Collaterally Sensitive β-Lactam Drugs as an Effective Therapy against the Pre-Existing Methicillin Resistant Staphylococcus aureus (MRSA) Biofilms
Abstract
:1. Introduction
2. Results
2.1. The Antibacterial Activity of Piperacillin, Meropenem, and Tazobactam against MRSA in the Planktonic Phase
2.2. The Synergistic Antibacterial Activity of Combinations of Meropenem, Piperacillin, and Tazobactam against MRSA in the Planktonic Phase
2.3. MRSA Biofilm Inhibition by Piperacillin, Meropenem, and Tazobactam
2.4. MRSA Biofilm Inhibition by Combinations of Meropenem, Piperacillin and Tazobactam
2.5. Removal of Pre-Formed MRSA Biofilms by Meropenem, Piperacillin, and Tazobactam
2.6. Removal of Pre-Formed MRSA Biofilms by Combinations of Meropenem, Piperacillin, and Tazobactam
3. Discussion
4. Materials and Methods
4.1. Drugs, Stock Solutions, and MRSA
4.2. Determination of the Antibacterial Activity of Drugs
4.3. Determination of Biofilm Inhibition
4.4. Determination of Biofilm Removal
4.5. Statistical Evaluation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gajdács, M. The continuing threat of methicillin-resistant Staphylococcus aureus. Antibiotics 2019, 8, 52. [Google Scholar] [CrossRef]
- Tipper, D. Mode of action of β-lactam antibiotics. Rev. Infect. Dis. 1979, 1, 39–53. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Mwangi, M.; Chung, M.; Milheirço, C.; de Lencastre, H.; Tomasz, A. The mechanism of heterogeneous beta-lactam resistance in MRSA: Key role of the stringent stress response. PLoS ONE 2013, 8, e82814. [Google Scholar] [CrossRef]
- Sivaraman, G.; Muneeb, K.; Sudha, S.; Shome, B.; Cole, J.; Holmes, M. Prevalence of virulent and biofilm forming ST88-IV-t2526 methicillin-resistant Staphylococcus aureus clones circulating in local retail fish markets in Assam, India. Food Control 2021, 127, 108098. [Google Scholar] [CrossRef]
- Pazlarova, J.; Purkrtova, S.; Babulikova, J.; Demnerova, K. Effects of ampicillin and vancomycin on Staphylococcus aureus biofilms. Czech J. Food Sci. 2016, 32, 137–144. [Google Scholar] [CrossRef]
- Mah, T.-F. Biofilm-specific antibiotic resistance. Future Microbiol. 2012, 7, 1061–1072. [Google Scholar] [CrossRef]
- Neopane, P.; Nepal, H.P.; Shrestha, R.; Uehara, O.; Abiko, Y. In Vitro biofilm formation by Staphylococcus aureus isolated from wounds of hospital-admitted patients and their association with antimicrobial resistance. Int. J. Gen. Med. 2018, 11, 25. [Google Scholar] [CrossRef] [PubMed]
- Yoshii, Y.; Okuda, K.-I.; Yamada, S.; Nagakura, M.; Sugimoto, S.; Nagano, T.; Okabe, T.; Kojima, H.; Iwamoto, T.; Kuwano, K. Norgestimate inhibits staphylococcal biofilm formation and resensitizes methicillin-resistant Staphylococcus aureus to β-lactam antibiotics. NPJ Biofilms Microbiomes 2017, 3, 18. [Google Scholar] [CrossRef]
- Sharma, D.; Misba, L.; Khan, A.U. Antibiotics versus biofilm: An emerging battleground in microbial communities. Antimicrob. Resist. Infect. Control. 2019, 8, 76. [Google Scholar] [CrossRef]
- Ayaz, M.; Ullah, F.; Sadiq, A.; Ullah, F.; Ovais, M.; Ahmed, J.; Devkota, H.P. Synergistic interactions of phytochemicals with antimicrobial agents: Potential strategy to counteract drug resistance. Chem. Biol. Interact. 2019, 308, 294–303. [Google Scholar] [CrossRef]
