Mechanochemical Properties of Mucoadhesive Tablets Based on PVP/HPβCD Electrospun Nanofibers as Local Delivery of Polygoni cuspidati Extract for Treating Oral Infections
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Plant Material
3.2. Chemicals and Reagents
3.3. Extract Preparation and Characterization of Phytochemical and Biological Properties
3.4. PVP/HPβCD-Based Electrospun Nanofibers Preparation
Microbiological Activity in Liquid Culture
3.5. Tableting Process
3.5.1. Tablet Characterization
3.5.2. In Vitro Release Studies
3.5.3. Swelling Index
3.5.4. Determination of the Residence Time
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nazir, M.; Al-Ansari, A.; Al-Khalifa, K.; Alhareky, M.; Gaffar, B.; Almas, K. Global Prevalence of Periodontal Disease and Lack of Its Surveillance. Sci. World J. 2020, 2020, 2146160. [Google Scholar] [CrossRef] [PubMed]
- Periodontal Disease|Oral Health Conditions|Division of Oral Health|CDC. Available online: https://www.cdc.gov/oralhealth/conditions/periodontal-disease.html (accessed on 5 August 2022).
- Oral Health. Available online: https://www.who.int/news-room/fact-sheets/detail/oral-health (accessed on 5 August 2022).
- Coventry, J.; Griffiths, G.; Scully, C.; Tonetti, M. Periodontal Disease. BMJ 2000, 321, 36–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bullon, P.; Newman, H.N.; Battino, M. Obesity, Diabetes Mellitus, Atherosclerosis and Chronic Periodontitis: A Shared Pathology via Oxidative Stress and Mitochondrial Dysfunction? Periodontol. 2000 2014, 64, 139–153. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Andrukhov, O.; Rausch-Fan, X. Oxidative Stress and Antioxidant System in Periodontitis. Front. Physiol. 2017, 8, 910. [Google Scholar] [CrossRef] [Green Version]
- Zupančič, Š.; Baumgartner, S.; Lavrič, Z.; Petelin, M.; Kristl, J. Local Delivery of Resveratrol Using Polycaprolactone Nanofibers for Treatment of Periodontal Disease. J. Drug Deliv. Sci. Technol. 2015, 30, 408–416. [Google Scholar] [CrossRef]
- Zhang, H.; Li, C.; Kwok, S.-T.; Zhang, Q.-W.; Chan, S.-W. A Review of the Pharmacological Effects of the Dried Root of Polygonum Cuspidatum (Hu Zhang) and Its Constituents. Evid.-Based Complement. Altern. Med. 2013, 2013, e208349. [Google Scholar] [CrossRef] [Green Version]
- Shan, C.; Ji, X.; Wu, Z.; Zhao, J. Network Pharmacology Combined with GEO Database Identifying the Mechanisms and Molecular Targets of Polygoni Cuspidati Rhizoma on Peri-Implants. Sci. Rep. 2022, 12, 8227. [Google Scholar] [CrossRef]
- Castillo-Henríquez, L.; Vargas-Zúñiga, R.; Pacheco-Molina, J.; Vega-Baudrit, J. Electrospun Nanofibers: A Nanotechnological Approach for Drug Delivery and Dissolution Optimization in Poorly Water-Soluble Drugs. ADMET DMPK 2020, 8, 325–353. [Google Scholar] [CrossRef]
- Xiang, S.; Tang, H.W.; Zhou, J.; Li1, X.Z. Electrospinning of Hydroxypropyl-Beta-Cyclodextrin/Polyvinylpyrrolidone Resveratrol-Loaded Nanofibers: Preparation and Characterization. Indian J. Pharm. Sci. 2019, 81, 618–625. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Hu, S.C.-S.; Huang, P.-H.; Lin, T.-C.; Yen, F.-L. Electrospun Resveratrol-Loaded Polyvinylpyrrolidone/Cyclodextrin Nanofibers and Their Biomedical Applications. Pharmaceutics 2020, 12, 552. [Google Scholar] [CrossRef]
