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Abstract: Predicting compound potency is a major task in computational medicinal chemistry, for
which machine learning is often applied. This study systematically predicted compound potency
values for 367 target-based compound activity classes from medicinal chemistry using a preferred
machine learning approach and simple control methods. The predictions produced unexpectedly
similar results for different classes and comparably high accuracy for machine learning and simple
control models. Based on these findings, the influence of different data set modifications on relative
prediction accuracies was explored, including potency range balancing, removal of nearest neighbors,
and analog series-based compound partitioning. The predictions were surprisingly resistant to
these modifications, leading to only small error margin increases. These findings also show that
conventional benchmark settings are unsuitable for directly comparing potency prediction methods.

Keywords: compound potency predictions; activity classes; machine learning; nearest neighbor
controls; benchmark calculations

1. Introduction

Compound potency prediction is of major interest in medicinal chemistry and drug
design. Many different computational methods have been introduced for potency pre-
dictions based on structures of ligand-target complexes or small molecules [1-11]. These
approaches have different computational complexity and sophistication. Traditionally,
quantitative structure-activity relationship (QSAR) methods have played a major role in
medicinal chemistry [1]. Classical QSAR models are based on two-dimensional representa-
tions of small molecules, typically employ numerical descriptors of molecular structure
and chemical properties, and represent linear regression models to predict the potency
of newly designed compounds to extend analog series. Thus, QSAR only applies to con-
generic compounds if linear structure-activity relationships (SARs) exist [1]. In addition,
for the estimation of interaction energies from experimental or modeled protein-ligand
complexes, a variety of scoring functions were developed that are, for the most part, based
on force fields from molecular mechanics [2]. Estimating interaction energies using scoring
functions of different designs and complexity is used as a rough approximation of binding
(free) energies and relative potencies of other ligands (without calculating exact potency
values). Scoring functions apply to diverse compounds and are critically important to pri-
oritize putative ligands from structure-based virtual screening, despite their approximate
nature [2]. At a higher level of sophistication, free energy methods attempt to calculate
exact binding free energy values from protein-ligand complexes based on thermodynamic
principles [3]. Particularly popular in medicinal chemistry and drug design are free energy
perturbation methods to calculate relative binding free energies of congeneric compounds
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based on molecular dynamics simulations by “alchemically” transforming one analog
into another. Compared to force field calculations, relative free energy calculations are
computationally very expensive. Although free energy methods have been available for
three or four decades, they have been increasingly applied in recent years in drug discovery
due to advances in computational power and conformational sampling procedures [3].

Furthermore, in structure-based design, binding energy, and compound potency
values can also be calculated using methods that combine molecular mechanics (MM)
treatment of protein-ligand complexes with quantum mechanical (QM) representations
of narrowly defined ligand binding sites (termed QM/MM approaches) [4]. The under-
lying idea is achieving accurate energy calculations in binding sites through quantum
mechanics while reducing computational costs for the remainder of complexes to render
the calculations feasible. For ligand-based potency prediction, machine learning (ML)
methods play a major role [5-7]. Therefore, suitable ML methods must be applicable for
regression. Compared to QSAR, the major attraction of computationally more complex
ML approaches is their ability to account for non-linear SARs and predict potency values
of structurally diverse compounds. Non-linear SARs are typically observed in medicinal
chemistry when optimizing compound series, which intrinsically limits the applicability
domain of classical QSAR. Accordingly, ML regression models have become very popular
for compound potency prediction. The majority of approaches include ML mainstay meth-
ods such as random forest regression [6] or support vector regression (SVR) [7,8]. Over
the years, SVR has become the probably most frequently used ML approach for numerical
potency prediction and a standard in the field. Recently, deep neural networks (DNNs)
have also been increasingly applied for this task [9-11]. Many different DNN architectures
can be adapted for numerical property predictions, including compound potency. This
methodological versatility is a major attraction of DNNs [9-11]. Moreover, DNNs enable
the evaluation of new concepts for potency prediction. For example, convolutional neural
networks can predict numerical properties from voxel representations of ligand binding
sites. For chemical applications, graph neural networks have become increasingly popular,
and they have also been adapted for ligand affinity predictions. Therefore, graph represen-
tations of molecular interactions are extracted from structures of protein-ligand complexes
and used as input for deep graph neural networks to predict the affinity of small molecular
ligands. Exploring novel concepts for potency predictions is still in its early stages (and
some findings are controversial). Hence, it will take time until these approaches mature.
While DNN calculations are computationally much more expensive compared to other
ML approaches, they are not necessarily superior for potency prediction [12], as further
discussed below.

