Exploring Pyrrolo-Fused Heterocycles as Promising Anticancer Agents: An Integrated Synthetic, Biological, and Computational Approach
Abstract
:1. Introduction
2. Results
2.1. Chemistry
2.2. Biological Activity
2.2.1. Anticancer Activity
2.2.2. In Vitro Tubulin Polymerization Inhibition
2.3. Molecular Modeling
2.3.1. Blind Docking
2.3.2. Local Docking
2.3.3. Molecular Dynamics Simulations
2.3.4. In Silico ADME and Toxicity Predictions
3. Materials and Methods
3.1. Chemistry
3.1.1. General Procedure for Monoquaternary Salts 3, 6, 9, 12, and 15
3.1.2. General Procedure for Compounds 4, 7, 10, 13, and 16
3.1.3. Spectral Data
1-(2-oxo-2-(3,4,5-Trimethoxyphenyl)ethyl)pyrazin-1-ium Bromide 3a
1-(2-(3,5-Dimethoxyphenyl)-2-oxoethyl)pyrazin-1-ium Bromide 3b
1-(2-(3,4-Dimethoxyphenyl)-2-oxoethyl)pyrazin-1-ium Bromide 3c
1-(2-(4-Bromophenyl)-2-oxoethyl)pyrazin-1-ium Bromide 3d
Ethyl 6-(3,4,5-Trimethoxybenzoyl)pyrrolo[1,2-a]pyrazine-8-carboxylate 4a
Ethyl 6-(3,5-Dimethoxybenzoyl)pyrrolo[1,2-a]pyrazine-8-carboxylate 4b
Ethyl 6-(3,4-Dimethoxybenzoyl)pyrrolo[1,2-a]pyrazine-8-carboxylate 4c
Ethyl 6-(4-Bromobenzoyl)pyrrolo[1,2-a]pyrazine-8-carboxylate 4d
4-(4-Chlorophenyl)-1-(2-oxo-2-(3,4,5-trimethoxyphenyl)ethyl)pyrimidin-1-ium Bromide 6a
4-(4-Chlorophenyl)-1-(2-(3,5-dimethoxyphenyl)-2-oxoethyl)pyrimidin-1-ium Bromide 6b
4-(4-Chlorophenyl)-1-(2-(3,4-dimethoxyphenyl)-2-oxoethyl)pyrimidin-1-ium Bromide 6c
1-(2-(4-Bromophenyl)-2-oxoethyl)-4-(4-chlorophenyl)pyrimidin-1-ium Bromide 6d
Ethyl 3-(4-Chlorophenyl)-7-(3,4,5-trimethoxybenzoyl)pyrrolo[1,2-c]pyrimidine-5-carboxylate 7a
Ethyl 3-(4-Chlorophenyl)-7-(3,5-trimethoxybenzoyl)pyrrolo[1,2-c]pyrimidine-5-carboxylate 7b
Ethyl 3-(4-Chlorophenyl)-7-(3,4-trimethoxybenzoyl)pyrrolo[1,2-c]pyrimidine-5-carboxylate 7c
Ethyl 7-(4-Bromobenzoyl)-3-(4-chlorophenyl)pyrrolo[1,2-c]pyrimidine-5-carboxylate 7d
1-(2-oxo-2-(3,4,5-Trimethoxyphenyl)ethyl)quinolin-1-ium Bromide 9a
1-(2-oxo-2-(3,5-Trimethoxyphenyl)ethyl)quinolin-1-ium Bromide 9b
1-(2-oxo-2-(3,4-Trimethoxyphenyl)ethyl)quinolin-1-ium bromide 9c
1-(2-(4-Bromophenyl)-2-oxoethyl)quinolin-1-ium Bromide 9d
Ethyl 1-(3,4,5-Trimethoxybenzoyl)pyrrolo[1,2-a]quinoline-3-carboxylate 10a
Ethyl 1-(3,5-Trimethoxybenzoyl)pyrrolo[1,2-a]quinoline-3-carboxylate 10b
Ethyl 1-(3,4-Trimethoxybenzoyl)pyrrolo[1,2-a]quinoline-3-carboxylate 10c
Ethyl 1-(4-Bromobenzoyl)pyrrolo[1,2-a]quinoline-3-carboxylate 10d
4-(2-oxo-2-(3,4,5-Trimethoxyphenyl)ethyl)benzo[f]quinolin-4-ium Bromide 12a
4-(2-oxo-2-(3,5-Trimethoxyphenyl)ethyl)benzo[f]quinolin-4-ium Bromide 12b
4-(2-oxo-2-(3,4-Trimethoxyphenyl)ethyl)benzo[f]quinolin-4-ium Bromide 12c
4-(2-(4-Bromophenyl)-2-oxoethyl)benzo[f]quinolin-4-ium Bromide 12d
Ethyl 3-(3,4,5-Trimethoxybenzoyl)benzo[f]pyrrolo[1,2-a]quinoline-1-carboxylate 13a
Ethyl 3-(3,5-Dimethoxybenzoyl)benzo[f]pyrrolo[1,2-a]quinoline-1-carboxylate 13b
Ethyl 3-(3,4-Dimethoxybenzoyl)benzo[f]pyrrolo[1,2-a]quinoline-1-carboxylate 13c
Ethyl 3-(4-Bromobenzoyl)benzo[f]pyrrolo[1,2-a]quinoline-1-carboxylate 13d
2-(2-oxo-2-(3,4,5-Trimethoxyphenyl)ethyl)isoquinolin-2-ium Bromide 15a
2-(2-oxo-2-(3,5-Trimethoxyphenyl)ethyl)isoquinolin-2-ium Bromide 15b
2-(2-oxo-2-(3,4-Trimethoxyphenyl)ethyl)isoquinolin-2-ium Bromide 15c
2-(2-(4-Bromophenyl)-2-oxoethyl)isoquinolin-2-ium 15d
Ethyl 3-(3,4,5-Trimethoxybenzoyl)pyrrolo[2,1-a]isoquinoline-1-carboxylate 16a
Ethyl 3-(3,5-Trimethoxybenzoyl)pyrrolo[2,1-a]isoquinoline-1-carboxylate 16b
Ethyl 3-(3,4-Trimethoxybenzoyl)pyrrolo[2,1-a]isoquinoline-1-carboxylate 16c
Ethyl 3-(4-Bromobenzoyl)pyrrolo[2,1-a]isoquinoline-1-carboxylate 16d
3.2. Biological Activity
3.2.1. Anticancer Activity
3.2.2. Tubulin Polymerization Assay
3.3. Molecular Modeling
3.3.1. Molecular Docking
3.3.2. Molecular Dynamics Simulations
3.3.3. In Silico ADME and Toxicity Predictions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Petri, G.L.; Spano, V.; Spatola, R.; Holl, R.; Raimondi, M.V.; Barraja, P.; Montalbano, A. Bioactive pyrrole-based compounds with target selectivity. Eur. J. Med. Chem. 2020, 208, 112783. [Google Scholar] [CrossRef]
