Synthesis, In Silico Studies, and Antioxidant and Tyrosinase Inhibitory Potential of 2-(Substituted Phenyl) Thiazolidine-4-Carboxamide Derivatives
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological Evaluation
2.2.1. Determination of Antioxidant Activity
2.2.2. Tyrosinase Inhibition Studies
2.3. Molecular Docking
3. Materials and Methods
3.1. Instruments and Chemicals
3.2. General Procedure for the Synthesis of the Thiazolidine Nucleus
3.2.1. 2-(2-Hydroxyphenyl)-1,3-thiazolidine-4-carboxylic Acid (1)
3.2.2. 2-(2-Methoxyphenyl)-1,3-thiazolidine-4-carboxylic Acid (2)
3.2.3. 2-(4-Hydroxyphenyl)-1,3-thiazolidine-4-carboxylic Acid (3)
3.2.4. 2-(4-Methoxyphenyl)-1,3-thiazolidine-4-carboxylic Acid (4)
3.3. General Scheme for the Synthesis of Carboxamide Derivatives from Thiazolidine Nucleus
3.3.1. 4-[2-(2-Hydroxyphenyl)-1,3-thiazolidine-4-carbonyl]-aminobenzoic Acid (1a)
3.3.2. [2-(2-Hydroxyphenyl)-1,3-thiazolidin-4-yl](morpholin-4-yl)-methanone (1b)
3.3.3. 2-(2-Hydroxyphenyl)-N-(4-hydroxyphenyl)-1,3-thiazolidine-4-carboxamide (1c)
3.3.4. 2-Hydroxy-4-[2-(2-hydroxyphenyl)-1,3-thiazolidine-4-carbonyl]-aminobenzoic Acid (1d)
3.3.5. 2-(2-Hydroxyphenyl)-N-(4-methoxyphenyl)-1,3-thiazolidine-4-carboxamide (1e)
3.3.6. 4-[2-(2-Methoxyphenyl)-1,3-thiazolidine-4-carbonyl]-aminobenzoic Acid (2a)
3.3.7. 2-Hydroxy-4-[2-(2-methoxyphenyl)-1,3-thiazolidine-4-carbonyl]-aminobenzoic Acid (2d)
3.3.8. 4-[2-(4-Hydroxyphenyl)-1,3-thiazolidine-4-carbonyl]-aminobenzoic Acid (3a)
3.3.9. N,2-Bis(4-hydroxyphenyl)-1,3-thiazolidine-4-carboxamide (3c)
3.3.10. 2-Hydroxy-4-[2-(4-hydroxyphenyl)-1,3-thiazolidine-4-carbonyl]-aminobenzoic Acid (3d)
3.3.11. 2-(4-Hydroxyphenyl)-N-(4-methoxyphenyl)-1,3-thiazolidine-4-carboxamide (3e)
3.3.12. 4-[2-(4-Methoxyphenyl)-1,3-thiazolidine-4-carbonyl]-aminobenzoic Acid (4a)
3.3.13. 2-Hydroxy-4-[2-(4-methoxyphenyl)-1,3-thiazolidine-4-carbonyl]-aminobenzoic Acid (4d)
3.3.14. N,2-Bis(4-methoxyphenyl)-1,3-thiazolidine-4-carboxamide (4e)
3.4. Biological Evaluation
3.4.1. Determination of Antioxidant Activity
3.4.2. Inhibitory Assay against Tyrosinase Enzyme
3.5. In Silico Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schubert, M.P. Compounds of thiol acids with aldehydes. J. Biol. Chem. 1936, 114, 341–350. [Google Scholar] [CrossRef]
- Nawar, F.; Al-Asadi, R.; Abid, D. Synthesis, Antibacterial Activity and DFT Calculations of Some Thiazolidine-4-Carboxylic acid Derivatives and Their Complexes with Cu (II), Fe (II) and VO (II). Egypt. J. Chem. 2020, 63, 349–362. [Google Scholar] [CrossRef]