The prediction of compound potency (and other biological or physico-chemical molec-
ular properties) is carried out to benchmark or calibrate computational approaches and, in
addition, prospectively predict novel active compounds. While prospective applications
are naturally most interesting in medicinal chemistry and drug discovery, benchmarking is
essential for the initial evaluation of predictive models but insufficient to ensure successful
applications. Typical benchmark conditions for numerical potency prediction involve using
sets of specific active compounds (often termed activity classes) with varying potency
divided into training sets for model derivation and test sets for evaluation, usually with
cross-validation on the basis of multiple independent prediction trials. Analogous bench-
mark settings are applied to assess compound classification models (derived, for example,
to distinguish between active and inactive compounds).

Recently, we have shown that potency prediction methods of varying computational
complexity display similar predictive performance [12]. Specifically, k-nearest neighbor
(kNN) analysis was found to reproduce experimental potency values of test compounds
within an order of magnitude comparable to increasingly complex ML methods, including
DNNs. In 1-NN analysis, test compounds are compared to training set compounds via
similarity calculations, and the potency value of the most similar training compound is
assigned to a given test compound. For 10 different activity classes, there was no advantage
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of DNNs over SVR and kNN calculations, with SVR achieving the overall best performance,
albeit by only small margins [12]. Hence, simple predictions were often as accurate as
increasingly complex ML methods. Furthermore, assigning the median potency value
of a training set to any test compound, corresponding to median regression (MR), often
approached the accuracy of ML models. Moreover, randomized prediction models often
reproduced experimental potency values within an order of magnitude, and there was only
a confined prediction error interval into which random and ML predictions fell.

Questions raised by these observations included whether these findings might gen-
eralize across large numbers of activity classes and whether their composition and/or
potency ranges might limit benchmarking evaluations. Therefore, in this study, we have
systematically investigated compound potency predictions on an unprecedentedly large
scale and designed specific data set modifications to investigate their influence on the
prediction accuracy of different reference methods. Potency predictions were surprisingly
stable across hundreds of compound classes, and relative method performance was largely
resistant to specific data set modifications. Furthermore, predictions using ML and sim-
ple control models were only distinguished by small error margins, revealing intrinsic
limitations of conventional benchmark calculations.

2. Results
2.1. Study Concept

First, we aimed to obtain a global view of potency prediction characteristics and
relative accuracies of selected methods. Therefore, we carried out systematic potency value
predictions on 376 qualifying activity classes from medicinal chemistry sources [13] using
SVR and controls, including 1-NN, additional kNN, and MR calculations (see Methods).
The activity classes were curated, ensuring high-confidence potency data were available
for all compounds. SVR was selected as the overall preferred ML approach in our previous
comparison [12]. Second, based on the obtained results, we then investigated the influence
of specific data set modifications on relative prediction accuracies.

2.2. Large-Scale Predictions

Predictions were assessed by calculating the mean absolute error (MAE) for predicted
and experimental logarithmic potency values (see Section 4). Given the very large number
of activity classes and calculations, all results are made available in a data deposition
via the following link: https:/ /uni-bonn.sciebo.de/s/vU5vnG5wjQPTpd1 (accessed on
28 March 2023)). In addition, for representative subsets of activity classes, results are
reported in the following and as Supplementary Materials.