- Mao, Y.; Soni, K.; Sangani, C.; Yao, Y. An Overview of Privileged Scaffold: Quinolines and Isoquinolines in Medicinal Chemistry as Anticancer Agents. Curr. Top. Med. Chem. 2020, 20, 2599–2633. [Google Scholar] [CrossRef] [PubMed]
- Lv, H.N.; Zeng, K.W.; Zhao, M.B.; Jiang, Y.; Tu, P.F. Pyrrolo[2,1-a]isoquinoline and pyrrole alkaloids from Sinomenium acutum. J. Asian Nat. Prod. Res. 2017, 20, 195–200. [Google Scholar] [CrossRef]
- Allin, S.M.; Gaskell, S.N.; Towler, J.M.R.; Bulman Page, P.C.; Saha, B.; McKenzie, M.J.; Martin, W.P. A New Asymmetric Synthesis of the Anti-Tumor Alkaloid (R)-(+)-Crispine A. J. Org. Chem. 2007, 72, 8972–8975. [Google Scholar] [CrossRef] [PubMed]
- Yaremchuk, I.O.; Muzychka, L.V.; Smolii, O.B.; Kucher, O.V.; Shishkina, S.V. Synthesis of novel 1,2-dihydropyrrolo[1,2-a]pyrazin-1(2H)-one derivatives. Tetrahedron Lett. 2017, 59, 442–444. [Google Scholar] [CrossRef]
- Al-Matarneh, M.C.; Amarandi, R.-M.; Mangalagiu, I.I.; Danac, R. Synthesis and Biological Screening of New Cyano-Substituted Pyrrole Fused (Iso)Quinoline Derivatives. Molecules 2021, 26, 2066. [Google Scholar] [CrossRef]
- Amariucai-Mantu, D.; Antoci, V.; Sardaru, M.C.; Matarneh, C.M.A.; Mangalagiu, I.; Danac, R. Fused pyrrolo-pyridines and pyrrolo-(iso)quinoline as anticancer agents. Phys. Sci. Rev. 2022. [Google Scholar] [CrossRef]
- Sardaru, M.-C.; Carp, O.; Ursu, E.-L.; Craciun, A.-M.; Cojocaru, C.; Silion, M.; Kovalska, V.; Mangalagiu, I.; Danac, R.; Rotaru, A. Cyclodextrin Encapsulated pH Sensitive Dyes as Fluorescent Cellular Probes: Self-Aggregation and In Vitro Assessments. Molecules 2020, 25, 4397. [Google Scholar] [CrossRef] [PubMed]
- Al Matarneh, C.M.; Mangalagiu, I.I.; Shova, S.; Danac, R. Synthesis, structure, antimycobacterial and anticancer evaluation of new pyrrolo-phenanthroline derivatives. J. Enzym. Inhib. Med. Chem. 2016, 31, 470–480. [Google Scholar] [CrossRef] [Green Version]
- Al-Matarneh, C.M.; Amarandi, R.-M.; Craciun, A.M.; Mangalagiu, I.I.; Zbancioc, G.; Danac, R. Design, Synthesis, Molecular Modelling and Anticancer Activities of New Fused Phenanthrolines. Molecules 2020, 25, 527. [Google Scholar] [CrossRef] [Green Version]
- Sardaru, M.C.; Craciun, A.M.; Al Matarneh, C.M.; Sandu, I.A.; Amarandi, R.M.; Popovici, L.; Ciobanu, C.I.; Peptanariu, D.; Pinteala, M.; Mangalagiu, I.I.; et al. Cytotoxic substituted indolizines as new colchicine site tubulin polymerisation inhibitors. J. Enzym. Inhib. Med. Chem. 2020, 35, 1581–1595. [Google Scholar] [CrossRef] [PubMed]
- Leontie, L.; Danac, R.; Apetroaei, N.; Rusu, G.I. Study of electronic transport properties of some new N-(p-R-phenacyl)-1,7-phenanthrolinium bromides in thin films. Mater. Chem. Phys. 2011, 127, 471–478. [Google Scholar] [CrossRef]
- Marangoci, N.L.; Popovici, L.; Ursu, E.L.; Danac, R.; Clima, L.; Cojocaru, C.; Coroaba, A.; Neamtu, A.; Mangalagiu, I.I.; Pinteala, M.; et al. Pyridyl-indolizine derivatives as DNA binders and pH-sensible fluorescent dyes. Tetrahedron 2016, 72, 8215–8222. [Google Scholar] [CrossRef]
- Popovici, L.; Amarandi, R.M.; Mangalagiu, I.I.; Mangalagiu, V.; Danac, R. Synthesis, molecular modelling and anticancer evaluation of new pyrrolo[1,2-b]pyridazine and pyrrolo[2,1-a]phthalazine derivatives. J. Enzym. Inhib. Med. Chem. 2019, 34, 230–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.; Chen, J.; Xiao, M.; Li, W.; Miller, D.D. An overview of tubulin inhibitors that interact with the colchicine binding site. Pharm. Res. 2012, 29, 2943–2971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulshrestha, A.; Katara, G.K.; Ibrahim, S.A.; Patil, R.; Patil, S.A.; Beaman, K.D. Microtubule inhibitor, SP-6-27 inhibits angiogenesis and induces apoptosis in ovarian cancer cells. Oncotarget 2017, 8, 67017–67028. [Google Scholar] [CrossRef] [Green Version]