- Sahiba, N.; Sethiya, A.; Soni, J.; Agarwal, D.K.; Agarwal, S. Saturated five-membered thiazolidines and their derivatives: From synthesis to biological applications. Top. Curr. Chem. 2020, 378, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Şöhretoğlu, D.; Sari, S.; Barut, B.; Özel, A. Tyrosinase inhibition by some flavonoids: Inhibitory activity, mechanism by in vitro and in silico studies. Bioorganic Chem. 2018, 81, 168–174. [Google Scholar] [CrossRef]
- Tsong-Min, C. Tyrosinase and tyrosinase inhibitors. J. Biocatal. Biotransformation 2012, 2, 327–333. [Google Scholar]
- Li, J.; Feng, L.; Liu, L.; Wang, F.; Ouyang, L.; Zhang, L.; Hu, X.; Wang, G. Recent advances in the design and discovery of synthetic tyrosinase inhibitors. Eur. J. Med. Chem. 2021, 224, 113744. [Google Scholar] [CrossRef]
- Ismaya, W.T.; Rozeboom, H.J.; Weijn, A.; Mes, J.J.; Fusetti, F.; Wichers, H.J.; Dijkstra, B.W. Crystal structure of Agaricus bisporus mushroom tyrosinase: Identity of the tetramer subunits and interaction with tropolone. Biochemistry 2011, 50, 5477–5486. [Google Scholar] [CrossRef] [Green Version]
- Ismaya, W.T.; Efthyani, A.; Lai, X.; Retnoningrum, D.S.; Rachmawati, H.; Dijkstra, B.W.; Tjandrawinata, R.R. A novel immune-tolerable and permeable lectin-like protein from mushroom Agaricus bisporus. Biochem. Biophys. Res. Commun. 2016, 473, 1090–1093. [Google Scholar] [CrossRef]
- De Luca, L.; Germanò, M.P.; Fais, A.; Pintus, F.; Buemi, M.R.; Vittorio, S.; Mirabile, S.; Rapisarda, A.; Gitto, R. Discovery of a new potent inhibitor of mushroom tyrosinase (Agaricus bisporus) containing 4-(4-hydroxyphenyl) piperazin-1-yl moiety. Bioorganic Med. Chem. 2020, 28, 115497. [Google Scholar] [CrossRef]
- Xia, L.; Idhayadhulla, A.; Lee, Y.R.; Wee, Y.-J.; Kim, S.H. Anti-tyrosinase, antioxidant, and antibacterial activities of novel 5-hydroxy-4-acetyl-2, 3-dihydronaphtho [1, 2-b] furans. Eur. J. Med. Chem. 2014, 86, 605–612. [Google Scholar] [CrossRef]
- Yu, F.; Pan, Z.; Qu, B.; Yu, X.; Xu, K.; Deng, Y.; Liang, F. Identification of a tyrosinase gene and its functional analysis in melanin synthesis of Pteria penguin. Gene 2018, 656, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Jeon, N.-J.; Kim, Y.-S.; Kim, E.-K.; Dong, X.; Lee, J.-W.; Park, J.-S.; Shin, W.-B.; Moon, S.-H.; Jeon, B.-T.; Park, P.-J. Inhibitory effect of carvacrol on melanin synthesis via suppression of tyrosinase expression. J. Funct. Foods 2018, 45, 199–205. [Google Scholar] [CrossRef]
- Shoeva, O.Y.; Mursalimov, S.R.; Gracheva, N.V.; Glagoleva, A.Y.; Börner, A.; Khlestkina, E.K. Melanin formation in barley grain occurs within plastids of pericarp and husk cells. Sci. Rep. 2020, 10, 179. [Google Scholar] [CrossRef] [Green Version]
- Hanif, N.; Al-Shami, A.M.A.; Khalid, K.A.; Hadi, H. Plant-based skin lightening agents: A review. J. Phytopharm 2020, 9, 54–60. [Google Scholar] [CrossRef]