For the 376 activity classes, the results of the predictions were surprisingly similar.
While MAE values varied moderately across different classes, it was generally observed
that 1-NN/kNN predictions approached or met SVR performance, consistent with our
earlier observations for 10 activity classes [12]. In addition, most predictions produced
meaningful results, with median MAE values over multiple independent trials falling
within one order of magnitude, corresponding to less than 10-fold prediction error. Notably,
for best predictions, MAE values of 1 or larger were not observed for any activity class.
Supplementary Figure S1 shows the results for the 45 largest activity classes that were
representative of all 376 activity classes. Hence, only limited class-dependent differences
were detected.

Supplementary Figure Sla,b compare predictions for the 45 activity classes based upon
80/20% and 50/50% training/test compound splits, respectively. Again, these predictions
yielded very similar results. Hence, different training set sizes had little influence on
the predictions. Thus, the predictions were stable, as indicated by narrow MAE value
distributions across different trials.

Figure 1 shows exemplary compounds from eight of the 45 activity classes (and reports
their targets) used in the following to illustrate results obtained for the 45 largest classes.
In addition, Figure 2 shows the results of the original predictions for the eight activity
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classes and 80/20% splits, illustrating trends commonly observed for all classes. Although
SVR mostly achieved the highest accuracy (lowest MAE values), followed by kNN/1-NN,
the differences between median values were typically only very small, ~0.1 MAE or even
less. Statistically significant differences were only observed for about half of the classes
(Wilcoxon test, p-value < 0.005; see Section 4). Even the simplistic MR prediction, assigning
the constant median potency value of the training set to all test compounds, typically
yielded prediction accuracies close to 1.0 MAE. Thus, these findings revealed that (i) even
simple control predictions generally produced fairly accurate results and that (ii) there
was no sufficient separation between SVR and kNN or MR controls to enable a realistic
assessment of ML potency prediction methods. Across as many as 376 different activity
classes, essentially no cases were detected where prediction accuracy was low and simple
controls failed compared to SVR.

Acetylcholinesterase (220) / Matrix metalloproteinase 13 (280)
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Figure 1. Compounds from selected activity classes. For eight activity classes, exemplary compounds

AN

are shown with their logarithmic potency values (pICsp). For each class, the target name and ChEMBL
ID (in parentheses) are provided.
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Figure 2. Prediction accuracy. Boxplots report the distribution of MAE values for potency predictions
over 10 independent trials on the eight activity classes in Figure 1 using INN, kNN, SVR, and MR
models (applying a training/test set compound split of 80:20%). In boxplots, the upper and lower
whiskers indicate maximum and minimum values, the boundaries of the box represent the upper
and lower quartiles, values classified as statistical outliers are shown as diamonds, and the median
value is indicated by a horizontal line.

These findings raised the question of whether the activity classes could be modified in
specific ways to increase the prediction accuracy separation of SVR and the kNN controls
and hence obtain an improved basis for methodological comparisons. These modifications
altered the original composition of activity classes by design, thus producing model data
sets. The predictions were then repeated on the resulting variants of the 45 largest activity
classes. The following shows representative results for the subset of eight activity classes.