- Ravelli, R.B.; Gigant, B.; Curmi, P.A.; Jourdain, I.; Lachkar, S.; Sobel, A.; Knossow, M. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature 2004, 428, 198–202. [Google Scholar] [CrossRef]
- Wang, J.; Miller, D.D.; Li, W. Molecular interactions at the colchicine binding site in tubulin: An X-ray crystallography perspective. Drug Discov. Today 2022, 27, 759–776. [Google Scholar] [CrossRef]
- Pallante, L.; Rocca, A.; Klejborowska, G.; Huczynski, A.; Grasso, G.; Tuszynski, J.A.; Deriu, M.A. In silico Investigations of the Mode of Action of Novel Colchicine Derivatives Targeting β-Tubulin Isotypes: A Search for a Selective and Specific β-III Tubulin Ligand. Front. Chem. 2020, 8, 108. [Google Scholar] [CrossRef]
- Bueno, O.; Estevez Gallego, J.; Martins, S.; Prota, A.E.; Gago, F.; Gomez-SanJuan, A.; Camarasa, M.J.; Barasoain, I.; Steinmetz, M.O.; Diaz, J.F.; et al. High-affinity ligands of the colchicine domain in tubulin based on a structure-guided design. Sci. Rep. 2018, 8, 4242. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, H.; Gigant, B.; Yu, Y.; Wu, Y.; Chen, X.; Lai, Q.; Yang, Z.; Chen, Q.; Yang, J. Structures of a diverse set of colchicine binding site inhibitors in complex with tubulin provide a rationale for drug discovery. FEBS J. 2016, 283, 102–111. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Sun, H.; Yao, X.; Li, D.; Xu, L.; Li, Y.; Tian, S.; Hou, T. Comprehensive evaluation of ten docking programs on a diverse set of protein-ligand complexes: The prediction accuracy of sampling power and scoring power. Phys. Chem. Chem. Phys. 2016, 18, 12964–12975. [Google Scholar] [CrossRef] [PubMed]
- Kolb, P.; Irwin, J.J. Docking screens: Right for the right reasons? Curr. Top. Med. Chem. 2009, 9, 755–770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerjee, S.; Arnst, K.E.; Wang, Y.; Kumar, G.; Deng, S.; Yang, L.; Li, G.B.; Yang, J.; White, S.W.; Li, W.; et al. Heterocyclic-Fused Pyrimidines as Novel Tubulin Polymerization Inhibitors Targeting the Colchicine Binding Site: Structural Basis and Antitumor Efficacy. J. Med. Chem. 2018, 61, 1704–1718. [Google Scholar] [CrossRef] [PubMed]
- La Regina, G.; Bai, R.; Coluccia, A.; Famiglini, V.; Pelliccia, S.; Passacantilli, S.; Mazzoccoli, C.; Ruggieri, V.; Sisinni, L.; Bolognesi, A.; et al. New pyrrole derivatives with potent tubulin polymerization inhibiting activity as anticancer agents including hedgehog-dependent cancer. J. Med. Chem. 2014, 57, 6531–6552. [Google Scholar] [CrossRef]
- Boichuk, S.; Galembikova, A.; Syuzov, K.; Dunaev, P.; Bikinieva, F.; Aukhadieva, A.; Zykova, S.; Igidov, N.; Gankova, K.; Novikova, M.; et al. The Design, Synthesis, and Biological Activities of Pyrrole-Based Carboxamides: The Novel Tubulin Inhibitors Targeting the Colchicine-Binding Site. Molecules 2021, 26, 5780. [Google Scholar] [CrossRef]
- Chen, Y.C. Beware of docking! Trends Pharmacol. Sci. 2015, 36, 78–95. [Google Scholar] [CrossRef]
- Ferreira, L.G.; Dos Santos, R.N.; Oliva, G.; Andricopulo, A.D. Molecular docking and structure-based drug design strategies. Molecules 2015, 20, 13384–13421. [Google Scholar] [CrossRef] [Green Version]
- Alonso, H.; Bliznyuk, A.A.; Gready, J.E. Combining docking and molecular dynamic simulations in drug design. Med. Res. Rev. 2006, 26, 531–568. [Google Scholar] [CrossRef]
- Sakano, T.; Mahamood, M.I.; Yamashita, T.; Fujitani, H. Molecular dynamics analysis to evaluate docking pose prediction. Biophys. Physicobiol. 2016, 13, 181–194. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.C.; Cheng, L.P.; Huang, X.Y.; Zhao, L.; Pang, W. Identification of potential tubulin polymerization inhibitors by 3D-QSAR, molecular docking and molecular dynamics. RSC Adv. 2017, 7, 38479–38489. [Google Scholar] [CrossRef] [Green Version]
- Rao, C.; Naidu, N.; Priya, J.; Rao, K.P.C.; Ranjith, K.; Shobha, S.; Chowdary, B.S.; Siddiraju, S.; Yadam, S. Molecular docking and dynamic simulations of benzimidazoles with beta-tubulins. Bioinformation 2021, 17, 404–412. [Google Scholar] [PubMed]