- Ayaz, M.; Subhan, F.; Ahmed, J.; Khan, A.-U.; Ullah, F.; Ullah, I.; Ali, G.; Syed, N.-I.-H.; Hussain, S. Sertraline enhances the activity of antimicrobial agents against pathogens of clinical relevance. J. Biol. Res. -Thessalon. 2015, 22, 4. [Google Scholar] [CrossRef] [PubMed]
- Gonzales, P.R.; Pesesky, M.W.; Bouley, R.; Ballard, A.; Biddy, B.A.; Suckow, M.A.; Wolter, W.R.; Schroeder, V.A.; Burnham, C.-A.D.; Mobashery, S. Synergistic, collaterally sensitive β-lactam combinations suppress resistance in MRSA. Nat. Chem. Biol. 2015, 11, 855–861. [Google Scholar] [CrossRef]
- Edwards, J. Meropenem: A microbiological overview. J. Antimicrob. Chemother. 1995, 36, 1–17. [Google Scholar] [CrossRef]
- Baldwin, C.M.; Lyseng-Williamson, K.A.; Keam, S.J. Meropenem: A review of its use in the treatment of serious bacterial infections. Drugs 2008, 68, 803–838. [Google Scholar] [CrossRef] [PubMed]
- Fortner, C.L.; Finley, R.S.; Schimpff, S.C. Piperacillin sodium: Antibacterial spectrum, pharmacokinetics, clinical efficacy, and adverse reactions. Pharmacother. J. Hum. Pharmacol. Drug Ther. 1982, 2, 287–298. [Google Scholar] [CrossRef] [PubMed]
- Bryson, H.M.; Brogden, R.N. Piperacillin/tazobactam: A review of its antibacterial activity, pharmacokinetic properties and therapeutic potential. Drugs 1994, 47, 506–535. [Google Scholar] [CrossRef]
- Hegreness, M.; Shoresh, N.; Damian, D.; Hartl, D.; Kishony, R. Accelerated evolution of resistance in multidrug environments. Proc. Natl. Acad. Sci. USA 2008, 105, 13977–13981. [Google Scholar] [CrossRef]
- Campbell, E.M.; Chao, L. A population model evaluating the consequences of the evolution of double-resistance and tradeoffs on the benefits of two-drug antibiotic treatments. PLoS ONE 2014, 9, e86971. [Google Scholar] [CrossRef]
- Abodakpi, H.; Chang, K.-T.; Gao, S.; Sánchez-Díaz, A.M.; Cantón, R.; Tam, V.H. Optimal piperacillin-tazobactam dosing strategies against extended-spectrum-β-lactamase-producing Enterobacteriaceae. Antimicrob. Agents Chemother. 2019, 63, e01906-18. [Google Scholar] [CrossRef]
- Ciofu, O.; Moser, C.; Jensen, P.Ø.; Høiby, N. Tolerance and resistance of microbial biofilms. Nat. Rev. Microbiol. 2022, 20, 621–635. [Google Scholar] [CrossRef]
- Vipin, C.; Saptami, K.; Fida, F.; Mujeeburahiman, M.; Rao, S.S.; Arun, A.B.; Rekha, P.D. Potential synergistic activity of quercetin with antibiotics against multidrug-resistant clinical strains of Pseudomonas aeruginosa. PLoS ONE 2020, 15, e0241304. [Google Scholar] [CrossRef]
- Li, Y.; Xiao, P.; Wang, Y.; Hao, Y. Mechanisms and control measures of mature biofilm resistance to antimicrobial agents in the clinical context. ACS Omega 2020, 5, 22684–22690. [Google Scholar] [CrossRef]
- Egan, A.J.; Cleverley, R.M.; Peters, K.; Lewis, R.J.; Vollmer, W. Regulation of bacterial cell wall growth. FEBS J. 2017, 284, 851–867. [Google Scholar] [CrossRef]
- Santiago, C. Application of Plant Metabolites to Overcome Antibiotic Resistance of Methicillin Resistant Staphylococcus aureus (MRSA); University of Nottingham: Semenyih, Malaysia, 2015. [Google Scholar]