2.3. Potency Range Balancing

We first determined the potency value distributions across the largest activity classes.
As shown in Supplementary Figure S2a, potency distributions in activity classes from
medicinal chemistry are not uniform but skewed because most compounds are gener-
ally active in the low micromolar range. Therefore, we reasoned that the dominance of
compounds with micromolar potency values might explain the strong performance of
kNN and MR relative to SVM. Consequently, we generated activity class variants with
balanced potency distributions (see Section 4), as shown in Supplementary Figure S2b. In
the modified data sets, most potency sub-ranges were evenly populated (except sub-ranges
containing limited numbers of most potent compounds). Thus, balancing eliminated the
bias of potency value distributions towards the low micromolar range. We then repeated
the predictions on the balanced activity class variants. Since balancing inevitably led to a
reduction in data set size, we also generated equally sized data sets with original potency
distribution as a control (50/50% training/test compound splits). Figure 3 reports the
results for the predictions on balanced data sets that were similar to those of the original
predictions. As a consequence of potency balancing, the median potency values of the
training set increased, which also increased the MAE of MR in several cases. However, the
performance of kNN /1-NN compared to SVR essentially remained constant.
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Figure 3. Prediction accuracy for activity classes with balanced potency value distributions. Boxplots
report the distribution of MAE values over 10 independent trials for the eight activity classes after
balancing their potency value distributions. As a control, results are reported for the original data
sets that were reduced by random compound removal to the same size as the balanced sets. In
boxplots, the upper and lower whiskers indicate maximum and minimum values, the boundaries of
the box represent the upper and lower quartiles, values classified as statistical outliers are shown as
diamonds, and the median value is indicated by a horizontal line.

2.4. Removal of Nearest Neighbors

In light of these findings, we systematically removed nearest neighbors from the
original activity classes. Therefore, exhaustive pairwise compound similarity calculations
were carried out for each class; compounds were ranked according to highest similarity
to nearest neighbors, and the top 50% of compounds from the ranking were removed
from the data sets. As a size control, data sets containing half of the original compounds
were randomly selected. Figure 4 shows the results of predictions after nearest neighbor
removal and equally sized control data sets (all 45 activity classes produced equivalent
results). Nearest neighbor removal generally increased median MAE values for all methods
by ~0.1-0.2 and slightly broadened value distributions (such that the predictions became
again more similar to MR). However, even the removal of 50% of most similar compounds
was insufficient to significantly reduce the performance of kNN/1-NN relative to SVR, an
unexpected finding.

2.5. Analog Series-Based Data Partitioning

Another structural data set modification was carried out by extracting all analog series
from each activity class, then partitioning the complete series into training and test sets (to
obtain ~80/20% compound splits). Accordingly, there was no analog overlap between the
sets. Accordingly, training and test compounds had distinct core structures. Because most
compounds from medicinal chemistry belong to analog series (resulting from chemical
optimization efforts), analog series-based partitioning was generally applicable to activity
classes. Figure 5 shows the results of predictions for these activity class variants and
equally sized subsets of the original data sets used as a control (equivalent results were
again obtained for all 45 activity classes). Under these conditions, median MAE values also
increased by ~0.1-0.2 relative to the controls. The value distributions generally broadened
(as one might expect for independent trials using training and test sets of unique analog
series composition). Broader distributions are indicative of more variable (less stable)
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predictions, which complicates the comparison of different methods. However, despite
analog series partitioning, the predictive performance of SVR and kNN /1-NN remained
very similar.
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Figure 4. Prediction accuracy after removal of nearest neighbor relationships. Boxplots report the
distribution of MAE values over 10 independent trials for the eight activity classes after removal of
50% of nearest neighbors and control data sets after random removal of 50% of the compounds. In
boxplots, the upper and lower whiskers indicate maximum and minimum values, the boundaries of
the box represent the upper and lower quartiles, values classified as statistical outliers are shown as
diamonds, and the median value is indicated by a horizontal line.
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Figure 5. Prediction accuracy after analog series partitioning. Boxplots report the distribution of MAE
values over 10 independent trials for the eight activity classes using training and test sets (~80:20%
compound split) consisting of distinct analog series. As a control, results are reported for original
training and test sets of exactly the same size. In boxplots, the upper and lower whiskers indicate
maximum and minimum values, the boundaries of the box represent the upper and lower quartiles,
values classified as statistical outliers are shown as diamonds, and the median value is indicated by a
horizontal line.
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3. Discussion