- Kwon, H.J.; Cho, Y.S. Pharmaceutical Composition for Preventing or Treating Autophagy-Related Diseases, Angiogenic Diseases or Melanin-Related Diseases. U.S. Patent 9,328,059, 3 May 2016. [Google Scholar]
- Momtaz, S.; Lall, N.; Basson, A. Inhibitory activities of mushroom tyrosine and DOPA oxidation by plant extracts. S. Afr. J. Bot. 2008, 74, 577–582. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Yim, S.; Santhanam, U.; Lyga, J.W. Tyrosinase Inhibitors. Patents WO2014158943A1, 2 October 2016. [Google Scholar]
- Ullah, S.; Son, S.; Yun, H.Y.; Kim, D.H.; Chun, P.; Moon, H.R. Tyrosinase inhibitors: A patent review (2011–2015). Expert Opin. Ther. Pat. 2016, 26, 347–362. [Google Scholar] [CrossRef]
- Amaral, L.M.; Moniz, T.; Leite, A.; Oliveira, A.; Fernandes, P.; Ramos, M.J.; Araújo, A.N.; Freitas, M.; Fernandes, E.; Rangel, M. A combined experimental and computational study to discover novel tyrosinase inhibitors. J. Inorg. Biochem. 2022, 234, 111879. [Google Scholar] [CrossRef]
- Ha, Y.M.; Park, Y.J.; Lee, J.Y.; Park, D.; Choi, Y.J.; Lee, E.K.; Kim, J.M.; Kim, J.-A.; Park, J.Y.; Lee, H.J. Design, synthesis and biological evaluation of 2-(substituted phenyl) thiazolidine-4-carboxylic acid derivatives as novel tyrosinase inhibitors. Biochimie 2012, 94, 533–540. [Google Scholar] [CrossRef]
- Bajpai, P.; Jain, S.; Choubey, A. Thiazolidine, A Versatile ring in the treatment of various Diseases: A Systematic Review. Asian J. Res. Chem. 2020, 13, 283–286. [Google Scholar] [CrossRef]
- Das, A.; Ashraf, M.W.; Banik, B.K. Thione Derivatives as Medicinally Important Compounds. ChemistrySelect 2021, 6, 9069–9100. [Google Scholar] [CrossRef]
- Peng, Z.; Wang, G.; Zeng, Q.-H.; Li, Y.; Liu, H.; Wang, J.J.; Zhao, Y. A systematic review of synthetic tyrosinase inhibitors and their structure-activity relationship. Crit. Rev. Food Sci. Nutr. 2021, 62, 4053–4094. [Google Scholar] [CrossRef] [PubMed]
- Ullah, S.; Park, Y.; Park, C.; Lee, S.; Kang, D.; Yang, J.; Akter, J.; Chun, P.; Moon, H.R. Antioxidant, anti-tyrosinase and anti-melanogenic effects of (E)-2, 3-diphenylacrylic acid derivatives. Bioorganic Med. Chem. 2019, 27, 2192–2200. [Google Scholar] [CrossRef] [PubMed]
- Bilgicli, A.T.; Genc Bilgicli, H.; Hepokur, C.; Tüzün, B.; Günsel, A.; Zengin, M.; Yarasir, M.N. Synthesis of (4R)-2-(3-hydroxyphenyl) thiazolidine-4-carboxylic acid substituted phthalocyanines: Anticancer activity on different cancer cell lines and molecular docking studies. Appl. Organomet. Chem. 2021, 35, e6242. [Google Scholar] [CrossRef]
