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Abstract: Among all available antimicrobials, antibiotics hold a prime position in the treatment of
infectious diseases. However, the emergence of antimicrobial resistance (AMR) has posed a serious
threat to the effectiveness of antibiotics, resulting in increased morbidity, mortality, and escalation
in healthcare costs causing a global health crisis. The overuse and misuse of antibiotics in global
healthcare setups have accelerated the development and spread of AMR, leading to the emergence
of multidrug-resistant (MDR) pathogens, which further limits treatment options. This creates a
critical need to explore alternative approaches to combat bacterial infections. Phytochemicals have
gained attention as a potential source of alternative medicine to address the challenge of AMR.
Phytochemicals are structurally and functionally diverse and have multitarget antimicrobial effects,
disrupting essential cellular activities. Given the promising results of plant-based antimicrobials,
coupled with the slow discovery of novel antibiotics, it has become highly imperative to explore
the vast repository of phytocompounds to overcome the looming catastrophe of AMR. This review
summarizes the emergence of AMR towards existing antibiotics and potent phytochemicals having
antimicrobial activities, along with a comprehensive overview of 123 Himalayan medicinal plants
reported to possess antimicrobial phytocompounds, thus compiling the existing information that will
help researchers in the exploration of phytochemicals to combat AMR.

Keywords: antimicrobial resistance; antimicrobials; multidrug resistance; phytochemicals; phytocompounds;
plant secondary metabolites

1. Introduction

Among the antimicrobials available for medication to clinicians globally, antibiotics
hold the prime position. The history of antibiotics dates back to 1904, when the first
antibiotic, Arsphenamine, was discovered and commercialized as “Salvarsan” in 1910, which
was used to treat syphilis [1,2]. This was followed by the discovery of sulphanilamide
precursor prontosil red in 1927, which was active against Streptococci and Staphylococci.
However, the accidental discovery of penicillin in 1928 from Penicillium notatum sparked a
quest for antibiotics derived from microbes, leading to the discoveries of streptomycin in
1944 from Streptomyces griseus, tetracycline from Streptomyces rimosus, and chloramphenicol
from Streptomyces venezuelae by the end of 1953 [3,4]. Although the search for and discovery
of antibiotics started earlier in the 1900s, however, the period from 1940 to 1962 is considered
the “golden era” of antibiotic discovery because most antibiotics were discovered in that
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period, and those antibiotics have significantly contributed to the general health of humans
via infectious disease modulation [3–5].

The usage of antibiotics proved extremely beneficial for treating infectious diseases,
which were otherwise very difficult to cure, but it also exposed microbes to toxic condi-
tions imposed by antibiotics, thus generating a selection pressure, which microbes must
overcome to survive [6]. In response to this newly introduced selection pressure, microbes
evolved mechanisms to circumvent the lethal effects of antibiotics. This selection pressure
grew further due to extensive and improper use of antibiotics, which resulted in the emer-
gence of microbes resistant to these antimicrobials [6,7]. The emergence of antimicrobial
resistance (AMR) further compelled the usage of higher dosages or multiple combinations
of antibiotics for treatment, all of which results in enhanced usage of antibiotics, thus further
accelerating the pace of AMR emergence in bacteria [8,9]. Bacteria evolve comparatively
faster than other organisms, primarily due to the small genome size, fast reproduction
cycle, and a high rate of development of mutants, resulting in the evolution of resistant
phenotypes [10,11].

Almost all antibiotics currently available for medication were discovered in the last
century, while those introduced after the year 2000 are only the members of previously
discovered antibiotic classes. However, resistance has emerged against almost all of these
antibiotics [3]. The emergence of AMR against existing antibiotics is one of the major
contributors to worldwide mortalities [4]. According to a review commissioned by the UK
government, AMR could kill 10 million people per year by 2050 [12]. This has necessitated
the introduction of novel antimicrobials, which has significantly slowed down in the last
few decades and thus has created a void in the options available for the treatment of
infectious diseases, along with the exploration of alternative sources of medicine.

Plant-based medicines are natural lucrative alternatives, as during the pre-antibiotic
era, herbal medicines were extensively used for the treatment of various diseases. Plants,
being easily available, were always a choice for the treatment of infectious diseases. Plants
produce secondary metabolites for defensive purposes, many of which have antimicrobial
properties, and are still commonly used in traditional medicine [10]. Further, plants pro-
duce a plethora of structurally and functionally diverse phytochemicals, many of which are
effective against pathogenic microbes and hence could be explored for developing novel
antimicrobials [13–15]. Systematic screening of phytochemical reservoirs of medicinal
plants, known to possess antimicrobial properties, could lead to the identification of novel
antimicrobial phytochemicals with unique mechanisms of action. Such novel phytochemi-
cals could act by killing bacteria on their own, by inhibiting their molecular targets within
the cell, necessary for cellular growth and division, or by acting synergistically with existing
antibiotics by inhibiting the resistance determinants in antimicrobial-resistant bacteria. In
both cases, the goal of reviving antimicrobial therapies and sensitizing the AMR bacteria
could be achieved.

In India, around 17,000 species of higher plants have been discovered, of which
7500 plant species have been found to have medicinal properties [16,17]. The Indian Hi-
malayas foster around 10,000 species of higher plants, of which 1748 species reportedly
have medicinal properties [18,19]. Though vast literature is available citing the antimicro-
bial activity of Himalayan medicinal plants, reports describing their associated bioactive
compounds and their molecular mechanisms of action are limited. In an attempt to bridge
this gap, the present study focuses on summarizing the emergence of and mechanisms
employed by microbes to gain antimicrobial resistance against existing antibiotics, followed
by the description of potent phytochemicals, such as alkaloids, phenols, organosulfur
compounds, and terpenes, that possess antimicrobial activities, along with their reported
mechanisms of action. Finally, this study provides a comprehensive overview of 123 Hi-
malayan medicinal plants having antimicrobial properties along with their bioactive com-
pounds and target pathogens. This review provides an overall picture of the present state of
antibiotic discovery and the emergence of antimicrobial resistance, along with the potential
of phytochemicals possessing antimicrobial activity, which could be harnessed to screen
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and develop novel antibacterials that complement present antibiotic therapy by acting as a
source of alternate medicine.

Emergence of Antimicrobial Resistance

Numerous microbe-derived antimicrobials have been bought to the market since
the introduction of antibiotics in 1930. However, extensive and inappropriate usage of
antibiotics has imposed additional selection pressure, under which microbes have evolved
to engage various strategies to resist the effects of antibiotics. Although evolution is a
natural process, the wide usage of antibiotic regimes, further compounded by overuse, has
accelerated the emergence of AMR in bacteria, which has proven to be a serious problem for
the treatment of infectious diseases all around the world [6]. The first penicillin-hydrolyzing
enzyme (β-lactamases) was discovered by Chain and Abraham in 1940, soon after the
discovery of the first β-lactam antibiotic, penicillin, in 1928 [20]. Similarly, streptomycin,
an aminoglycoside antibiotic, was discovered in 1943, and by 1946, resistance against
it was reported in bacteria such as Mycobacterium tuberculosis [21]. The first tetracycline
antibiotic, aureomycin, was discovered in 1945, and resistance against it was observed in
Escherichia coli by 1948 [22]. Chloramphenicol was introduced in 1947, but resistance against
it emerged in the microbial world by 1950 [23]. To cope with resistance against penicillin,
methicillin, a semi-synthetic penicillin derivative, was introduced in 1959, but soon after,
methicillin-resistant Staphylococcus aureus (MRSA) emerged in 1961 [24]. A summary of
antibiotic discovery followed by the emergence of antimicrobial resistance is depicted
in Figure 1.
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resistance (shown in light brown).