- Maria Leena, M.; Yoha, K.S.; Moses, J.A.; Anandharamakrishnan, C. Edible Coating with Resveratrol Loaded Electrospun Zein Nanofibers with Enhanced Bioaccessibility. Food Biosci. 2020, 36, 100669. [Google Scholar] [CrossRef]
- Nguyen, S.; Hiorth, M. Advanced Drug Delivery Systems for Local Treatment of the Oral Cavity. Ther. Deliv. 2015, 6, 595–608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paczkowska-Walendowska, M.; Miklaszewski, A.; Cielecka-Piontek, J. Is It Possible to Improve the Bioavailability of Resveratrol and Polydatin Derived from Polygoni Cuspidati Radix as a Result of Preparing Electrospun Nanofibers Based on Polyvinylpyrrolidone/Cyclodextrin? Nutrients 2022, 14, 3897. [Google Scholar] [CrossRef] [PubMed]
- Paczkowska-Walendowska, M.; Szymańska, E.; Winnicka, K.; Szwajgier, D.; Baranowska-Wójcik, E.; Ruchała, M.A.; Simon, M.; Cielecka-Piontek, J. Cyclodextrin as Functional Carrier in Development of Mucoadhesive Tablets Containing Polygoni Cuspidati Extract with Potential for Dental Applications. Pharmaceutics 2021, 13, 1916. [Google Scholar] [CrossRef] [PubMed]
- Mark Welch, J.L.; Rossetti, B.J.; Rieken, C.W.; Dewhirst, F.E.; Borisy, G.G. Biogeography of a Human Oral Microbiome at the Micron Scale. Proc. Natl. Acad. Sci. USA 2016, 113, E791–E800. [Google Scholar] [CrossRef] [Green Version]
- Baker, J.L.; Bor, B.; Agnello, M.; Shi, W.; He, X. Ecology of the Oral Microbiome: Beyond Bacteria. Trends Microbiol. 2017, 25, 362–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamarehei, F.; Mehdiabadi, M.; Naderi, F. Antibacterial effects of natural compounds on biofilm formation of Streptococcus mutans. Clin. Exp. Dent. Res. 2022, 8, 1426–1433. [Google Scholar] [CrossRef]
- Li, J.; Wu, T.; Peng, W.; Zhu, Y. Effects of Resveratrol on Cariogenic Virulence Properties of Streptococcus Mutans. BMC Microbiol. 2020, 20, 99. [Google Scholar] [CrossRef] [Green Version]
- Laha, A.; Gaydhane, M.K.; Sharma, C.S.; Majumdar, S. Compressed Nanofibrous Oral Tablets: An Ingenious Way for Controlled Release Kinetics of Amphotericin-B Loaded Gelatin Nanofibers. Nano-Struct. Nano-Objects 2019, 19, 100367. [Google Scholar] [CrossRef]
- Friuli, V.; Pisani, S.; Conti, B.; Bruni, G.; Maggi, L. Tablet Formulations of Polymeric Electrospun Fibers for the Controlled Release of Drugs with PH-Dependent Solubility. Polymers 2022, 14, 2127. [Google Scholar] [CrossRef]
- Paczkowska, M.; McDonagh, A.F.; Bialek, K.; Tajber, L.; Cielecka-Piontek, J. Mechanochemical Activation with Cyclodextrins Followed by Compaction as an Effective Approach to Improving Dissolution of Rutin. Int. J. Pharm. 2020, 581, 119294. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.J.; Rajabi-Siahboomi, A.; Levina, M.; Perrie, Y.; Mohammed, A.R. The Influence of Formulation and Manufacturing Process Parameters on the Characteristics of Lyophilized Orally Disintegrating Tablets. Pharmaceutics 2011, 3, 440–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pisani, S.; Friuli, V.; Conti, B.; Bruni, G.; Maggi, L. Tableted hydrophilic electrospun nanofibers to promote meloxicam dissolution rate. J. Drug Deliv. Sci. Technol. 2021, 66, 102878. [Google Scholar] [CrossRef]