- Tiwari, A.; Tiwari, V.; Sahoo, B.M.; Banik, B.K.; Kumar, M.; Verma, N. Carbapenem Antibiotics: Recent Update on Synthesis and Pharmacological Activities. Curr. Drug Res. Rev. Former. 2023, 15, 35–61. [Google Scholar] [CrossRef] [PubMed]
- Sankaran, J.; Tan, N.J.; But, K.P.; Cohen, Y.; Rice, S.A.; Wohland, T. Single microcolony diffusion analysis in Pseudomonas aeruginosa biofilms. NPJ Biofilms Microbiomes 2019, 5, 35. [Google Scholar] [CrossRef] [PubMed]
- Rodis, N.; Tsapadikou, V.; Potsios, C.; Xaplanteri, P. Resistance mechanisms in bacterial biofilm formations: A review. J. Emerg. Intern. Med. 2020, 4, 30. [Google Scholar]
- Rahman, M.M.; Hunter, H.N.; Prova, S.; Verma, V.; Qamar, A.; Golemi-Kotra, D. The Staphylococcus aureus methicillin resistance factor FmtA is a d-amino esterase that acts on teichoic acids. MBio 2016, 7, e02070-15. [Google Scholar] [CrossRef]
- Dalal, V.; Dhankhar, P.; Singh, V.; Singh, V.; Rakhaminov, G.; Golemi-Kotra, D.; Kumar, P. Structure-based identification of potential drugs against FmtA of Staphylococcus aureus: Virtual screening, molecular dynamics, MM-GBSA, and QM/MM. Protein J. 2021, 40, 148–165. [Google Scholar] [CrossRef]
- Singh, V.; Dhankhar, P.; Dalal, V.; Tomar, S.; Golemi-Kotra, D.; Kumar, P. Drug-Repurposing Approach To Combat Staphylococcus aureus: Biomolecular and Binding Interaction Study. ACS Omega 2022, 7, 38448–38458. [Google Scholar] [CrossRef]
- Łubowska, N.; Grygorcewicz, B.; Kosznik-Kwaśnicka, K.; Zauszkiewicz-Pawlak, A.; Węgrzyn, A.; Dołęgowska, B.; Piechowicz, L. Characterization of the three new kayviruses and their lytic activity against multidrug-resistant Staphylococcus aureus. Microorganisms 2019, 7, 471. [Google Scholar] [CrossRef]
- Masimen, M.A.A.; Harun, N.A.; Maulidiani, M.; Ismail, W.I.W. Overcoming methicillin-resistance Staphylococcus aureus (MRSA) using antimicrobial peptides-silver nanoparticles. Antibiotics 2022, 11, 951. [Google Scholar] [CrossRef] [PubMed]
- Dong, P.T.; Mohammad, H.; Hui, J.; Leanse, L.G.; Li, J.; Liang, L.; Dai, T.; Seleem, M.N.; Cheng, J.X. Photolysis of Staphyloxanthin in methicillin-resistant Staphylococcus aureus potentiates killing by reactive oxygen species. Adv. Sci. 2019, 6, 1900030. [Google Scholar] [CrossRef]
- Cella, M.A.; Coulson, T.; MacEachern, S.; Badr, S.; Ahmadi, A.; Tabatabaei, M.S.; Labbe, A.; Griffiths, M.W. Probiotic disruption of quorum sensing reduces virulence and increases cefoxitin sensitivity in methicillin-resistant Staphylococcus aureus. Sci. Rep. 2023, 13, 4373. [Google Scholar] [CrossRef] [PubMed]
- Nandhini, P.; Kumar, P.; Mickymaray, S.; Alothaim, A.S.; Somasundaram, J.; Rajan, M. Recent developments in Methicillin-Resistant Staphylococcus aureus (MRSA) treatment: A review. Antibiotics 2022, 11, 606. [Google Scholar] [CrossRef] [PubMed]
MRSA Planktonic Growth Inhibition by Individual and Combinations of β-Lactam Drugs | |||||||
---|---|---|---|---|---|---|---|
50 μg/mL | 25 μg/mL | 12.5 μg/mL | 6.25 μg/mL | 3.12 μg/mL | 1.56 μg/mL | 0.78 μg/mL | |
Piperacillin | 12.1% | 13.1% | 12.6% | 11.7% | 9.4% | 7.6% | 1.0% |