- Kumbhar, B.V.; Borogaon, A.; Panda, D.; Kunwar, A. Exploring the Origin of Differential Binding Affinities of Human Tubulin Isotypes αβII, αβIII and αβIV for DAMA-Colchicine Using Homology Modelling, Molecular Docking and Molecular Dynamics Simulations. PLoS ONE 2016, 11, e0156048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghinet, A.; Abuhaie, C.M.; Gautret, P.; Rigo, B.; Dubois, J.; Farce, A.; Belei, D.; Bicu, E. Studies on indolizines. Evaluation of their biological properties as microtubule-interacting agents and as melanoma targeting compounds. Eur. J. Med. Chem. 2015, 89, 115–127. [Google Scholar] [CrossRef] [PubMed]
- Moise, I.-M.; Bicu, E.; Farce, A.; Dubois, J.; Ghinet, A. Indolizine-phenothiazine hybrids as the first dual inhibitors of tubulin polymerization and farnesyltransferase with synergistic antitumor activity. Bioorg. Chem. 2020, 103, 104184. [Google Scholar] [CrossRef]
- Mangalagiu, G.; Ungureanu, M.; Grosu, G.; Mangalagiu, I.; Petrovanu, M. New pyrrolo-pyrimidine derivatives with antifungal or antibacterial properties in vitro. Ann. Pharm. Fr. 2001, 59, 139–140. [Google Scholar]
- Bahner, C.T.; Norton, L.L. Some Quaternary Salts of Pyrazine. J. Am. Chem. Soc. 1950, 72, 2881–2882. [Google Scholar] [CrossRef]
- Antoci, V.; Oniciuc, L.; Amariucai-Mantu, D.; Moldoveanu, C.; Mangalagiu, V.; Amarandei, A.M.; Lungu, C.N.; Dunca, S.; Mangalagiu, I.I.; Zbancioc, G. Benzoquinoline Derivatives: A Straightforward and Efficient Route to Antibacterial and Antifungal Agents. Pharmaceuticals 2021, 14, 335. [Google Scholar] [CrossRef]
- Lucescu, L.; Bicu, E.; Belei, D.; Dubois, J.; Ghinet, A. Synthesis and Biological Evaluation of Some New Indolizine Derivatives as Antitumoral Agents. Lett. Drug Des. Discov. 2016, 13, 479–488. [Google Scholar] [CrossRef]
- Georgescu, E.; Draghici, C.; Iuhas, P.C.; Georgescu, F. A new approach for the synthesis of benzo[f]pyrrolo[1,2-a]-quinolines. Arkivoc 2005, 10, 95–104. [Google Scholar] [CrossRef] [Green Version]
- Shoemaker, R.H. The NCI60 human tumour cell line anticancer drug screen. Nat. Rev. Cancer 2006, 6, 813–823. [Google Scholar] [CrossRef] [PubMed]
- Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst. 1990, 82, 1107–1112. [Google Scholar] [CrossRef]
- Boyd, M.R. The NCI Human Tumor Cell Line (60-Cell) Screen. In Anticancer Drug Development Guide: Preclinical Screening, Clinical Trials, and Approval; Teicher, B.A., Andrews, P.A., Eds.; Humana Press: Totowa, NJ, USA, 2004; pp. 41–61. [Google Scholar]
- Sharma, A.; Tarbox, L.; Kurc, T.; Bona, J.; Smith, K.; Kathiravelu, P.; Bremer, E.; Saltz, J.H.; Prior, F. PRISM: A Platform for Imaging in Precision Medicine. JCO Clin. Cancer Inform. 2020, 4, 491–499. [Google Scholar] [CrossRef]
- Sisco, E.; Barnes, K.L. Design, Synthesis, and Biological Evaluation of Novel 1,3-Oxazole Sulfonamides as Tubulin Polymerization Inhibitors. ACS Med. Chem. Lett. 2021, 12, 1030–1037. [Google Scholar] [CrossRef]
- Kamal, A.; Kumar, G.B.; Vishnuvardhan, M.V.; Shaik, A.B.; Reddy, V.S.; Mahesh, R.; Sayeeda, I.B.; Kapure, J.S. Synthesis of phenstatin/isocombretastatin-chalcone conjugates as potent tubulin polymerization inhibitors and mitochondrial apoptotic inducers. Org. Biomol. Chem. 2015, 13, 3963–3981. [Google Scholar] [CrossRef]
- Dohle, W.; Jourdan, F.L.; Menchon, G.; Prota, A.E.; Foster, P.A.; Mannion, P.; Hamel, E.; Thomas, M.P.; Kasprzyk, P.G.; Ferrandis, E.; et al. Quinazolinone-Based Anticancer Agents: Synthesis, Antiproliferative SAR, Antitubulin Activity, and Tubulin Co-crystal Structure. J. Med. Chem. 2018, 61, 1031–1044. [Google Scholar] [CrossRef] [PubMed]
- Dohle, W.; Prota, A.E.; Menchon, G.; Hamel, E.; Steinmetz, M.O.; Potter, B.V.L. Tetrahydroisoquinoline Sulfamates as Potent Microtubule Disruptors: Synthesis, Antiproliferative and Antitubulin Activity of Dichlorobenzyl-Based Derivatives, and a Tubulin Cocrystal Structure. ACS Omega 2019, 4, 755–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinmetz, M.O.; Prota, A.E. Microtubule-Targeting Agents: Strategies to Hijack the Cytoskeleton. Trends Cell. Biol. 2018, 28, 776–792. [Google Scholar] [CrossRef]