It is evident from the examples cited above that the introduction of novel antibiotics
was always followed by the emergence of resistance against them. This strongly sug-
gests that the usage of antibiotics itself is responsible for the emergence of antimicrobial
resistance among bacteria [25]. The widespread use of antibiotic regimens worldwide
has significantly added to the selection pressure during natural bacterial evolution and
has accelerated the emergence of resistant strains. Bacteria thrive in harsh environments,
reproduce quickly, and have small genomes, which allows them to evolve comparatively
faster than other organisms due to faster accumulation of mutations and, thus, acquisition
of new phenotypes [10]. In bacteria, the acquisition of an antimicrobial-resistant phenotype
involves both intrinsic and extrinsic factors, which include the development and accumula-
tion of de novo mutations in existing genes, resulting in altered phenotypes, as well as the



Pharmaceuticals 2023, 16, 881 4 of 56

acquisition of resistance-conferring genes through vertical or horizontal gene transfer from
other resistant strains [10,11,26]. The most common mechanisms through which bacteria
demonstrate resistance involve increased activity of efflux pumps, enzymatic modification
or degradation of antibiotics, modifications of target sites, and alteration of membrane
permeability through porin modifications [10,25]. These mechanisms are briefly discussed
in the following sections.

2. Mechanisms of Antimicrobial Resistance
2.1. Bacterial Efflux Pumps

Although bacteria can employ different adaptive mechanisms to develop resistance
against antimicrobials, efflux pumps hold key importance [27]. Recent data and laboratory
studies have demonstrated that efflux pumps not only contribute to AMR but also play a
substantial role in microbial adaptive potential and virulence [28]. Bacterial efflux pumps
commonly belong to one of two major superfamilies: the widely prevalent secondary
transporters that use proton motive force (PMF) as a source of energy and ATP-binding
cassette (ABC) multidrug transporters [27,29]. The first superfamily comprises four subfam-
ilies. These include multidrug and toxic compound extrusion (MATE), the major facilitator
superfamily (MFS), resistance–nodulation–cell division (RND), and the small multidrug
resistance (SMR) family [10,27,30]. Although efflux pumps from all the superfamilies and
subfamilies enable a bacterial strain to exhibit increased AMR, RND pumps in particular
show activity against a variety of compounds with diverse chemical structures, including
bile salts, detergents, organic solvents, antimicrobial peptides, biocides, detergents, and
organic solvents [31]. Gram-negative bacteria exhibit complex efflux pumps, which form
a tripartite protein channel comprising a transporter protein found in the cytoplasmic
membrane, an efflux protein in the outer membrane, and a membrane fusion protein
that travels through the periplasm. AcrA-AcrB-TolC of Escherichia coli and MexA-MexB-
OprM of Pseudomonas aeruginosa are two of the most well-studied tripartite systems [28].
Gram-positive bacteria have relatively simple efflux pumps comprising a single transporter,
embedded in cytoplasmic membranes, and belong to the ABC, MFS, or SMR families [10,32].
Table 1 summarizes various efflux pumps belonging to ESKAPE pathogens, which include
Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii,
Pseudomonas aeruginosa, and members of Enterobacteriaceae. As a whole, these efflux pumps
enable bacteria to lower the concentration of various antimicrobials inside the cell, to the
point that is not lethal to the bacteria.

Table 1. List of efflux pump families and representative candidates from selected candidates of
ESKAPE pathogens.

Pathogenic Bacteria Efflux
Pump Family

Representative of
Efflux Pump Antibiotic Effluxed References

Enterococcus faecium ABC EfrAB
Acriflavine, ciprofloxacin, daunomycin,
doxorubicin, doxycycline, norfloxacin,

tetraphenylphosphonium
[33]

Staphylococcus aureus

ABC
Isa(E) Linosamide, pleuromutilin,

streptogramin A [34]

Msr(A) Macrolides, telithromycin [34]

MATE MepA Biocides, ethidium bromide,
fluoroquinolones [35]

MFS

NorA Fluoroquinolones [36,37]

QacA
Acriflavine, chlorhexidine, ethidium

bromide, quaternary
ammonium compounds

[37]



Pharmaceuticals 2023, 16, 881 5 of 56

Table 1. Cont.

Pathogenic Bacteria Efflux
Pump Family

Representative of
Efflux Pump Antibiotic Effluxed References

Klebsiella pneumoniae

MATE KetM 4, 6 Diamidino- 2- phenyl indole [38]

MFS KpnGH Ceftazidime, cefepime,
streptomycin, tetracycline [39]

RND OqxAB Chloramphenicol, fluoroquinolones [40]

SMR KnpEF
Benzalkonium chloride, cefepime,

chlorhexidine, erythromycin,
streptomycin, tetracycline, triclosan

[39]

Acinetobacter baumannii

ABC MacAB- TolC Macrolides [41]

MATE AbeM
Acriflavine, aminoglycosides,

daunomycin,
doxorubicin, fluoroquinolone

[42]

MFS CraA Chloramphenicol [43]

RND AdeABC, AdeFGH, AdeIJK
Aminoglycosides, beta-lactams,
fluoroquinolones, macrolides,

tetracycline, biocides
[44,45]

Pseudomonas aeruginosa RND
MexAB- OprM,

Aminoglycosides, beta-lactams,
chloramphenicol, fluoroquinolones,

macrolides, sulfonamides,
tetracyclines, tigecycline

[46]

MexXY- OprM/A, MexCD-
OprJ, MexEF- OprN

Trimethoprim, biocides,
ethidium bromide [47]

Escherichia coli

ABC MacAB- TolC Macrolides [48]

MFS
MdfA Chloramphenicol, doxorubicin,

norfloxacin, tetracycline [49]

QepA/QepA2 Fluoroquinolones [50]

RND
AcrAB- TolC

β-lactams, chloramphenicol,
fluoroquinolones, macrolides,

novobiocin, tetracycline, tigecycline
[51,52]

OqxAB Chloramphenicol, fluoroquinolones [40]

SMR EmrE Acriflavine, ethidium bromide,
quaternary ammonium compounds [53,54]

2.2. Enzymatic Modification and Degradation of Antibiotics

Ever since the introduction of antimicrobials for the treatment of infectious diseases,
resistance against these compounds had also emerged, which limits the options available
for the treatment of disease. Resistance can be active, which results from selection pressure
against a specific antibiotic/class of antibiotic, or passive, which results from a generalized
adaptive process [55]. Production of enzymes, which changes the chemical structure of
an antibiotic and renders it ineffective, is one of the most crucial strategies for developing
resistance to antibiotics. Both Gram-positive as well as Gram-negative bacteria produce
enzymes that bring about chemical alteration or modification of antibiotics. The most fre-
quently encountered alteration mechanism involves group transfers, such as adenylation,
acetylation, and phosphorylation, brought about by transferases. Moreover, bacteria also
produce enzymes that specifically break down antibiotics. For instance, many pathogens
secrete β-lactamases, which degrade antibiotics with β-lactam rings by specifically hy-
drolysing their amide bonds, rendering the antibiotic ineffective [56,57]. The following
section discusses these enzyme classes in detail, which are listed in Table 2.
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Table 2. List of enzymes and their classes involved in the modification and inactivation of antibiotics.