- Dash, S.; Murthy, P.N.; Nath, L.; Chowdhury, P. Kinetic Modeling on Drug Release from Controlled Drug Delivery Systems. Acta Pol. Pharm. 2010, 67, 217–223. [Google Scholar] [PubMed]
- Arora, G.; Malik, K.; Singh, I. Formulation and evaluation of mucoadhesive matrix tablets of taro gum: Optimization using response surface methodology. Polym. Med. 2011, 41, 23–34. [Google Scholar]
- Javed, Q.u.A.; Syed, M.A.; Arshad, R.; Rahdar, A.; Irfan, M.; Raza, S.A.; Shahnaz, G.; Hanif, S.; Díez-Pascual, A.M. Evaluation and Optimization of Prolonged Release Mucoadhesive Tablets of Dexamethasone for Wound Healing: In Vitro–In Vivo Profiling in Healthy Volunteers. Pharmaceutics 2022, 14, 807. [Google Scholar] [CrossRef]
- Sizílio, R.H.; Galvão, J.G.; Trindade, G.G.G.; Pina, L.T.S.; Andrade, L.N.; Gonsalves, J.K.M.C.; Lira, A.A.M.; Chaud, M.V.; Alves, T.F.R.; Arguelho, M.L.P.M.; et al. Chitosan/Pvp-Based Mucoadhesive Membranes as a Promising Delivery System of Betamethasone-17-Valerate for Aphthous Stomatitis. Carbohydr. Polym. 2018, 190, 339–345. [Google Scholar] [CrossRef]
- Tye, C.K.; Sun, C.C.; Amidon, G.E. Evaluation of the Effects of Tableting Speed on the Relationships between Compaction Pressure, Tablet Tensile Strength, and Tablet Solid Fraction. J. Pharm. Sci. 2005, 94, 465–472. [Google Scholar] [CrossRef]
- Costa, P.; Sousa Lobo, J.M. Modeling and Comparison of Dissolution Profiles. Eur. J. Pharm. Sci. 2001, 13, 123–133. [Google Scholar] [CrossRef]
Resveratrol | Polydatin | P. cuspidate Liquid Extract | P. cuspidate Lyophilized Extract | Nanofibers | |
---|---|---|---|---|---|
Number of microorganisms [CFU] | |||||
Escherichia coli ATCC13706 | 1.9 × 102 → 3.3 × 102 | 2.1 × 102 → 3.9 × 104 | 2.0 × 102 → nd | 1.9 × 102 → nd | 1.2 × 102 → 3.0 × 103 |
Escherichia coli —clinical isolates | 1.4 × 102 → 5.9 × 102 | 1.3 × 102 → 8.0 × 103 | 1.9 × 102 → nd | 1.4 × 102 → nd | 1.9 × 102 → 5.1 × 103 |
Pseudomonas aeruginosa ATCC27853 | 1.4 × 102 → 3.0 × 102 | 1.4 × 102 → 4.7 × 103 | 1.0 × 102 → nd | 1.1 × 102 → nd | 1.4 × 102 → 3.3 × 102 |
Pseudomonas aeruginosa —clinical isolates | 1.1 × 102 → 3.6 × 102 | 1.8 × 102 → 3.3 × 106 | 1.0 × 102 → nd | 1.5 × 102 → nd | 1.1 × 102 → 3.0 × 102 |
Streptococcus mutans ATCC25175 | 1.2 × 102 → 3.3 × 103 | 1.0 × 102 → 3.0 × 105 | 1.0 × 102 → nd | 1.9 × 102 → nd | 1.3 × 102 → 3.1 × 103 |
Streptococcus mutans —clinical isolates | 1.1 × 102 → 1.9 × 102 | 1.3 × 102 → 8.2 × 105 | 1.9 × 102 → nd | 1.4 × 102 → nd | 1.9 × 102 → 5.2 × 103 |
Streptococcus salivarius ATCC 25975 | 3.4 × 102 → 3.0 × 103 | 2.9 × 102 → 6.9 × 105 | 1.9 × 102 → 5.9 × 102 | 1.6 × 102 → nd | 1.3 × 102 → 5.0 × 102 |
Streptococcus salivarius —clinical isolates | 1.4 × 102 → 3.7 × 102 | 1.0 × 102 → 5.0 × 105 | 1.1 × 102 → 5.9 × 102 | 1.4 × 102 → nd | 1.5 × 102 → 5.1 × 102 |
Staphylococcus aureus ATCC 6538 | 1.8 × 102 → 3.6 × 104 | 1.2 × 102 → 5.1 × 105 | 1.5 × 102 → nd | 1.4 × 102 → nd | 1.4 × 102 → 3.4 × 102 |
Staphylococcus aureus —clinical isolates | 1.0 × 102 → 1.9 × 102 | 1.3 × 102 → 3.7 × 104 | 1.9 × 102 → nd | 1.1 × 102 → nd | 1.7 × 102 → 3.2 × 102 |
Staphylococcus epidermidis NCTC 11047 | 1.4 × 102 → 3.7 × 103 | 2.0 × 102 → 9. × 106 | 1.1 × 102 → nd | 1.2 × 102 → nd | 1.0 × 102 → 3.0 × 103 |
Staphylococcus epidermidis —clinical isolates | 1.8 × 102 → 1.6 × 102 | 1.0 × 102 → 1.3 × 105 | 1.5 × 102 → 6.0 × 106 | 1.1 × 102 → nd | 1.4 × 102 → 6.1 × 102 |