- Muhlethaler, T.; Gioia, D.; Prota, A.E.; Sharpe, M.E.; Cavalli, A.; Steinmetz, M.O. Comprehensive Analysis of Binding Sites in Tubulin. Angew. Chem. Int. Ed. Engl. 2021, 60, 13331–13342. [Google Scholar] [CrossRef]
- Prota, A.E.; Bargsten, K.; Diaz, J.F.; Marsh, M.; Cuevas, C.; Liniger, M.; Neuhaus, C.; Andreu, J.M.; Altmann, K.H.; Steinmetz, M.O. A new tubulin-binding site and pharmacophore for microtubule-destabilizing anticancer drugs. Proc. Natl. Acad. Sci. USA 2014, 111, 13817–13821. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Zhang, C.; Lu, X.; Song, C.; Wang, C.; Zhang, M.; Xie, Y.; Schaefer, H.F., 3rd. Binding modes of cabazitaxel with the different human beta-tubulin isotypes: DFT and MD studies. J. Mol. Model. 2020, 26, 162. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makeneni, S.; Thieker, D.F.; Woods, R.J. Applying Pose Clustering and MD Simulations To Eliminate False Positives in Molecular Docking. J. Chem. Inf. Model. 2018, 58, 605–614. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Chi, B.; Ren, Y.; Rao, L.; Wu, J.; Shang, H.; Liu, J.; Xiao, Y.; Ma, M.; Xu, X.; et al. Conformation Search Across Multiple-Level Potential-Energy Surfaces (CSAMP): A Strategy for Accurate Prediction of Protein-Ligand Binding Structures. J. Chem. Theory Comput. 2019, 15, 4264–4279. [Google Scholar] [CrossRef]
- Thomas, E.; Gopalakrishnan, V.; Hegde, M.; Kumar, S.; Karki, S.S.; Raghavan, S.C.; Choudhary, B. A Novel Resveratrol Based Tubulin Inhibitor Induces Mitotic Arrest and Activates Apoptosis in Cancer Cells. Sci. Rep. 2016, 6, 34653. [Google Scholar] [CrossRef] [Green Version]
- Samad, A.; Naffaa, M.M.; Bakht, M.A.; Malhotra, M.; Ganaie, M.A. Target Based Designing of Anthracenone Derivatives as Tubulin Polymerization Inhibiting Agents: 3D QSAR and Docking Approach. Int. J. Med. Chem. 2014, 2014, 658016. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Li, B.Y.; Yang, R.; Xia, L.Y.; Fan, A.L.; Chu, Y.C.; Wang, L.J.; Wang, Z.C.; Jiang, A.Q.; Zhu, H.L. A class of novel tubulin polymerization inhibitors exert effective anti-tumor activity via mitotic catastrophe. Eur. J. Med. Chem. 2019, 163, 896–910. [Google Scholar] [CrossRef]
- Lowe, J.; Li, H.; Downing, K.H.; Nogales, E. Refined structure of alpha beta-tubulin at 3.5 A resolution. J. Mol. Biol. 2001, 313, 1045–1057. [Google Scholar] [CrossRef]
- Reijo, R.A.; Cooper, E.M.; Beagle, G.J.; Huffaker, T.C. Systematic mutational analysis of the yeast beta-tubulin gene. Mol. Biol. Cell. 1994, 5, 29–43. [Google Scholar] [CrossRef] [Green Version]
- Chattopadhyaya, S.; Chakravorty, D.; Basu, G. A collective motion description of tubulin betaT7 loop dynamics. Biophys. Physicobiol. 2019, 16, 264–273. [Google Scholar] [CrossRef] [Green Version]
- Cury, N.M.; Muhlethaler, T.; Laranjeira, A.B.A.; Canevarolo, R.R.; Zenatti, P.P.; Lucena-Agell, D.; Barasoain, I.; Song, C.; Sun, D.; Dovat, S.; et al. Structural Basis of Colchicine-Site targeting Acylhydrazones active against Multidrug-Resistant Acute Lymphoblastic Leukemia. iScience 2019, 21, 95–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prota, A.E.; Danel, F.; Bachmann, F.; Bargsten, K.; Buey, R.M.; Pohlmann, J.; Reinelt, S.; Lane, H.; Steinmetz, M.O. The novel microtubule-destabilizing drug BAL27862 binds to the colchicine site of tubulin with distinct effects on microtubule organization. J. Mol. Biol. 2014, 426, 1848–1860. [Google Scholar] [CrossRef] [PubMed]