Enzyme Class Type Substrate Antibiotic Class Representative

Hydrolases

β-lactamases β-lactam
Penicillin

Cephalosporin
Carbapenem

Macrolide esterases Macrolide
Erythromycin
Roxithromycin
Azithromycin

Epoxidases Epoxide Fosfomycin

Transferases

Acetyltransferases
Aminoglycoside

Gentamicin
Kanamycin
Amikacin

Chloramphenicol Chloramphenicol

Streptogramin Group A streptogramins

Phosphotransferases

Aminoglycoside
Gentamicin
Kanamycin
Amikacin

Macrolide
Erythromycin
Roxithromycin
Azithromycin

Rifamycin
Rifampin
Rifabutin

Rifapentine

Peptide Colistin
Polymixin B

Thiol S-transferases Epoxide Fosfomycin

Nucleotidyltransferases

Aminoglycoside
Gentamicin
Kanamycin
Amikacin

Lincosamide
Lincomycin

Clindamycin
Pirlimycin

ADP-ribosyltransferases Rifamycin
Rifampin
Rifabutin

Rifapentine

Glycosyltransferases

Macrolide
Erythromycin
Roxithromycin
Azithromycin

Rifamycin
Rifampin
Rifabutin

Rifapentine

Redox enzymes Monooxygenases

Tetracycline
Tetracycline

Oxytetracycline
Doxycycline

Rifamycin
Rifampin
Rifabutin

Rifapentine

Streptogramin Group A streptogramins

Lyases Lyases
(Virginiamycin B lyase) Streptogramin Group B streptogramins
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2.2.1. Hydrolysis

Several antibiotics possess chemical bonds that are vital for their activity and surpris-
ingly hydrolytically susceptible, e.g., esters and amides, which are susceptible to enzymes
that cleave these chemical bonds, rendering the antibiotics inactive. Among these enzymes,
amidases, specifically those referred to as β-lactamases, hydrolyse the amide bond of the
β-lactam ring present in penicillin, cephalosporin, and carbapenem classes of antibiotics.
Other enzymes include esterases and epoxidases, which cleave the macrolide lactone rings
and fosfomycin oxirane rings, respectively [55].

β-Lactamases

β-Lactamases constitute an enzyme superfamily, with around 2000 members, and
hydrolyse the amide linkage of the β-lactam ring, which is a common structural and
functional moiety of all β-lactam antibiotics [58]. β-Lactamases are categorized into four
molecular classes (A, B, C, and D), based on amino acid sequence homology [59]. Class
B constitutes metalloenzymes, while classes A, C, and D enzymes are serine hydrolases.
β-lactamases of class A (such as CTX-M, KPC, SHV, and TEM) are the most common
ones found in and around human settlements [60,61]. Among class A β-lactamases, TEM
and SHV are more prone to mutational variability [61]. They can hydrolyse members of
second-to-fourth-generation cephalosporins due to crucial mutations in the active site [62].
These mutational variants are referred to as extended-spectrum β-lactamases (ESBLs) [63].
β-Lactamases belonging to class C effectively hydrolyse cephalosporins. Primarily, the
members of this class were encoded by chromosomally located genes, with inducible
expression. However, later, these genes were also found to be located on mobile genetic
elements [64]. β-lactamases of class D include OXA-type carbapenemases, with the highest
structural diversity among all serine hydrolases. Finally, class B comprises all metallo-β-
lactamases (MBLs), having one or two zinc ions in their active site, which are required
for catalysis [63,65]. Except for monobactams, MBLs hydrolyse practically all β-lactam
antibiotics and are inhibited by EDTA, dipicolinic acid, and phenanthroline, which are
metal-ion-chelating agents.

A dedicated database of β-lactamases containing the models generated, their clas-
sification, and their characterization along with the associated available literature has
been developed and maintained at www.bldb.eu (Accessed on 15 November 2022) [66].
Figure 2 elaborates on the molecular and functional classification, substrate specificity, and
inhibition profiles of β-lactamases.

Macrolide Esterases

Esterases are responsible for the development of resistance to macrolide antibiotics,
which catalyse the hydrolysis of macrolide lactone rings [67,68]. However, the 16-membered
macrolides such as spiramycin and tylosin are not their preferred substrates. EreA and
EreB are erythromycin esterases of crucial clinical relevance. Compared to EreA, EreB has
a wider substrate profile. Except for telithromycin, EreB confers resistance to practically
all 14–15-membered macrolides, including roxithromycin and azithromycin. The genes
encoding macrolide esterases are located on the plasmids in association with other antibiotic
resistance determinants [67,69].

Epoxidases

Resistance to antibiotics, such as fosfomycin, is caused due to enzymatic opening
of an epoxide ring mediated by a thiol-containing co-substrate or water. The presence
of orthologues of this enzyme’s gene in bacterial chromosomes suggests that resistance
behaviour due to epoxidases may be common in the environment [63].

www.bldb.eu
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[Pcl—Penicillin, Cphl—Cephalosporin, ES-Cphl—Extended-spectrum cephalosporins, Mnb—Monobactams,
Crbm—Carbapenem, AVB—Avibactam, CVA—Clavulanic acid, EDTA—Ethylenediamine tetra acetic acid].

2.3. Group Transfer

Transferases are the most varied and hence the largest class of resistance-conferring
enzymes. They chemically modify antimicrobial drugs by transferring different chem-
ical groups through covalent modification, thus altering the physical properties of the
drug [55,70,71]. The members of different groups differ in terms of specificity towards
different substrates, types of group transfer, and catalytic mechanisms. The chemical
strategies employed by the enzymes to modify antibiotics include N- and O-acylation
(aminoglycoside, chloramphenicol, and type A streptogramins), O-phosphorylation (amino-
glycoside, macrolide, rifamycin, and peptides), O-nucleotidylation (aminoglycoside and
lincosamides), O-ribosylation (rifamycin), O-glycosylation (macrolide and rifamycin), and
transfer of thiol (fosfomycin). To carry these reactions, a co-substrate such as ATP, acetyl-
CoA, NAD+, UDP glucose, or glutathione is required, which acts as a group donor, to bring
about covalent modifications. As a result, these enzymes are predominantly active in the
cytosol [55,70].

2.4. Miscellaneous Mechanisms of Antibiotic Degradation
2.4.1. Redox Enzymes

As the name indicates, redox enzymes oxidise or reduce antibiotics. Among the most
well-studied examples is TetX-catalysed tetracycline oxidation [72,73]. Though TetX is a
flavoprotein that requires oxygen for function, paradoxically, a tetX gene was found on a
plasmid in obligate anaerobe bacteria. Therefore, tetracycline resistance was discovered
phenotypically only when tetX was cloned into Escherichia coli [72,74]. TetX causes tetracy-
cline monohydroxylation, which destroys the metal ion (Mg2+) binding site necessary for
its antibacterial activity.
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2.4.2. Lyases

Lyases are enzymes that cause non-oxidative or non-hydrolytic cleavage of carbon–
carbon, carbon–sulfur, carbon–oxygen, and carbon–nitrogen bonds. The best-studied
enzyme that brings about this cleavage is virginiamycin B lyase (Vgb), responsible for the
resistance of type B streptogramins [75]. The VgB lyase was first cloned from streptogramin-
resistant Staphylococci. Streptogramins are hexadepsipeptides or heptadepsipeptides, cy-
clized through an ester bond. The enzyme Vgb catalyses the lysis of an ester bond, leading
to the opening of the antibiotic ring, rendering it ineffective [75,76].

2.5. Target Site Modification

One of the most common and generalized mechanisms employed by bacteria to gain
resistance against antibiotics is modification of their binding sites, which is effective for
almost all antibiotic classes. The target alterations involve modification of binding sites by
enzymatic addition of chemical groups (e.g., methyl groups), modification of the target site
by introducing point mutations in the gene itself, and replacement of the original target by
an altered one [26].

2.5.1. Enzymatic Alteration of Target Site

One of the best examples of enzymatic target site modification is the methylation of
ribosomes, which is caused by an enzyme that is expressed by the erythromycin ribosomal
methylases (erm) gene, resulting in the emergence of macrolide resistance [69]. The addition
of 1 or 2 methyl groups to an adenine residue (A2058) of 23S rRNA belonging to the 50S
ribosomal unit brings about biochemical changes that impair the binding of antimicrobial
agents to their target sites [26,77]. The erm gene is reported to confer resistance to what is
known as the MLSB (macrolides, lincosamides, and streptogramin B) group of antimicro-
bials. The underlying reason for this cross-resistance is the overlapping binding sites of
these antibiotics in the 23S rRNA [26,78,79].