Our current study was designed in light of previous observations that simple 1-NN
calculations often approached or met the accuracy of increasingly complex ML methods
in compound potency predictions. To better understand these prediction characteristics
and explore consequences for benchmark comparisons of different methods, we have
carried out systematic potency value predictions on 376 activity classes with sufficient
numbers of compounds using a preferred ML approach and simple controls, including
kNN and MR calculations. Activity classes were curated to ensure that high-confidence
activity measurements were available for all compounds, thus avoiding potential bias
of predictions due to limited data quality. Our calculations most likely represent one of
the largest (if not the largest) compound potency prediction campaigns reported to date.
The results of the global predictions were surprisingly similar across a large number of
activity classes from three points of view. First, there were only little activity class-specific
differences in prediction patterns and accuracy; second, most predictions had limited error
margins falling well within an order of magnitude; third, in accordance with our earlier
observations, kNN calculations consistently rivaled SVR performance, and there was only
a small error range separating prediction accuracy including MR, the most control. Thus,
global potency predictions were surprisingly stable and accurate for methods of different
complexity. These findings implied that calculations on activity classes from medicinal
chemistry might generally produce predictions that are too similar for a realistic assessment
and comparison of different potency prediction methods. Accordingly, the results also call
the relevance of conventional benchmark settings into question. Benchmark calculations
are essential for assessing basic method performance but must also reliably quantify rel-
ative differences in the accuracy of alternative approaches. Therefore, we then explored
(i) possible reasons for the success of simple potency prediction approaches and (ii) ways in
which activity classes and calculation conditions might be modified to increase the difficulty
and sensitivity of benchmarking using model data sets. Specifically, we balanced potency
distributions in activity classes, removed large numbers of nearest neighbors from them,
and trained and tested models on structurally distinct compound sets obtained by analog
series partitioning. Predictions on model data sets were again unexpectedly robust. No-
tably, while minor increases in prediction errors were observed for modifications rendering
the predictions more challenging, none of these operations led to a significant difference
in relative performance between SVR and kNN. The observed stability and robustness of
the predictions on original and modified activity classes can be positively viewed because
promising predictions are obviously possible with rather different approaches and using
data set variants of varying composition. However, for conventional benchmarking, the
implications are profound. Based on the findings reported herein, benchmark calculations
on activity classes from medicinal chemistry, even if specifically modified to increase predic-
tion challenges, do not enable sound comparisons of different methods because alternative
predictions, including simple controls, are only differentiated by small error margins. A
potential reason for this might include the prevalence of structurally related compounds
with similar potency in activity classes (originating from chemical optimization efforts)
or the under-representation of highly potent compounds in data sets (representing the
most attractive prediction targets). As shown herein, however, predictions were resistant to
substantial structural modifications of activity classes. Thus, from this point of view, our
study should raise awareness of these issues and trigger attempts to develop fundamentally
different concepts for evaluating and comparing potency prediction methods, providing
opportunities for future investigations.

4. Materials and Methods
4.1. Compound Activity Data

From ChEMBL release 30 [13], bioactive compounds of less than 1000 Da with standard
potency measurements (ICsp) and a numerical specified potency value (standard relation
‘=") were retrieved. Potency values were recorded as the negative decadic logarithm. Only
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compounds with direct interactions (target relationship type: “D”) against human proteins
at the highest confidence level (target confidence score: 9) and pICsj values ranging from
5 to 11 were considered. Additionally, measurements labeled “potential transcription
error” and “potential author error” were removed. In addition, potential assay interference
compounds were removed using public filters and tools [14-16].

Based on these selection criteria, 91,733 compounds belonging to 376 activity classes
containing at least 50 compounds were obtained for the analysis. The largest 45 activity
classes consisted of at least 500 compounds each (yielding 40,440).

4.2. Compound Sets with Balanced Potency Distribution

The 45 largest activity classes were balanced to obtain an even potency value distribu-
tion across the entire potency range, yielding reduced data sets of 50% of the original size.
These balanced data sets were generated by dividing the potency range of each class into a
maximum of six equally sized bins (for logarithmic potency values of 5-6, 6-7, 7-8, 8-9,
9-10, and 10-11). The average number of compounds per bin was calculated by dividing
the number of available compounds by the number of bins. The bins were subsequently
populated with compounds until the number was equal to the calculated average. For
bins representing highest potency values, the number of available compounds was often
insufficient to satisfy this criterion. In this case, other potency bins for which compounds
were still available were uniformly populated until the final size of the balanced set was
equal to 50% of the original compound set.