Meropenem | 0.5% | –9.6% | –8.1% | –9.3% | –7.8% | –10.6% | –5.7% |
Tazobactam | 9.0% | –1.3% | 0.5% | 0.3% | 1.8% | 5.5% | 0.7% |
Piperacillin + Tazobactam | 41.3% | 34.6% | 33.1% | 30.3% | 21.1% | 4.1% | 0.3% |
Meropenem + Piperacillin | 40.3% | 25% | 10.9% | 11.3% | 8.9% | 8.9% | 7.4% |
Meropenem + Tazobactam | 35.1% | 28.5% | 24.1% | 13% | 8.1% | 7.9% | 6.9% |
Meropenem + Tazobactam + Piperacillin | 41.7% | 25.1% | 24.2% | 18.6% | 17.4% | 2.9% | –3.6% |
MRSA Biofilm Inhibition by Individual and Combinations of β-Lactam Drugs | |||||||
Piperacillin | 8% | 6.6% | 5.7% | 10.6% | 11.2% | 8% | 10.5% |
Meropenem | 11% | 5.9% | 9.8% | 5.7% | 7.8% | 9.7% | 9.4% |
Tazobactam | 6.4% | –1.1% | –0.6% | 4.4% | –4.9% | 5.7% | 4.2% |
Piperacillin + Tazobactam | 0.5% | 2% | 6.1% | 4.1% | 7.3% | 5.6% | 5% |
Meropenem + Piperacillin | 14.2% | 1% | 0.8% | 7.2% | 0.4% | 7.4% | 2.8% |
Meropenem + Tazobactam | 3% | 2.7% | 1.6% | 3.4% | 3.7% | 1.5% | 0% |
Meropenem + Tazobactam + Piperacillin | 44.3% | 25.7% | 11.7% | 13.9% | 3.3% | 5% | 4.3% |
MRSA Biofilm Reduction by Individual and Combinations of β-Lactam Drugs | |||||||
Piperacillin | 18.6% | 8.9% | 6.4% | 12% | 7.3% | 3.9% | 1.3% |
Meropenem | 6.5% | 8.2% | 3.5% | 7.8% | 3.7% | 11.3% | 6.5% |
Tazobactam | 1.7% | –3.9% | 5.7% | 5.5% | 0.5% | –1.7% | –0.9% |
Piperacillin + Tazobactam | 45.6% | 46% | 10.9% | 16.8% | 3.2% | 8.8% | 5.8% |
Meropenem + Piperacillin | 3.3% | 17.6% | 12.7% | –0.2% | –0.4% | 3.6% | 2.9% |
Meropenem + Tazobactam | 10.9% | –0.1% | 0% | 0.3% | 0.4% | 0.1% | 2.1% |
Meropenem + Tazobactam + Piperacillin | 38.7% | 22.3% | 9.9% | 19.8% | 1.7% | 4.5% | 1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hashmi, H.B.; Farooq, M.A.; Khan, M.H.; Alshammari, A.; Aljasham, A.T.; Rashid, S.A.; Khan, N.R.; Hashmi, I.B.; Badar, M.; Mubarak, M.S. Collaterally Sensitive β-Lactam Drugs as an Effective Therapy against the Pre-Existing Methicillin Resistant Staphylococcus aureus (MRSA) Biofilms. Pharmaceuticals 2023, 16, 687. https://doi.org/10.3390/ph16050687
Hashmi HB, Farooq MA, Khan MH, Alshammari A, Aljasham AT, Rashid SA, Khan NR, Hashmi IB, Badar M, Mubarak MS. Collaterally Sensitive β-Lactam Drugs as an Effective Therapy against the Pre-Existing Methicillin Resistant Staphylococcus aureus (MRSA) Biofilms. Pharmaceuticals. 2023; 16(5):687. https://doi.org/10.3390/ph16050687
Chicago/Turabian StyleHashmi, Hamna Batool, Muhammad Asad Farooq, Muhammad Hashim Khan, Abdulrahman Alshammari, Alanoud T. Aljasham, Sheikh Abdur Rashid, Nauman Rahim Khan, Irum Batool Hashmi, Muhammad Badar, and Mohammad S. Mubarak. 2023. "Collaterally Sensitive β-Lactam Drugs as an Effective Therapy against the Pre-Existing Methicillin Resistant Staphylococcus aureus (MRSA) Biofilms" Pharmaceuticals 16, no. 5: 687. https://doi.org/10.3390/ph16050687
APA StyleHashmi, H. B., Farooq, M. A., Khan, M. H., Alshammari, A., Aljasham, A. T., Rashid, S. A., Khan, N. R., Hashmi, I. B., Badar, M., & Mubarak, M. S. (2023). Collaterally Sensitive β-Lactam Drugs as an Effective Therapy against the Pre-Existing Methicillin Resistant Staphylococcus aureus (MRSA) Biofilms. Pharmaceuticals, 16(5), 687. https://doi.org/10.3390/ph16050687