2.5.2. Replacement or Bypass of Antimicrobial Binding Site

The acquisition of methicillin resistance by Staphylococcus aureus (MRSA) is a clas-
sic example of this mechanism. Penicillin-binding proteins (PBPs) are essential for the
transpeptidation and transglycosylation of peptidoglycan units, to which β-lactam an-
tibiotics bind, causing their inhibition and thus preventing bacterial cell wall synthesis.
Methicillin resistance is developed due to the acquisition of a mecA gene, often found to be
located on staphylococcal chromosomal cassette mec (SCC mec), which codes PBP2a, an
altered variant of PBP that has low affinity for all β-lactam antibiotics, including penicillins,
cephalosporins (all generations except fourth and fifth generation), and carbapenems [80].

Similar to β-lactam antibiotics, glycopeptides (vancomycin and teicoplanin) also in-
hibit bacterial cell wall biosynthesis. In contrast to β-lactams, glycopeptides attach to
the acyl-D-Ala-D-Ala residues of the developing cell wall rather than PBPs, thus blocking
PBP- mediated cross-linking of peptidoglycan and subsequently inhibiting cell wall pro-
duction [77]. Resistance to vancomycin is particularly prevalent in Enterococci (especially
Enterococcus faecium) and is generally mediated through the acquisition of van gene clusters.
Genes in these clusters encode enzymes, which modify the synthesis of peptidoglycans
through two routes: (i) replacement of final D-Ala of the polypeptide with either D-lactate or
D-serine and (ii) destruction of “regular” D-Ala-D-Ala ending precursors, thus preventing
interaction of vancomycin with the precursors of cell wall [81].

2.5.3. Mutations in the Genes Encoding Target Sites

Resistance to rifamycin is a suitable example of mutational resistance. Rifamycin binds
to bacterial DNA-dependent RNA polymerase, thus blocking transcription. The binding
site of rifamycin is located in a pocket in the β-subunit of RNA polymerase, encoded by
the rpoB gene. Once bound, the antibiotic hinders transcription by blocking the path of
newly synthesized RNA [82]. Resistance to rifamycin emerged due to mutation in the rpoB
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gene, resulting in single-amino-acid substitution, which not only decreased the affinity of
the antibiotic towards its target site but also did not affect the catalytic proficiency of the
polymerase [83].

2.6. Porin Modification

Gram-negative bacteria exhibit resistance to antibiotics primarily due to the presence
of an outer membrane, which acts as a permeability barrier and confers intrinsic resistance
to particular antibiotic drugs. Porins are the main sites of entrance for several hydrophilic
antimicrobials including β-lactams, chloramphenicol, fluoroquinolones, and tetracyclines
to cross the bacterial outer membrane. However, any change in the permeability of porins
leads to acquired resistance against antibiotics that were previously effective [25]. Decreased
porin expression or any mutation altering their structure or function can contribute to the
development of acquired resistance. Changes in porin expression typically result in low-
level antibiotic resistance. However, the coexistence of other resistance determinants,
combined with the changes in porin expression, has been reported to enhance the level
of resistance [25]. In essence, the effect of low porin expression resulting in less antibiotic
intake, coupled with the action of already-existing resistance mechanisms such as efflux
pumps or antibiotic-degrading enzymes, results in a high level of resistance [25].

3. Antimicrobial Resistance Modulation via Natural Products

Infectious diseases constitute one of the major contributing factors towards high
mortalities worldwide, and the slow discovery of novel antibiotics has created a void in the
available treatment options, which has necessitated the need to revisit and explore natural
resources [84]. In the pre-antibiotic era, since people were completely dependent on natural
resources for all their needs, including medicines, these resources significantly contributed
to the treatment of various diseases. Among natural products, microbes and plant products
hold prime importance. Since the discovery rate of microbially derived antimicrobials is at
its lowest since the golden age of antimicrobials and the emergence of AMR has further
narrowed down the treatment options, exploration of alternative medicine based on plant
products has become necessary [85]. Plants, being easily available and easy to handle,
were the first to be used as treatment options for infectious diseases, which continues
even today in many tribal communities as an alternative to modern antibiotics. Plants
produce hundreds and thousands of structurally and functionally diverse phytochemicals
that exert a multitargeted impact on pathogenic microbes, ensuring their death and no
further resistance development [13,14,85,86]. Given the availability of huge phytochemical
reserves in the plant kingdom, exploring them for antimicrobial agents seems promising.

3.1. Multiple-Compound Synergy vs. Single-Compound Therapy

Plants, as living organisms, are complex systems that are self-organising and environ-
mentally adaptive. These complex adaptive traits are a function of the complex chemical
matrix that works in synergy to give rise to complex systems such as plants [13]. Plants
thrive in diverse habitats, which are vulnerable to pathogenic attacks, and unlike animals,
plants do not possess an adaptive immune system. Therefore, they produce structurally
and functionally diverse chemicals known as plant secondary metabolites (PSM), which
are functionally so diverse that they not only kill pathogenic microbes but also ensure
that there is no resistance development anytime soon [87–89]. For instance, a recent study
conducted on Artemisia annua L. crude extracts (herbal tea) and pure artemisinin resulted
in a 6–18-fold reduction in plasmodial IC50 in the case of crude extract as compared to
purified artemisinin [90]. This phenomenon is explained by the existence of interacting
and potentiating compounds in the crude extract that enhance its activity in comparison
to the single active compound [87–89]. Further insights are needed to decipher the in-
teraction of phytocompounds in a mixture to devise efficient antimicrobials from plant
secondary metabolites.
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3.2. Plant Secondary Metabolites as Antimicrobials

Since the advent of antibiotics in 1930, many classes of microbe-derived antimicrobials
have been introduced in the antibiotics market. However, over time, cross-resistance
to these antibiotics has proved to be a grave issue for infection treatment worldwide,
particularly in developing countries [7,8]. Over-the-counter availability and ignorant
consumption of antibiotics have significantly contributed to the evolution of multidrug
resistance among microbes [7,25].

With the growing antimicrobial resistance in microbes, recent years have shown a great
shift towards alternative therapies, compared to conventional antibiotics, including increas-
ing use of natural products. There has been a growing need for the use of alternate therapies,
especially those derived from plants [91–94]. Plant metabolites are being used directly or
as precursors for new synthetic products [95]. Due to their having almost no side effects,
most people worldwide prefer biological components for maintaining their health [96]. The
first phytocompound used as medicine was morphine, which was discovered from opium
poppy (Papaver somniferum L.) [97]. Since then, chemicals found in plants that have the po-
tential to treat disease have been widely used, usually in crude forms. However, the period
after the 1980s saw a dramatic shift in pharmaceutical firms towards synthetic chemistry or,
most appropriately, towards combinatorial chemistry for more efficient and economical
drug development options [98,99]. The effectiveness of plant secondary metabolites as
herbal formulations and antimicrobial agents has prioritized the use of phytocompounds
in drug development against multidrug-resistant microbes [15,100,101]. However, despite
extensive research, the Food and Drug Administration (FDA) has authorised only a few
phytochemicals, such as capsaicin, codeine, paclitaxel, reserpine, and colchicine, as antimi-
crobial agents against drug-resistant microbes [10,57]. Crude methanolic extracts of several
plants such as lemongrass, neem, Aloe vera L., oregano, rosemary, thyme, and tulsi have
demonstrated effective antimicrobial activities, which were attributed to the presence of
flavonoids and tannins in their crude extracts [102].