4.3. Model Building and Implementation

For model building and evaluation, training and test sets were generated using random
and analog series-based compound partitioning. For each activity class, compounds were
randomly partitioned to obtain 80/20% and 50/50% training/test compound splits. In
addition, analog series comprising at least two compounds were systematically extracted
from activity classes using the compound-—core relationship algorithm [17]. Remaining
singletons were discarded. The analog series were then partitioned into training and test
sets corresponding to ~80/20% training/test compound splits such that both sets consisted
of unique analog series with no analog overlap between sets.

4.3.1. Support Vector Regression

SVR is an extension of the support vector machine algorithm for supervised learning
that derives a regression function through the generation of an e-insensitive tube using
training data. If a linear data separation is not feasible in the original feature space, a
kernel function is employed to project the data to a high-dimensional space where linear
separation might become possible [7,8]. For SVR, the regularization hyper-parameter C
was determined by testing (0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 10, 100, and 10,000) values.
SVR models were derived using the Tanimoto kernel [18].

4.3.2. k-Nearest Neighbor Regression

kNN is a non-parametric supervised learning method that ranks training compounds
based on increasing molecular similarity (decreasing distance). For a test compound, the
potency is then determined based on the potency values of the k top-ranked compounds
from the training set [19]. For kNN, the best-performing k values were determined for
one, three, and five top-ranked compounds by averaging potency values for three and
five compounds. In addition to applying optimized kNN values, 1-NN predictions were
consistently reported for all activity classes. For compound comparison, Tanimoto similarity
was calculated using the folded 2048-bit version of the extended connectivity fingerprint
with bond diameter 4 (ECFP4) [20] generated with RDKit [21].
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4.3.3. Median Regression

The MR control calculation uniformly assigns the median potency value of the training
set to each test set compound. This approach was employed as a control calculation.

4.3.4. Hyperparameter Optimization

For parameter optimization, kNN and SVR were submitted to a grid search with 5-fold
internal cross-validation implemented using scikit-learn [22].

4.4. Molecular Representation

For modeling, compounds were represented using the folded 2048-bit version of
ECFP4 generated using RDKit.

4.5. Performance Metric

To evaluate model performance, the mean absolute error (MAE) was calculated by
comparing predicted and experimental test compound potency values. The calculations
were carried out using scikit-learn. MAE is defined as

o 1§ .
MAE(y,9) = - Y.lvi = 9il )
i=1

where 7 is the number of compounds, and y and # are the experimental and predicted
potency values, respectively.
Increasing MAE values indicate decreasing prediction accuracy and vice versa.

4.6. Statistical Significance Testing

Statistical significance evaluation of differences between MAE value distributions was
carried out using the Wilcoxon test [23]. The alpha value with Bonferroni correction (n = 10)
was set to 0.005 and compared to the respective p-value (p < 0.005).

5. Conclusions

In this work, we have systematically investigated compound potency predictions on
nearly 400 different activity classes using ML and simple control models. In accord with
earlier observations, methods of different complexity produced overall similar prediction
accuracy differentiated by only small error margins, as demonstrated now on a very
large scale. Moreover, relative method performance remained stable despite specific
potency range and structural data set modifications designed to increase the difficulty of
the calculations. Taken together, our findings clearly indicate that conventional benchmark
calculations are not a realistic indicator of differences in the predictive performance of
alternative computational methods. Therefore, future research in this area should focus on
exploring and devising new concepts for benchmarking potency prediction methods.

Supplementary Materials: The following supporting information can be downloaded at:
https:/ /www.mdpi.com/article/10.3390/ph16040530/s1, Figure S1: Prediction accuracy, Figure S2:
Potency value distributions.
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