- Ohba, M.; Oka, T.; Ando, T.; Arahata, S.; Ikegaya, A.; Takagi, H.; Ogo, N.; Owada, K.; Kawamori, F.; Wang, Q. Discovery and synthesis of heterocyclic carboxamide derivatives as potent anti-norovirus agents. Chem. Pharm. Bull. 2016, 64, 465–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, M.; Fatima, H.; Qasim, M.; Gul, B. Polarity directed optimization of phytochemical and in vitro biological potential of an indigenous folklore: Quercus dilatata Lindl. ex Royle. BMC Complement. Altern. Med. 2017, 17, 386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rezaei, M.; Mohammadi, H.T.; Mahdavi, A.; Shourian, M.; Ghafouri, H. Evaluation of thiazolidinone derivatives as a new class of mushroom tyrosinase inhibitors. Int. J. Biol. Macromol. 2018, 108, 205–213. [Google Scholar] [CrossRef]
- Ashraf, Z.; Rafiq, M.; Seo, S.-Y.; Babar, M.M.; Zaidi, N.-u.-S.S. Synthesis, kinetic mechanism and docking studies of vanillin derivatives as inhibitors of mushroom tyrosinase. Bioorganic Med. Chem. 2015, 23, 5870–5880. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.J.; Noh, S.G.; Park, Y.; Kang, D.; Chun, P.; Chung, H.Y.; Moon, H.R. In vitro and in silico insights into tyrosinase inhibitors with (E)-benzylidene-1-indanone derivatives. Comput. Struct. Biotechnol. J. 2019, 17, 1255–1264. [Google Scholar] [CrossRef]
- Momtaz, S.; Mapunya, B.; Houghton, P.; Edgerly, C.; Hussein, A.; Naidoo, S.; Lall, N. Tyrosinase inhibition by extracts and constituents of Sideroxylon inerme L. stem bark, used in South Africa for skin lightening. J. Ethnopharmacol. 2008, 119, 507–512. [Google Scholar] [CrossRef]
- Cheminformatics, M. Calculation of molecular properties and bioactivity score. Comput. Softw. 2018. [Google Scholar]
- Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. In Chemical Biology; Methods in Molecular Biology; Humana Press: New York, NY, USA, 2015; Volume 1263, pp. 243–250. [Google Scholar]
- Amparo, T.R.; Seibert, J.B.; Almeida, T.C.; Costa, F.S.; Silveira, B.M.; da Silva, G.N.; Dos Santos, O.D.; de Souza, G.H. In silico approach of secondary metabolites from Brazilian herbal medicines to search for potential drugs against SARS-CoV-2. Phytother. Res. 2021, 35, 4297–4308. [Google Scholar] [CrossRef] [PubMed]
Compound | Physical State | Color | Molecular Formula | Melting Point (°C) | %Yield |
---|---|---|---|---|---|
1a | Solid | Yellow | C17H16N2O4S | 135–136 | 54 |
1b | Solid | Orange | C14H18N2O3S | 128–129 | 68 |
1c | Solid | Black | C16H16N2O3S | 109–111 | 45 |
1d | Solid | Yellow | C17H16N2O5S | 134–135 | 68 |
1e | Solid | Yellow | C17H18N2O3S | 83–84 | 60 |
2a | Solid | White | C18H18N2O4S | 116–117 | 20 |
2d | Solid | White | C18H18N2O5S | 112–113 | 25 |
3a | Solid | Yellow | C17H16N2O4S | 164–166 | 72 |
3c | Solid | Black | C16H16N2O3S | 174–176 | 68 |
3d | Solid | Yellow | C17H16N2O5S | 130–131 | 68 |
3e | Solid | Brown | C17H18N2O3S | 115–117 | 65 |
4a | Solid | Yellow | C18H18N2O4S | 94–95 | 60 |