Apart from crude extracts, which represent the synergistically cooperating mixture of
various phytochemicals, several active formulae in their purified states have shown activity
against MDR pathogens along with their molecular targets. To name a few, baicalein found
in Thymus vulgaris L., Scutellaria baicalensis Georgi, and Scutellaria lateriflora L. has shown
antimicrobial activity against MRSA, which can be attributed to its potential to inhibit
the NorA efflux pump of MRSA [103,104]. Berberine, isolated from Berberis L. sp., has
demonstrated antimicrobial activity by inhibiting bacterial gyrase/topoisomerase, RNA
polymerase, and cell division [105]. Magnolol, isolated from the bark of Magnolia officinalis
Rehder & E.H.Wilson, has demonstrated synergistic activity with meropenem by inhibiting
New Delhi metallo-β-lactamase (NDM-1), thereby restoring its activity against NDM-1
expressing Escherichia coli [106]. Plasmid-mediated antimicrobial resistance is one of the
underlying reasons for bacteria exhibiting resistance behaviour in response to antibiotics.
Several phytochemicals, such as 8-epidiosbulbin-E-acetate isolated from Dioscorea bulbifera
Russ. ex Wall., have been reported to possess curing efficiency against resistance plasmids
of Enterococcus faecalis, Shigella sonnei, Pseudomonas aeruginosa, and Escherichia coli [107].

Given the promising results of plant-based bioactive compounds against antibiotic-
resistant strains and the slow discovery of new and efficient antibiotics, it has become highly
imperative to explore the vast repository of phytocompounds to overcome the looming
catastrophe of antimicrobial resistance. The antimicrobial activities and mechanisms of
action hence employed by phytochemicals such as alkaloids, flavonoids, organosulfur
compounds, and terpenes are discussed in the following sections, and a summary is
depicted in Figure 3.
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3.2.1. Alkaloids

Alkaloids are heterocyclic nitrogenous compounds, biosynthetically derived from
amino acids, and show variability in chemical structures [108,109]. The activity of alkaloids
against microbial infections is mainly attributed to their inhibitory effects against efflux
pumps. Many alkaloid compounds have been reported to have marked significance in the
treatment of microbial infections.

Berberine is an isoquinoline alkaloid found in the bark of the stem and roots of
Berberis L. species and is found to possess antimicrobial activity against various microbes
including bacteria, fungi, protozoa, and viruses [92]. The mode of antimicrobial activity of
berberine is attributed to DNA intercalation, inhibition of RNA polymerase, and inhibition
of DNA gyrase and Topoisomerase IV [57,110]. Further, it was also shown to inhibit FtsZ
(filamenting temperature-sensitive mutant Z) protein, thus inhibiting cell division [57,92].

Another isoquinoline alkaloid, ungeremine, isolated from methanolic fractions of
Pancratium Illyricum L., was found to possess significant antibacterial activity, as it inhibits
bacterial topoisomerase, leading to DNA cleavage [92,111].

Piperine, isolated from Piper nigrum L. (black pepper) and Piper longum L. (Indian
long pepper), is a piperidine alkaloid that has demonstrated antimicrobial activity against
Staphylococcus aureus and synergistically reduced the minimum inhibitory concentration
(MIC) values when administered along with fluoroquinolone antibiotics [112]. Its inhibitory
effect against MRSA was due to the inhibition of NorA efflux pumps. The synergism
of piperine and aminoglycoside antibiotic, namely gentamicin when administered as
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nano-liposomes, demonstrated high effectiveness against MRSA infection [92,113,114].
Apart from naturally occurring piperine, its synthetic analogues such as 5-(2,2-dimethyl-
chroman-6-yl)-4-methyl-penta-2,4-dienoic acid ethyl ester and 5-(2,2-Dimethyl-chroman-6-
yl)-4-methyl-2E,4E-pentadienoic acid pyrrolidine were also found to inhibit NorA efflux
pumps expressed in Staphylococcus aureus [27,115].

Maculine, kokusagine, and dictamine belong to the quinolone class of alkaloids, are
primarily found in the stem bark of Teclea afzelii Engl., and have demonstrated significant
antimicrobial activity. The mode of action of both natural and synthetic quinoline alka-
loids involves the inhibition of type II topoisomerase leading to the inhibition of DNA
replication [116]. Reserpine, isolated from Rauvolfia serpentina (L.) Benth. ex Kurz, is an
indole alkaloid, was found to inhibit efflux pumps, and was reported to decrease the
fluoroquinolone resistance in Stenotrophomonas maltophilia, which was earlier resistant due
to over-expression of efflux pumps [117].

The steroidal alkaloids tomatidine and conessine possess antibacterial activities due to
potentiating other antibiotics when used in synergism. When used alone or in conjunction
with aminoglycoside antibiotics, tomatidine, which is derived from plants belonging to
the Solanaceae family such as tomato, brinjal, and potato, has demonstrated antimicrobial
activity against Staphylococcus aureus [118]. It could be used as a potentiator for many
antibiotics of different classes, such as ampicillin, cefepime, ciprofloxacin, and gentamicin,
when used to treat infections caused by Pseudomonas aeruginosa, Staphylococcus aureus, or
Enterococcus faecalis bacteria [92]. Conessine has demonstrated synergistic activity when
administered along with antibiotics [92,119]. It has demonstrated resistance-modifying
activity against Acinetobacter baumannii by inhibiting the AdeIJK efflux pump [120].

Sanguinarine is an alkaloid constituent of many plants including Argemone Mexicana
L., Chelidonium majus L., Macleaya cordata (Willd.) R.Br., and Sanguinaria canadensis L. It
has shown antibacterial activity against MRSA strains, and its mechanism involves cell
lysis brought about by the release of autolytic enzymes [121]. It was also reported to
act as an effective inhibitor of bacterial replication and transcription [122]. Furthermore,
Sanguinarine exhibits potent antimycobacterial activities against Mycobacterium aurum and
Mycobacterium smegmatis [123].

Caffeine, a xanthine alkaloid, has shown anti-quorum-sensing activity against Pseu-
domonas aeruginosa by interacting with the quorum-sensing proteins such as LasR and LasI
and down-regulating the secretion of its virulence factors [124].

Plant secondary metabolites (PSM) can have additive, antagonistic, or synergistic
effects on conventional antibiotics. However, the synergistic effect of PSM with antibiotics
is the most preferable interaction in terms of antimicrobial therapies. Two drugs are said
to be synergistic when the combined effect they produce is greater than the sum of their
individual effects (the phenomenon where the combined effect equals the sum is known
as additive effect). Synergistic interaction between two drugs is preferred in the case of
antimicrobial therapies, as it allows the use of lower doses of the combination constituents,
which not only reduces the duration of antimicrobial therapy but also reduces the chances
of dose-dependent toxicity, if any [89]. Many PSMs have been found to have synergistic
activities with antibiotics against pathogenic infections. Chanoclavine, an ergot alkaloid,
has shown synergistic activity with tetracycline against resistant strains of Escherichia
coli [125]. Furthermore, 1-4-napthoquinone has demonstrated antimicrobial activity for both
Gram-negative and Gram-positive bacteria [126]. It has exhibited synergistic behaviour
with carbapenems (imipenem) and cephalosporins (cefotaxime and cefuroxime) against
MRSA [13,127].

Alkaloids found in the plant kingdom are structurally very diverse and thus show
variability in scale and mode of activity. However, irrespective of the diversification in the
mechanism of action, plant alkaloids can be developed into potent antimicrobials, which
would not only revive the treatment options but also ensure the development of further
resistance is prevented. Table 3 summarizes some of the important plant-derived alkaloids,
their target pathogens, and their modes of action.
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Table 3. List of important alkaloid classes of plant-based antimicrobial agents reported and their sources, pathogenic targets, and mechanisms of action.

Bioactive Compound Chemical Formula PubChem CID Chemical Structure * Plant Source Target Pathogen Mode of Action References

Conessine C24H40N2 441082
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CID Chemical Structure * Plant Source Target 

Pathogen 
Mode of 
Action References 

Conessine C24H40N2 441082 

 

Holarrhena 
antidysenterica (G. 
Don) Wall. ex A. 