- Niu, L.; Yang, J.; Yan, W.; Yu, Y.; Zheng, Y.; Ye, H.; Chen, Q.; Chen, L. Reversible binding of the anticancer drug KXO1 (tirbanibulin) to the colchicine-binding site of beta-tubulin explains KXO1’s low clinical toxicity. J. Biol. Chem. 2019, 294, 18099–18108. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, J.; Niu, L.; Hu, D.; Li, H.; Chen, L.; Yu, Y.; Chen, Q. Structural insights into the design of indole derivatives as tubulin polymerization inhibitors. FEBS Lett. 2020, 594, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Majcher, U.; Klejborowska, G.; Moshari, M.; Maj, E.; Wietrzyk, J.; Bartl, F.; Tuszynski, J.A.; Huczynski, A. Antiproliferative Activity and Molecular Docking of Novel Double-Modified Colchicine Derivatives. Cells 2018, 7, 192. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez, E.; Benites, J.; Valderrama, J.A.; Calderon, P.B.; Verrax, J.; Nova, E.; Villanelo, F.; Maturana, D.; Escobar, C.; Lagos, R.; et al. Binding of dihydroxynaphthyl aryl ketones to tubulin colchicine site inhibits microtubule assembly. Biochem. Biophys. Res. Commun. 2015, 466, 418–425. [Google Scholar] [CrossRef]
- Torres, P.H.M.; Sodero, A.C.R.; Jofily, P.; Silva-Jr, F.P. Key Topics in Molecular Docking for Drug Design. Int. J. Mol. Sci. 2019, 20, 4574. [Google Scholar] [CrossRef] [Green Version]
- de Campos, L.J.; Palermo, N.Y.; Conda-Sheridan, M. Targeting SARS-CoV-2 Receptor Binding Domain with Stapled Peptides: An In Silico Study. J. Phys. Chem. B 2021, 125, 6572–6586. [Google Scholar] [CrossRef]
- Wang, Q.; Arnst, K.E.; Wang, Y.; Kumar, G.; Ma, D.; White, S.W.; Miller, D.D.; Li, W.; Li, W. Structure-Guided Design, Synthesis, and Biological Evaluation of (2-(1H-Indol-3-yl)-1H-imidazol-4-yl)(3,4,5-trimethoxyphenyl) Methanone (ABI-231) Analogues Targeting the Colchicine Binding Site in Tubulin. J. Med. Chem. 2019, 62, 6734–6750. [Google Scholar] [CrossRef]
- Usui, T.; Watanabe, H.; Nakayama, H.; Tada, Y.; Kanoh, N.; Kondoh, M.; Asao, T.; Takio, K.; Watanabe, H.; Nishikawa, K.; et al. The anticancer natural product pironetin selectively targets Lys352 of alpha-tubulin. Chem. Biol. 2004, 11, 799–806. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Shen, Q.; Cho, J.H.; Hwang, W. Entropy Hotspots for the Binding of Intrinsically Disordered Ligands to a Receptor Domain. Biophys. J. 2020, 118, 2502–2512. [Google Scholar] [CrossRef] [PubMed]
- Dolenc, J.; Baron, R.; Oostenbrink, C.; Koller, J.; van Gunsteren, W.F. Configurational entropy change of netropsin and distamycin upon DNA minor-groove binding. Biophys. J. 2006, 91, 1460–1470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov. 2015, 10, 449–461. [Google Scholar] [CrossRef]
- Schiff, P.B.; Fant, J.; Horwitz, S.B. Promotion of microtubule assembly in vitro by taxol. Nature 1979, 277, 665–667. [Google Scholar] [CrossRef] [PubMed]
- Schofield, A.V.; Gamell, C.; Suryadinata, R.; Sarcevic, B.; Bernard, O. Tubulin polymerization promoting protein 1 (Tppp1) phosphorylation by Rho-associated coiled-coil kinase (rock) and cyclin-dependent kinase 1 (Cdk1) inhibits microtubule dynamics to increase cell proliferation. J. Biol. Chem. 2013, 288, 7907–7917. [Google Scholar] [CrossRef] [Green Version]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [Green Version]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012, 4, 17. [Google Scholar] [CrossRef] [Green Version]
- Zhu, K.; Day, T.; Warshaviak, D.; Murrett, C.; Friesner, R.; Pearlman, D. Antibody structure determination using a combination of homology modeling, energy-based refinement, and loop prediction. Proteins 2014, 82, 1646–1655. [Google Scholar] [CrossRef] [Green Version]
- Shaw, D.E. A fast, scalable method for the parallel evaluation of distance-limited pairwise particle interactions. J. Comput. Chem. 2005, 26, 1318–1328. [Google Scholar] [CrossRef] [Green Version]
- Webb, B.; Sali, A. Protein structure modeling with MODELLER. Methods Mol. Biol. 2014, 1137, 1–15. [Google Scholar]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaminski, G.A.; Friesner, R.A.; Tirado-Rives, J.; Jorgensen, W.L. Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides. J. Phys. Chem. B 2001, 105, 6474–6487. [Google Scholar] [CrossRef]