Enterobacter aerogenes ATCC 51697 | 1.0 × 102 → 3.9 × 102 | 1.4 × 102 → 5.7 × 105 | 1.9 × 102 → 3.9 × 102 | 1.4 × 102 → 5.1 × 103 | 1.3 × 102 → 5.3 × 102 |
Enterobacter aerogenes —clinical isolates | 1.4 × 102 → 2.7 × 102 | 1.7 × 102 → 2.7 × 105 | 1.1 × 102 → 5.9 × 103 | 1.4 × 102 → 3.0 × 102 | 1.0 × 102 → 2.0 × 102 |
Candida albicans ATCC10231 | 1.8 × 102 → 2.6 × 103 | 1.8 × 102 → 9.3 × 104 | 1.2 × 102 → 2.0 × 102 | 1.1 × 102 → nd | 1.2 × 102 → 3.2 × 103 |
Candida albicans —clinical isolates | 1.0 × 102 → 2.0 × 103 | 1.0 × 102 → 1.4 × 104 | 1.1 × 102 → 1.9 × 103 | 1.2 × 102 → 3.6 × 102 | 1.0 × 102 → 3.1 × 103 |
Escherichia coli ATCC13706 | 1.9 × 102 → 3.3 × 102 | 2.1 × 102 → 3.9 × 104 | 2.0 × 102 → nd | 1.9 × 102 → nd | 1.2 × 102 → 3.0 × 103 |
Escherichia coli— clinical isolates | 1.4 × 102 → 5.9 × 102 | 1.3 × 102 → 8.0 × 103 | 1.9 × 102 → nd | 1.4 × 102 → nd | 1.9 × 102 → 5.1 × 103 |
Mathematical Model | ||||||||
---|---|---|---|---|---|---|---|---|
Zero-Order Kinetics | First-Order Kinetics | Higuchi Kinetics | Korsmeyer–Peppas Kinetics | |||||
K | R2 | K | R2 | K | R2 | R2 | n | |
Polydatin | ||||||||
Tablets (nanofibers) | 16.84 | 0.36 | 0.69 | 0.22 | 14.12 | 0.84 | 0.72 | 0.68 |
Tablets (powder) | 17.47 | 0.44 | 0.64 | 0.29 | 13.21 | 0.89 | 0.84 | 0.63 |
Resveratrol | ||||||||
Tablets (nanofibers) | 23.00 | 0.59 | 0.84 | 0.36 | 14.83 | 0.93 | 0.86 | 0.71 |
Tablets (powder) | 20.82 | 0.61 | 0.82 | 0.36 | 13.37 | 0.93 | 0.85 | 0.69 |
Formulation | TN | TP |
---|---|---|
Residence time (min) | 30 ± 3 | 50 ± 5 |
Tablets from Nanofibers (TN) | Tablets from Powder (TP) | ||
---|---|---|---|
Content (mg) per Tablet | |||
Nanofibers | Extract | 33.(3) | - |
HPβCD | 33.(3) | - | |
PVP | 33.(3) | - | |
Powder | Lyophilised extract (equivalent amount of polydatin and resveratrol) | - | 10.0 |
HPβCD | - | 45.0 | |
PVP | - | 45.0 | |
Magnesium stearate | 1.0 | 1.0 | |
Sum | 101.0 | 101.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paczkowska-Walendowska, M.; Szymanowska, D.; Cielecka-Piontek, J. Mechanochemical Properties of Mucoadhesive Tablets Based on PVP/HPβCD Electrospun Nanofibers as Local Delivery of Polygoni cuspidati Extract for Treating Oral Infections. Pharmaceuticals 2023, 16, 579. https://doi.org/10.3390/ph16040579
Paczkowska-Walendowska M, Szymanowska D, Cielecka-Piontek J. Mechanochemical Properties of Mucoadhesive Tablets Based on PVP/HPβCD Electrospun Nanofibers as Local Delivery of Polygoni cuspidati Extract for Treating Oral Infections. Pharmaceuticals. 2023; 16(4):579. https://doi.org/10.3390/ph16040579
Chicago/Turabian StylePaczkowska-Walendowska, Magdalena, Daria Szymanowska, and Judyta Cielecka-Piontek. 2023. "Mechanochemical Properties of Mucoadhesive Tablets Based on PVP/HPβCD Electrospun Nanofibers as Local Delivery of Polygoni cuspidati Extract for Treating Oral Infections" Pharmaceuticals 16, no. 4: 579. https://doi.org/10.3390/ph16040579
APA StylePaczkowska-Walendowska, M., Szymanowska, D., & Cielecka-Piontek, J. (2023). Mechanochemical Properties of Mucoadhesive Tablets Based on PVP/HPβCD Electrospun Nanofibers as Local Delivery of Polygoni cuspidati Extract for Treating Oral Infections. Pharmaceuticals, 16(4), 579. https://doi.org/10.3390/ph16040579