DC., 
Holarrhena 
floribunda 

(G.Don) T. 
Durand & 

Schinz, 
Holarrhena 

pubescens Wall. ex 
G. Don, 

Funtumia elastica 
(Preuss) Stapf. 

Pseudomonas 
aeruginosa 

Efflux pump 
inhibitor 

[120,128] 

Piperine C17H19NO3 638024 

 

Piper sylvaticum 
Roxb. 

Methicillin- 
resistant 

Staphylococcus 
aureus 

(MRSA)  

Efflux pump 
inhibitor 

[92,114] 

Berberine C20H18NO4+ 2353 

 

Berberis lycium 
Royle 

Escherichia coli 

Cell division 
inhibitor, 

protein, and 
DNA 

synthesis 
inhibitor 

[129,130] 

Lysergol C16H18N2O 14987 

 

Convolvulaceae 
Juss. 

Escherichia coli 
Efflux pump 

inhibitor 
[125] 

8-epidiosbulbin E-
acetate 

C21H24O7 131751666 

 

Dioscorea bulbifera 
L. 

Escherichia 
coli, 

Enterococcus 
faecalis, 

Pseudomonas 
aeruginosa, 

Shigella. 

Plasmid 
curing 

(R-plasmids 
in Escherichia 

coli and 
Enterococcus 

faecalis) 

[57,107] 

Reserpine C33H40N2O9 5770 

 

Rauvolfia 
serpentina (L.) 

Benth. ex Kurz 

Staphylococcus 
sp., 

Efflux pump 
inhibitor 

[131] 

Dioscorea bulbifera L.
Escherichia coli, Enterococcus

faecalis, Pseudomonas
aeruginosa, Shigella.

Plasmid curing
(R-plasmids in Escherichia

coli and
Enterococcus faecalis)

[57,107]
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Don) Wall. ex A. 
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floribunda 

(G.Don) T. 
Durand & 

Schinz, 
Holarrhena 

pubescens Wall. ex 
G. Don,

Funtumia elastica 
(Preuss) Stapf. 

Pseudomonas 
aeruginosa 

Efflux pump 
inhibitor 

[120,128] 

Piperine C17H19NO3 638024 
Piper sylvaticum 

Roxb. 

Methicillin- 
resistant 

Staphylococcus 
aureus 

(MRSA)  

Efflux pump 
inhibitor 

[92,114] 

Berberine C20H18NO4+ 2353 
Berberis lycium 

Royle 
Escherichia coli 

Cell division 
inhibitor, 

protein, and 
DNA 

synthesis 
inhibitor 

[129,130] 

Lysergol C16H18N2O 14987 
Convolvulaceae 

Juss. 
Escherichia coli 

Efflux pump 
inhibitor 

[125] 

8-epidiosbulbin E-
acetate 

C21H24O7 131751666 
Dioscorea bulbifera 

L. 

Escherichia 
coli, 

Enterococcus 
faecalis, 

Pseudomonas 
aeruginosa, 

Shigella. 

Plasmid 
curing 

(R-plasmids 
in Escherichia 

coli and 
Enterococcus 

faecalis) 

[57,107] 

Reserpine C33H40N2O9 5770 
Rauvolfia 

serpentina (L.) 
Benth. ex Kurz 

Staphylococcus 
sp., 

Efflux pump 
inhibitor 

[131]Rauvolfia serpentina (L.) Benth. ex Kurz Staphylococcus sp., Streptococcus sp. Efflux pump inhibitor [131]
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Streptococcus 
sp. 

Tomatidine C27H45NO2 65576 Solanum L. sp. 

Listeria, 
Bacillus and 

Staphylococcus 
sp. 

ATP synthase 
inhibitor 

[118,132] 

Dictamnine C12H9NO2 68085 
Teclea afzelii 

(Engl.)  

Escherichia 
coli, 

Microsporum 
audorium, 
Bacillus 
subtilis, 

Mycobacteriu
m smegmatis 

Inhibition of 
Type II 

topoisomeras
e enzyme and 
inhibition of 

DNA 
replication 

[92] 
Kokusagine C13H9NO4 5318829 

Teclea afzelii 
(Engl.) 

Maculine C13H9NO4 68232 
Teclea afzelii 

(Engl.) 

Sanguinarine C20H14NO4+ 5154 

Chelidonium 
majus L., 

Sanguinaria 
canadensis L., 

Macleaya cordata 
(Willd.) R. Br. 

MRSA, 
Mycobacteriu
m aurum and 
Mycobacteriu
m smegmatis 

Compromisin
g cytoplasmic 

membrane, 
cell lysis, 

replication, 
and 

transcription 
inhibition 

[92] 

Chanoclavine C16H20N2O 5281381 
Ipomoea muricata 

(L.) Jacq. 
MDR 

Escherichia coli 
Efflux pump 

inhibition 
[92] 

Caffeine C8H10N4O2 2519 
Camellia sinensis 

(L.) Kuntze 
Pseudomonas 

aeruginosa 

Inhibition of 
quorum-
sensing 

proteins LasR 
and LasI and 
inhibition of 

bacterial 
virulence 

factors 

[124]

Solanum L. sp. Listeria, Bacillus and Staphylococcus sp. ATP synthase inhibitor [118,132]
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Escherichia coli, Microsporum audorium,
Bacillus subtilis, Mycobacterium smegmatis

Inhibition of Type II
topoisomerase enzyme and

inhibition of DNA replication
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Streptococcus 
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Bacillus and 

Staphylococcus 
sp. 

ATP synthase 
inhibitor 

[118,132] 
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Escherichia 
coli, 
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Bacillus 
subtilis, 

Mycobacteriu
m smegmatis 

Inhibition of 
Type II 

topoisomeras
e enzyme and 
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Chanoclavine C16H20N2O 5281381 
Ipomoea muricata 

(L.) Jacq. 
MDR 

Escherichia coli 
Efflux pump 

inhibition 
[92] 

Caffeine C8H10N4O2 2519 
Camellia sinensis 

(L.) Kuntze 
Pseudomonas 

aeruginosa 

Inhibition of 
quorum-
sensing 

proteins LasR 
and LasI and 
inhibition of 

bacterial 
virulence 

factors 

[124]

Teclea afzelii (Engl.)
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Pseudomonas 

aeruginosa 
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quorum-
sensing 

proteins LasR 
and LasI and 
inhibition of 

bacterial 
virulence 

factors 

[124]

Chelidonium majus L., Sanguinaria canadensis L.,
Macleaya cordata (Willd.) R. Br.

MRSA, Mycobacterium aurum
and Mycobacterium smegmatis

Compromising cytoplasmic
membrane, cell lysis, replication,

and transcription inhibition
[92]

Chanoclavine C16H20N2O 5281381
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Ipomoea muricata (L.) Jacq. MDR Escherichia coli Efflux pump inhibition [92]
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Inhibition of quorum-sensing
proteins LasR and LasI and

inhibition of bacterial
virulence factors

[124]
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Caranine C16H17NO3 441589 

Clivia miniata 
(Lindl.) 

Verschaff., 
Crinum 

bulbispermum 
(Burm.f.) Milne-

Redh. & 
Schweick. 

Candida 
dubliniensis 

NA [133] 

Evodiamine C19H17N3O 442088 
Evodia aromatica 

(Sonn.) Pers. 
Streptococcus 
pneumoniae 

Inhibition of 
ATP-

dependent 
MurE ligase 

of 
Mycobacteriu

m tuberculosis, 
an enzyme 

required for 
the 

biosynthesis 
of 

peptidoglyca
n 

[134] 

Chanoclavine C16H20N2O 5281381 
Ipomoea muricata 

(L.) Jacq. 
MDR 

Escherichia coli 
Efflux pump 

inhibition 
[92] 

Evocarpine C23H33NO 5317303 
Evodia aromatica 

(Sonn.) Pers. 
Streptococcus 
pneumoniae 

Inhibition of 
ATP-

dependent 
MurE ligase 

of 
Mycobacteriu

m tuberculosis, 
an enzyme 

required for 
the 

biosynthesis 
of 

peptidoglyca
n 

[134] 

Voacafricines A & 
B 

Fruits of Voacanga 
Africana Stapf. 