- Jensen, K.P.; Jorgensen, W.L. Halide, Ammonium, and Alkali Metal Ion Parameters for Modeling Aqueous Solutions. J. Chem. Theory Comput. 2006, 2, 1499–1509. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Martyna, G.J.; Klein, M.L.; Tuckerman, M. Nosé–Hoover chains: The canonical ensemble via continuous dynamics. J. Chem. Phys. 1992, 97, 2635–2643. [Google Scholar] [CrossRef]
- Martyna, G.J.; Tobias, D.J.; Klein, M.L. Constant pressure molecular dynamics algorithms. J. Chem. Phys. 1994, 101, 4177–4189. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Schlitter, J. Estimation of Absolute and Relative Entropies of Macromolecules Using the Covariance Matrix. Chem. Phys. Lett. 1993, 215, 617–621. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Lagunin, A.A.; Dubovskaja, V.I.; Rudik, A.V.; Pogodin, P.V.; Druzhilovskiy, D.S.; Gloriozova, T.A.; Filimonov, D.A.; Sastry, N.G.; Poroikov, V.V. CLC-Pred: A freely available web-service for in silico prediction of human cell line cytotoxicity for drug-like compounds. PLoS ONE 2018, 12, e0191838. [Google Scholar] [CrossRef] [Green Version]
Cell Type | Compound Cell Line | GI (%) (10–5 M) a | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
10a | 10b | 10c | 12a | 12b | 12c | 12d | 13b | 16b | Phenstatin | ||
Leukemia | CCRF-CEM | 92 | 5 | 6 | 5 | 16 | 3 | 17 | 32 | 0 | 94 |
K-562 | 88 | 31 | 13 | 33 | 66 | 32 | 65 | 28 | 2 | 91 | |
SR | 90 | 36 | 14 | 0 | 9 | 3 | 15 | 71 | 0 | 93 | |
HL-60(TB) | 100 b,c | 5 | 0 | 8 | 38 | 8 | 38 | 9 | 0 | 100 b,h | |
MOLT-4 | 66 | 0 | 11 | 1 | 15 | 5 | 24 | 8 | 0 | 85 | |
RPMI-8226 | 89 | 3 | 20 | - | - | - | - | - | 0 | 87 | |
Non-small Cell Lung Cancer | A549/ATCC | 65 | 0 | 2 | 10 | 18 | 4 | 16 | 26 | 23 | 82 |
HOP-92 | 61 | 15 | 17 | 27 | 36 | 21 | 49 | 12 | 0 | 48 | |
HOP-62 | 79 | 15 | 15 | 5 | 13 | 2 | 24 | 34 | 30 | 77 | |
NCI-H460 | 86 | 0 | 1 | 9 | 20 | 6 | 17 | 48 | 0 | 93 | |
NCI-H522 | 98 | 36 | 14 | 16 | 26 | 11 | 19 | 22 | 17 | 88 | |
Colon Cancer | COLO205 | 100 b,d | 0 | 0 | 0 | 16 | 0 | 19 | 5 | 0 | 58 |
HCT-116 | 75 | 11 | 12 | 61 | 54 | 2 | 49 | 49 | 16 | 96 | |
HCT-15 | 75 | 12 | 16 | 0 | 0 | 0 | 0 | 39 | 0 | 96 | |
HT-29 | 91 | 5 | 0 | 17 | 57 | 7 | 50 | 17 | 0 | 85 | |
SW-620 | 82 | 14 | 7 | 2 | 22 | 4 | 23 | 36 | 0 | 78 | |
KM12 | 72 | 4 | 2 | 7 | 0 | 8 | 12 | 20 | 0 | 91 | |
CNS Cancer | SF-295 | 78 | 4 | 3 | 8 | 35 | 6 | 32 | 19 | 6 | 100 b,i |
SF-539 | 100 b,c | 7 | 0 | 0 | 14 | 7 | 16 | 20 | 26 | 100 b,j | |
SNB-75 | - | - | 52 | 10 | 15 | 16 | 30 | 15 | 100 b,d | 100 b,k | |
U251 | 51 | 4 | 4 | 12 | 9 | 10 | 5 | 37 | 19 | 79 | |
Melanoma | LOX IMVI | 60 | 9 | 15 | 2 | 17 | 3 | 18 | 30 | 12 | 85 |
M14 | 90 | 10 | 0 | 1 | 17 | 4 | 16 | 27 | 0 | 100 b,l | |
MDA-MB-435 | 100 b,e | 43 | 11 | - | - | - | - | - | 0 | 100 b,m | |
UACC-62 | 68 | 18 | 16 | 9 | 17 | 8 | 13 | 25 | 9 | 55 | |
SK-MEL-2 | 50 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 40 | |
SK-MEL-5 | 91 | 5 | 0 | 4 | 24 | 25 | 20 | 5 | 0 | 100 b,n | |
Ovarian Cancer | OVCAR-3 | 100 b,f | 0 | 0 | 12 | 30 | 22 | 31 | 17 | 0 | 100 b,d |
NCI/ADR-RES | 83 | 13 | 8 | 0 | 0 | 0 | 0 | 33 | 8 | 100 b,o | |
SK-OV-3 | 66 | 1 | 7 | 0 | 16 | 0 | 13 | 0 | 2 | 53 | |
IGROV1 | 69 | 14 | 41 | 2 | 14 | 0 | 19 | 14 | 0 | 86 | |
Renal cancer | A498 | 100 b,g | 3 | 3 | 0 | 7 | 0 | 20 | 3 | 11 | 25 |
RXF393 | 100 b,h | 7 | 5 | 0 | 24 | 0 | 32 | 0 | 39 | 99 | |
UO-31 | 68 | 17 | 42 | 10 | 16 | 14 | 41 | 12 | 5 | - | |
Breast cancer | MCF7 | 82 | 6 | 20 | 22 | 30 | 28 | 31 | 28 | 0 | 94 |
MDA-MB-468 | 92 | 6 | 3 | 42 | 60 | 53 | 45 | 18 | 26 | 100 b,p | |
HS 578T | 89 | 0 | 7 | 1 | 12 | 9 | 11 | 17 | 18 | 71 | |
BT-549 | 34 | 1 | 0 | 0 | 4 | 1 | 12 | 0 | 26 | 88 | |
Prostate cancer | PC-3 | 78 | 20 | 12 | 12 | 25 | 12 | 31 | 37 | 0 | 80 |
DU-145 | 78 | 0 | 0 | 0 | 6 | 0 | 8 | 19 | 0 | 90 |
Cell Type | Compound→ Cell Line ↓ | 10a | Phenstatin | ||
---|---|---|---|---|---|
GI50 (μM) | TGI (μM) | GI50 (μM) | TGI (μM) | ||
