patients with t (11;14) and high Bcl-2 expression compared to the other patients [181].

The overexpression of another Bcl-2 family member, Mcl-1, is reported in MM patients.
The expression of Mcl-1 is associated with 1q21 [182] amplification, where approximately
40% of ND and 70% of RR patients show gain (3 copies) or amplification (≥4 copies) in
1q21 [183,184]. The overexpression of Mcl-1 is associated with relapse and poor progno-
sis [185]. Moreover, Mcl-1 dependent cancers are resistant to pan Bcl-2/Bcl-xL inhibitors
(ABT-737), and venetoclax [186]. Therefore, Mcl-1 is an attractive target for MM [187–189].
There are several clinical trials ongoing for Mcl-1 inhibitors, for example MIK665 (also
named S64315) is tested in phase I trials for refractory or relapsed lymphoma or MM
patients [190]. One of these trials (NCT02992483) is completed, but results are not yet
released [191]. The other trial (NCT04702425) is still recruiting with the goal of testing
the combination of MIK665 with a Bcl-2 inhibitor, VOB560 [191]. Both in vitro and in vivo
studies have shown that the combination of Mcl-1 inhibitor, MIK665, with Bcl-2 inhibitors
showed strong and durable antitumor responses [192,193]. Other potential Mcl-1 inhibitors,
PRT14 and AMG176 (Tapotoclax), are currently in phase I (NCT04543305, NCT02675452).

Marinopyrrole A (also named maritoclax), a natural product from marine-derived
streptomycetes was discovered by the Wang group as a selective Mcl-1 antagonist [194].
They found that Maritoclax induces caspase-3 activation by directly binding to Mcl-1
and targeting it for proteasomal degradation and sensitizes cancer cells to ABT-737. The
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researchers showed that maritoclax disrupts the interaction between Bim and Mcl-1 [194].
Along these lines, we showed that maritoclax potentiates the apoptotic effect of ABT-737 in
human melanoma cells [195].

4.2. Targeting MM Cancer Stem Cells

It has been demonstrated that cancer stem cells (CSCs) are critical in relapse [196]. The
mechanism of how CSCs are involved in relapse is not well understood; however, it has
been demonstrated that intracellular drug detoxification and drug efflux which retribute to
the overexpression of aldehyde dehydrogenase (ALDH) and ATP-binding cassette trans-
porter G2 (ABCG2) are key players [197]. Several studies have been made to investigate
phenotypic characteristics and identify surface markers for CSCs. However, the molecular
profile of CSCs is still controversial. The studies have demonstrated that CD138− PCs
exhibit tumor-initiating potential, self-renewal capability, and drug resistance, which sug-
gests that CD138− is a CSC [198]. Furthermore, it is likely that because of the heterogenous
characteristic of MM, there are different stem cell subsets [199]. For example, the markers
CD19+CD38−CD27+, CD19+CD34−Lchain(λ)+ALDH+, and CD19−CD45−CD38+CD138+

have also been identified as CSCs in MM [200].
Some natural compounds have been shown to be effective in targeting CSCs. The

ethanolic extract of scutellaria, a traditional Chinese herbal remedy, and its derivatives
baicalein, wogonin, and baicalin have been shown to decrease the expression level of
ABCG2 protein in RPMI-8226 [201].

Salinomycin, a monocarboxylic polyether antibiotic derived from Streptomyces al-
bus [202], is shown to inhibit stemness in cancer cells. It overcomes ABC transporter-
mediated multidrug resistance and induces apoptosis in human leukemia stem-cell-like
cells [203]. Moreover, Kastritis et al. showed that salinomycin decreases the side population
fraction of MM, which is known to efflux Hoechst stain and represent a stem-cell-like
population [204].

ALDHs are detoxifying enzymes that have been shown to be highly expressed in HSCs
and CSCs [205]. The overexpression of ALDH in cancer has been associated with drug
resistance, relapse, and poor prognosis [206]. Zhou et al. showed that ALDH is associated
with chromosomal instability in MM and that an ALDH1+ subset from two MM cell lines
had a higher clonogenic potential than an ALDH1− cell subset [207]. Moreover, Yang et al.
found that overexpression of ALDH1 increased MM drug resistance in vivo [208]. Even
though ALDH inhibitors are not in the clinical trials for MM, it is a compelling target
to explore, and researchers are developing and modifying different ALDH inhibitors
(reviewed in [209]).