Staphylococcus 
aureus 

NA [133] 

Thalicfoetine
Roots of 

Thalictrum 
foetidum L. 

Bacillus 
subtilis 

NA [135,136] 

* Chemical structures of compounds have been taken from PubChem; www.pubchem.ncbi.nl
m.nih.gov (Accessed on 10 December 2022).

3.2.2. Phenols 
Due to their wide range of pharmacological activities and strong pharmacological 

effects, plant phenolics are recognised as important bioactive compounds. Plant-derived 
phenols can be found in simple or polymerized forms and contain an aromatic ring struc-
ture with one or more hydroxyl groups. Plant phenolics are categorized into many classes 

Clivia miniata (Lindl.) Verschaff.,
Crinum bulbispermum (Burm.f.)

Milne-Redh. & Schweick.
Candida dubliniensis NA [133]
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3.2.2. Phenols 
Due to their wide range of pharmacological activities and strong pharmacological 

effects, plant phenolics are recognised as important bioactive compounds. Plant-derived 
phenols can be found in simple or polymerized forms and contain an aromatic ring struc-
ture with one or more hydroxyl groups. Plant phenolics are categorized into many classes 

Evodia aromatica (Sonn.) Pers. Streptococcus pneumoniae
Inhibition of ATP-dependent MurE ligase of

Mycobacterium tuberculosis, an enzyme required for
the biosynthesis of peptidoglycan

[134]
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effects, plant phenolics are recognised as important bioactive compounds. Plant-derived 
phenols can be found in simple or polymerized forms and contain an aromatic ring struc-
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Ipomoea muricata (L.) Jacq. MDR Escherichia coli Efflux pump inhibition [92]
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3.2.2. Phenols 
Due to their wide range of pharmacological activities and strong pharmacological 

effects, plant phenolics are recognised as important bioactive compounds. Plant-derived 
phenols can be found in simple or polymerized forms and contain an aromatic ring struc-
ture with one or more hydroxyl groups. Plant phenolics are categorized into many classes 

Evodia aromatica (Sonn.) Pers. Streptococcus pneumoniae
Inhibition of ATP-dependent MurE ligase of

Mycobacterium tuberculosis, an enzyme required for
the biosynthesis of peptidoglycan

[134]

Voacafricines A & B Fruits of Voacanga Africana Stapf. Staphylococcus aureus NA [133]

Thalicfoetine Roots of Thalictrum foetidum L. Bacillus subtilis NA [135,136]

* Chemical structures of compounds have been taken from PubChem; www.pubchem.ncbi.nlm.nih.gov (Accessed on 10 December 2022).

www.pubchem.ncbi.nlm.nih.gov
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3.2.2. Phenols

Due to their wide range of pharmacological activities and strong pharmacological
effects, plant phenolics are recognised as important bioactive compounds. Plant-derived
phenols can be found in simple or polymerized forms and contain an aromatic ring struc-
ture with one or more hydroxyl groups. Plant phenolics are categorized into many classes
such as simple phenols, phenolic acids, quinones, flavonoids, and tannins. Phenols have
proven to be potent against a wide range of diseases such as bacterial infections, cancers,
diabetes, and cardiovascular diseases [137–140]. Plant phenolics have exhibited antimi-
crobial potency against a variety of microbes by sensitizing them against antibiotics and
tuning down the efflux pump activity by acting as potent efflux pump inhibitors.

Simple phenols such as catechol and pyrogallol, which are allelochemicals synthesized
by plants, have shown antibacterial activities against three bacterial strains: Corynebacterium
xerosis, Pseudomonas putida, and Pseudomonas pyocyanea. Moreover, catechol was found to
have an antifungal effect on Fusarium oxysporum and Penicillium italicum [141]. Furthermore,
4-(4-Hydroxyphenethyl) phen-1,2-diol (2a), a derivative of catechol and pyrogallol, was
found to inhibit Helicobacter pylori urease enzyme [142]. Resorcinol, isolated from Ainsliaea
bonatii Beauverd, was found to be effective against MRSA and ESBL Staphylococcus aureus.
The mode of action was reported to be cell wall disintegration, leading to increased perme-
ability and leakage of intracellular constituents, negatively influencing gene expression and
leading to decreased protein synthesis [143]. Resveratrol, a natural phenolic compound,
exhibited efflux pump inhibitory activity against various bacterial strains such as Cme-
ABC, a multidrug efflux system of Campylobacter jejuni, and efflux pumps of Mycobacterium
smegmatis [144].

Gallic acid and ferulic acid have been reported to possess significant antimicrobial ac-
tivities against Escherichia coli, Staphylococcus aureus, Listeria monocytogenes, and Pseudomonas
aeruginosa, and the mode of action was found to be the disruption of cell membrane via
changes in membrane potential [145]. Furthermore, 3-p-trans-coumaroyl-2-hydroxyquinic
acid, isolated from Cedrus deodara (Roxb. ex D.Don) G.Don, has shown effective antibacte-
rial activity against Staphylococcus aureus, and the mechanism of action involves damage
to cytoplasmic membrane due to membrane hyperpolarization and loss of membrane in-
tegrity, which results in subsequent discharge of intracellular constituents [146]. Chebulinic
acid, primarily isolated from Terminalia chebula Retz., has been reported to inhibit DNA
gyrase of quinolone-resistant Mycobacterium tuberculosis [147]. However, the whole study
was in silico based, and further insights are needed to unravel its significance as a DNA
gyrase inhibitor and anti-tuberculosis agent [92].

Quercetin and apigenin belong to the flavonoid class of plant phenols, which act as
antibacterial agents against Helicobacter pylori and Escherichia coli, and the mechanism of
action involves inhibition of d-alanine:d-alanine ligase, an enzyme important for bacterial
cell wall assembly [148].

Baicalein is a flavone, primarily isolated from Scutellaria baicalensis Georgi, Scutellaria la-
teriflora L., and Thymus vulgaris L. It inhibits NorA efflux pumps, thus increasing the efficacy
of antibiotics such as β-lactams, ciprofloxacin, and tetracycline against methicillin-resistant
Staphylococcus aureus. When co-administered with tetracycline, baicalein also shows a
synergistic effect against Escherichia coli due to inhibition of the efflux pump [103,104].

Biochanin A, an isoflavone, has inhibitory activity against MRSA and has been found
to inhibit MRSA efflux pumps by reducing NorA protein expression [149].

Kaempferol, an active flavonoid, has shown potent antimicrobial activity against
triazole-resistant Candida albicans and MRSA [150,151]. Kaempferol inhibits NorA efflux
pump, as does its naturally occurring glycoside derivative, kaempferol rhamnoside, which
has a potentiating effect on ciprofloxacin against NorA pumps of Staphylococcus aureus [150].

Catechins found in green tea form the basis of the antimicrobial potential of tea extracts.
The antimicrobial activity of catechins is attributed to their hydrogen peroxide generation,
which ultimately leads to bacterial cell membrane damage [152]. Epigallocatechin gallate
(EGCG) is yet another phenolic compound that exhibits antimicrobial activity against
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MRSA by inhibiting NorA efflux pump [27,92,98]. EGCG has been shown to inhibit
DNA gyrase by blocking its β-subunit at the ATP binding site, bacterial efflux pump,
and inhibition of chromosomal penicillinases, owing to its multitargeted action against
pathogenic microbes [153].