Leukemia | K-562 | 0.052 | >100 | <0.010 | >100 |
HL-60(TB) | 0.247 | n.d. | 0.011 | 0.084 | |
SR | 0.070 | >100 | <0.010 | >100 | |
CCRF-CEM | 0.309 | >100 | 0.309 | >100 | |
MOLT-4 | 0.436 | >100 | 0.436 | >100 | |
RPMI-8226 | 0.392 | >100 | 0.392 | >100 | |
Non-small Cell Lung Cancer | NCI-H460 | 0.341 | >100 | 0.033 | >100 |
NCI-H522 | 0.050 | 0.852 | 0.027 | >100 | |
A549/ATCC | 0.246 | >100 | 0.057 | >100 | |
Colon Cancer | HT29 | 0.208 | 1.06 | 2.95 | >100 |
SW-620 | 0.096 | >100 | <0.010 | >100 | |
KM12 | 0.395 | >100 | <0.010 | >100 | |
HCT-116 | 0.219 | >100 | 0.038 | >100 | |
COLO 205 | 0.216 | 0.861 | 3.05 | 25.7 | |
CNS Cancer | SF-295 | 0.059 | n.d. | 0.367 | >100 |
SF-539 | 0.216 | 0.723 | 0.011 | 0.056 | |
SNB-75 | 0.102 | 0.911 | <0.010 | >100 | |
U251 | 0.428 | >100 | 0.043 | >100 | |
Melanoma | LOX IMVI | 0.751 | >100 | 0.013 | >100 |
M14 | 0.137 | >100 | <0.010 | >100 | |
MDA-MB-435 | 0.035 | 0.137 | <0.010 | >100 | |
UACC-62 | 0.209 | >100 | 0.448 | >100 | |
SK-MEL-2 | 0.411 | >100 | n.d. | >100 | |
SK-MEL-5 | 0.446 | >100 | 0.040 | 0.378 | |
Ovarian Cancer | OVCAR-3 | 0.077 | 0.418 | 0.021 | 0.053 |
NCI/ADR-RES | 0.118 | >100 | 0.012 | >100 | |
Renal Cancer | 786-0 | 0.701 | >100 | 0.905 | >100 |
A498 | 0.027 | 0.215 | 2.28 | 8.22 | |
RXF 393 | 0.206 | 0.723 | 0.016 | >100 | |
Breast cancer | MCF7 | 0.075 | >100 | 0.033 | >100 |
HS 578T | 0.280 | >100 | 0.031 | >100 | |
BT-549 | 0.677 | >100 | 0.034 | >100 | |
T-47D | 0.697 | >100 | 30.4 | >100 | |
MDA-MB-468 | 0.063 | 0.473 | 0.271 | n.d. | |
Prostate cancer | PC-3 | 0.260 | >100 | 0.045 | >100 |
DU-145 | 0.328 | >100 | 0.039 | >100 |
ADME Parameter | 10a |
---|---|
Physicochemical Properties | |
Molecular weight | 433.45 g/mol |
Log Po/w (MLOGP) | 2.30 |
Number of H-bond acceptors | 6 |
Number of H-bond donors | 0 |
Number of rotatable bonds | 8 |
TPSA | 75.47 Å2 |
Pharmacokinetics | |
Gastrointestinal (GI) absorption | high |
Blood brain barrier (BBB) permeant | no |
P-gp substrate | no |
Drug likeness | |
Log S (ESOL) | −6.00 |
Water solubility class | moderately soluble |
Lipinski rule | no violation |
Veber rule | no violation |
Bioavailability | 0.55 |
Medicinal Chemistry | |
PAINS alerts | 0 |
Brenk alerts | 0 |
Synthetic accessibility | 3.27 |
Pa | Pi | Cell Line | Cell Type |
---|---|---|---|
0.751 | 0.005 | T-47D | Breast carcinoma |
0.702 | 0.002 | SNU-398 | Hepatocellular carcinoma |
0.380 | 0.009 | Raji | B-lymphoblastic cells |
0.389 | 0.062 | HT-29 | Colon adenocarcinoma |
0.327 | 0.065 | DU-145 | Prostate carcinoma |
0.319 | 0.127 | MCF7 | Breast adenocarcinoma |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amărandi, R.-M.; Al-Matarneh, M.-C.; Popovici, L.; Ciobanu, C.I.; Neamțu, A.; Mangalagiu, I.I.; Danac, R. Exploring Pyrrolo-Fused Heterocycles as Promising Anticancer Agents: An Integrated Synthetic, Biological, and Computational Approach. Pharmaceuticals 2023, 16, 865. https://doi.org/10.3390/ph16060865
Amărandi R-M, Al-Matarneh M-C, Popovici L, Ciobanu CI, Neamțu A, Mangalagiu II, Danac R. Exploring Pyrrolo-Fused Heterocycles as Promising Anticancer Agents: An Integrated Synthetic, Biological, and Computational Approach. Pharmaceuticals. 2023; 16(6):865. https://doi.org/10.3390/ph16060865
Chicago/Turabian StyleAmărandi, Roxana-Maria, Maria-Cristina Al-Matarneh, Lăcrămioara Popovici, Catalina Ionica Ciobanu, Andrei Neamțu, Ionel I. Mangalagiu, and Ramona Danac. 2023. "Exploring Pyrrolo-Fused Heterocycles as Promising Anticancer Agents: An Integrated Synthetic, Biological, and Computational Approach" Pharmaceuticals 16, no. 6: 865. https://doi.org/10.3390/ph16060865
APA StyleAmărandi, R. -M., Al-Matarneh, M. -C., Popovici, L., Ciobanu, C. I., Neamțu, A., Mangalagiu, I. I., & Danac, R. (2023). Exploring Pyrrolo-Fused Heterocycles as Promising Anticancer Agents: An Integrated Synthetic, Biological, and Computational Approach. Pharmaceuticals, 16(6), 865. https://doi.org/10.3390/ph16060865