4d | Solid | White | C18H18N2O5S | 109–110 | 66 |
4e | Solid | Brown | C18H20N2O3S | 129–131 | 66 |
Compound | IC50 ± SEM (µM) |
---|---|
1a | 98.5 ± 10.6 |
1b | 131.5 ± 20.3 |
1c | ND |
1d | 256.4 ± 16.3 |
1e | 109.3 ± 13.4 |
2a | 49.8 ± 11.9 |
2d | 46.6 ± 7.6 |
3a | 186.3 ± 18.3 |
3c | 16.5 ± 0.37 |
3d | ND |
3e | 44.8 ± 6.2 |
4a | ND |
4d | ND |
4e | 41.6 ± 10.4 |
Kojic acid | 15.9 ± 2.5 |
Protein Target | Ligand | Binding Affinity (Kcal/mol) † | Amino Acids Involved |
---|---|---|---|
Mushroom Tyrosinase PDB ID: 2Y9X | 1a | −7.3 | HIS61, HIS259, PRO277, SER282, VAL283 |
1b | −7.4 | HIS263, PRO277, MET280, SER282, VAL283, ALA286 | |
1c | −8.3 | VAL248, ASN260, HIS263, PHE264, VAL283, ALA286 | |
1d | −7.5 | HIS61, HIS259, HIS263, PRO277, MET280, SER282, VAL283 | |
1e | −6.9 | PRO277, HIS259, HIS263, VAL283 | |
2a | −7.3 | HIS61, HIS259, PRO277, SER282, VAL282 | |
2d | −7.5 | HIS61, HIS259, HIS263, PRO277, SER282, VAL283 | |
3a | −7.4 | HIS244, VAL248, VAL283 | |
3c | −8.4 | VAL248, ASN260, HIS263, PHE264, VAL283, ALA286 | |
3d | −7.1 | HIS61, HIS259, ASN260, HIS263, PRO277, SER282, VAL283 | |
3e | −6.9 | HIS244, VAL248, HIS263, VAL283, GLU322 | |
4a | −7.4 | HIS244, VAL248, HIS263, MET280, SER282, VAL283, GLU322 | |
4d | −7 | HIS61, HIS259, HIS263, PRO277, MET280, SER282, VAL283 | |
4e | −7.1 | HIS244, GLY245, VAL248, HIS263, VAL283 | |
Kojic acid | −5.6 | HIS263, VAL283, ALA286 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zargaham, M.K.; Ahmed, M.; Akhtar, N.; Ashraf, Z.; Abdel-Maksoud, M.A.; Aufy, M.; Nadeem, H. Synthesis, In Silico Studies, and Antioxidant and Tyrosinase Inhibitory Potential of 2-(Substituted Phenyl) Thiazolidine-4-Carboxamide Derivatives. Pharmaceuticals 2023, 16, 835. https://doi.org/10.3390/ph16060835
Zargaham MK, Ahmed M, Akhtar N, Ashraf Z, Abdel-Maksoud MA, Aufy M, Nadeem H. Synthesis, In Silico Studies, and Antioxidant and Tyrosinase Inhibitory Potential of 2-(Substituted Phenyl) Thiazolidine-4-Carboxamide Derivatives. Pharmaceuticals. 2023; 16(6):835. https://doi.org/10.3390/ph16060835
Chicago/Turabian StyleZargaham, Muhammad Kazim, Madiha Ahmed, Nosheen Akhtar, Zaman Ashraf, Mostafa A. Abdel-Maksoud, Mohammed Aufy, and Humaira Nadeem. 2023. "Synthesis, In Silico Studies, and Antioxidant and Tyrosinase Inhibitory Potential of 2-(Substituted Phenyl) Thiazolidine-4-Carboxamide Derivatives" Pharmaceuticals 16, no. 6: 835. https://doi.org/10.3390/ph16060835
APA StyleZargaham, M. K., Ahmed, M., Akhtar, N., Ashraf, Z., Abdel-Maksoud, M. A., Aufy, M., & Nadeem, H. (2023). Synthesis, In Silico Studies, and Antioxidant and Tyrosinase Inhibitory Potential of 2-(Substituted Phenyl) Thiazolidine-4-Carboxamide Derivatives. Pharmaceuticals, 16(6), 835. https://doi.org/10.3390/ph16060835