4.3. Targeting the Bone Marrow Microenvironment

The interaction of myeloma cells to BMM is a hallmark of MM. This interaction
supports myeloma cell survival and plays critical role in pathogenesis, thus targeting of
BMM has been one of the areas of active research. Along these lines, SDF-1α/CXCR4
axis, Bruton’s tyrosine kinase (BTK), JAK/STAT, NF-κB, and RANK/RANK-L have been
identified as prime targets.

Plerixafor, a specific antagonist of SDF-1α binding to CXCR4, was approved in 2008
to induce HSCs and human progenitor cells (HPCs) trafficking. It has been shown that it
augments granulocyte colony-stimulating factor (G-CSF)-induced mobilization of HSCs
and HPCs [38,39]. Our lab has shown that gambogic acid, a xanthonoid derived from
Garcinia hanburyi, blocks RANKL-induced osteoclastogenesis, suppressing the SDF-1α-
induced chemotaxis of MM cells [210].

Bruton’s Tyrosine Kinase Inhibitors

Kinases play essential roles in survival pathways; therefore, a wide range of kinase
inhibitors have been developed and investigated regarding MM. There are numerous
potential targets for kinase inhibitors, including but not limited to non-receptor tyrosine
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kinases, receptor tyrosine kinases (RTKs), PI3K/AKT/mTOR pathway kinases, protein
kinase C, mitogen-activated protein kinase, cell cycle control kinases, casein kinase, and
glycogen synthase kinase. At this writing, there are about 100 clinical trials testing different
kinase inhibitors in the targeting of MM survival pathways.

One of the essential kinases that is important during B-cell development is BTK, which
belongs to the Tec family of kinases. BTK is shown to be overexpressed and activated in MM
stem-cell-like cells [211]. BTK is activated by different pathways including B-cell receptor
(BCR), toll-like receptor, chemokine, and Fc receptor signaling pathways [212]. When
activated, it translocates from the cytosol to the cell membrane and gets phosphorylated by
one of the members of the spleen tyrosine kinase (SYK) or Src family kinases on the tyrosine
residue at position 551 (Y551) [213]. Then, an autophosphorylation occurs on tyrosine at
position 223 (Y223). The activation of BTK stimulates several downstream signals that are
associated with survival, proliferation, drug resistance, and migration.

Ibrutinib and acalabrutinib are FDA-approved BTK inhibitors to treat B-cell malignan-
cies other than MM. Ibrutinib inhibits BTK by covalently binding cysteine at position 481
(C481). BTK inhibitors are not yet approved for MM; however, clinical trials are ongoing
(Table 2). After the excitement of the effective results of ibrutinib and acalabrutinib in
treating B-cell malignancies, resistance occurred due to acquired mutations in the kinase
domain such as the Cys481 to Ser (C481S) mutation, which disrupts the covalent binding
of these drugs. Therefore, we developed a new BTK inhibitor, KS151, that avoids binding
with the Cys481 residue. Importantly, this new molecule was effective in a stem-cell-like
population and kills MM cells [214].

5. Conclusions

Most MM patients experience a relapse after treatment which can occur from drug
resistance and antigen escape. The genomic instability that is associated with the disease
progression adds to the complexity of disease progression. Moreover, there are multiple
mutational drivers that can lead to MM disease and contribute to its heterogeneity [109,215].
Misund et al. showed that MM progression is associated with phenotypic transformation
and several changes in the transcriptomic levels in patients’ sample which can be targeted
in future [216]. There are various pathways that are disrupted in MM that can affect
other pathways by cross talk activation or repression. Therefore, it is essential to combine
different treatments to overcome different feedback loops that can counteract the effect of
some inhibitors, overcome resistance, and lower the side effects of given medications.

The treatment of MM continues to progress, and the future of immunotherapy in
combination with other treatments will focus on understanding the MM stem-cell-like cells
and finding putative tumor-associated antigens that can be targeted with immunotherapy as
well as small molecules, improving the efficacy and the specificity of immunotherapy, and
targeting the BMM compartments such as BMSCs to overcome the BMM’s protective niche.
Over the past decade, immunotherapy has been introduced and has shown promising
results. There is a need to have more clinical studies regarding treatment sequences to know
the effect of immunotherapy on NDMM patients. Personalized treatments should also be
considered as MM has a heterogeneous phenotype. New targets should be investigated
with novel compounds to minimize toxicity and side effects and increase patients’ OS and
quality of life.
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