Tannins have been reported to have much more effective antimicrobial action on
Gram-positive bacteria than Gram-negative ones. This difference in activity is because of
the mode of action of tannins. Tannins pass through the bacterial cell wall and interfere
with the metabolism of bacterial cell. On the other hand, double-layered cell walls of
Gram-negative bacteria offer much resistance for the tannins to pass through, hence the
reduced activity [154]. Curcumin, abundantly found in Curcuma longa L., has demonstrated
antimicrobial activity against Escherichia coli and Staphylococcus aureus. The antibacterial
activity is attributed to its capacity to damage the membrane by penetrating through the
bilayer and increasing the membrane permeability [155].

Phenolics have shown diverse mechanisms against different bacteria ranging from
inhibition of efflux pumps, cellular membrane disruption, and inhibition of cell wall
synthesis to inhibition of key enzyme biosynthesis. The observed traits of phenolics
as antibacterials make them desirable candidates for further in vitro studies. The most
significant phenolics with antibacterial activities have been summarized in Table 4.
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Table 4. List of important phenolic classes of plant-based antimicrobial agents reported and their sources, pathogenic targets, and mechanisms of action.

Bioactive Compound Chemical Formula PubChem CID Chemical Structure * Plant Source Target Pathogen Mode of Action References
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Methicillin-
resistant 

Staphylococcus 
aureus, 

Enterococcus 
faecalis 

Cysteine 
transpeptidase 

sortase A (SrtA) 
inhibitor, 

β-ketoacyl acyl 
carrier protein 

synthase 
inhibitor 

[160,161] 

Vitis vinifera L. Campylobacter jejuni Efflux pump inhibitor [159]

Taxifolin/dihydroquercetin C15H12O7 439533

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 19 of 50 

Chebulinic acid C41H32O27 72284 
Terminalia 

chebula Retz. 

Quinolone-
resistant 

mutants of 
Mycobacterium 

tuberculosis 

Inhibition of 
DNA gyrase 

[147] 

Emodin C15H10O5 3220 
Rheum 

palmatum L. 

Methicillin-
resistant 

Staphylococcus 
aureus, 

vancomycin-
resistant 

Enterococcus 
faecium 

Inhibition of 
DNA gyrase 

[157] 

Curcumin C21H20O6 969516 
Curcuma longa 

L. 

Staphylococcus 
aureus, 

Escherichia 
coli. 

Enhancing 
membrane 

permeability, 
inhibition of 

enzyme sortase A 

[155] 

Quercetin C15H10O7 5280343 

Staphylococcus 
aureus, 

Escherichia 
coli, 

Helicobacter 
pylori 

Efflux pump 
inhibitor, 

inhibition of d-
alanine:d-alanine 

ligase in 
Helicobacter pylori 

and Escherichia 
coli 

[148,158] 

Kaempferol C15H10O6 5280863 
Alpinia 

calcarata–
Roscoe. 

Methicillin-
resistant 

Staphylococcus 
aureus, 
Candida 
albicans 

Efflux pump 
inhibitor 

[150,151] 

Resveratrol C14H12O3 445154 Vitis vinifera L. 
Campylobacter 

jejuni 
Efflux pump 

inhibitor 
[159] 

Taxifolin/dihyd
roquercetin 

C15H12O7 439533 

Methicillin-
resistant 

Staphylococcus 
aureus, 

Enterococcus 
faecalis 

Cysteine 
transpeptidase 

sortase A (SrtA) 
inhibitor, 

β-ketoacyl acyl 
carrier protein 

synthase 
inhibitor 

[160,161] Conifers-like Larix sibirica Ledeb., Pinus
roxburghii Sarg., Cedrus deodara (Roxb. ex D.Don)

G.Don, Taxus chinensis (Pilg.) Rehder.

Methicillin-resistant
Staphylococcus aureus,
Enterococcus faecalis

Cysteine transpeptidase
sortase A (SrtA) inhibitor,
β-ketoacyl acyl carrier

protein synthase inhibitor

[160,161]

Osthole C15H16O3 10228
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Osthole C15H16O3 10228 

Prangos hulusii 
(Şenol, Yıldırım 

& Seçmen), 
Cnidium 

monnieri (L.) 
Cusson ex Juss., 

Angelica 
pubescens 
Maxim. 

Bacillus 
subtilis, 

Staphylococcus 
aureus, 

Klebsiella 
pneumoniae 

DNA gyrase 
inhibitor, MCR-1 

inhibitor 
[162,163] 

Galbanic acid C24H30O5 7082474 
Ferula 

szowitsiana DC. 
Staphylococcus 

aureus 
Efflux pump 

inhibitor 
[164] 

Asphodelin A C15H10O6 54679752 
Asphodelus 
microcarpus 

Rchb. 

Staphylococcus 
aureus, 

Escherichia 
coli, 

Pseudomonas 
aeruginosa, 

Candida 
albicans, 
Botrytis 
cinerea 

DNA gyrase 
inhibitor 

[165] 

Aegelinol C14H14O4 600671 

Phlojodicarpus 
villosus (Turcz. 

galbanifera 
(Mill.) 

W.D.J.Koch

Salmonella 
enterica 

serovar typhi, 
Enterobacter 

aerogenes, 
Enterobacter 

cloacae, 
Staphylococcus 

aureus 

DNA gyrase 
inhibitor 

[92,166] 

3,4,5-
trihydroxybenz
oic acid (Gallic 

acid) 

C7H6O5 370 

Mimosa 
bimucronata 

(DC.) Kuntze, 
Punica granatum 

L. 

Staphylococcus 
aureus, 

Escherichia 
coli, Listeria 

monocytogenes
, Pseudomonas 

aeruginosa 

Cell membrane 
disintegration 

[145] 

Ferulic acid C10H10O4 445858 
Commelinaceae 

Mirb. 

Staphylococcus 
aureus, 

Escherichia 
coli, Listeria 

monocytogenes
, Pseudomonas 

aeruginosa 

Cell membrane 
disintegration 

[145] 

Apigenin C15H10O5 5280443 
Pseudomonas 

aeruginosa 
NA [134,148] 

Prangos hulusii (Şenol, Yıldırım & Seçmen),
Cnidium monnieri (L.) Cusson ex Juss., Angelica

pubescens Maxim.

Bacillus subtilis, Staphylococcus
aureus, Klebsiella pneumoniae

DNA gyrase inhibitor,
MCR-1 inhibitor [162,163]
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Bacillus 
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Staphylococcus 
aureus, 
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DNA gyrase 
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Phlojodicarpus 
villosus (Turcz. 

galbanifera 
(Mill.) 

W.D.J.Koch

Salmonella 
enterica 

serovar typhi, 
Enterobacter 

aerogenes, 
Enterobacter 

cloacae, 
Staphylococcus 

aureus 

DNA gyrase 
inhibitor 

[92,166] 

3,4,5-
trihydroxybenz
oic acid (Gallic 

acid) 

C7H6O5 370 

Mimosa 
bimucronata 

(DC.) Kuntze, 
Punica granatum 

L. 

Staphylococcus 
aureus, 

Escherichia 
coli, Listeria 

monocytogenes
, Pseudomonas 

aeruginosa 

Cell membrane 
disintegration 

[145] 

Ferulic acid C10H10O4 445858 
Commelinaceae 

Mirb. 

Staphylococcus 
aureus, 

Escherichia 
coli, Listeria 

monocytogenes
, Pseudomonas 

aeruginosa 

Cell membrane 
disintegration 

[145] 

Apigenin C15H10O5 5280443 
Pseudomonas 

aeruginosa 
NA [134,148] 

Ferula szowitsiana DC. Staphylococcus aureus Efflux pump inhibitor [164]

Asphodelin A C15H10O6 54679752
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enterica 
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Enterobacter 

aerogenes, 
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Staphylococcus 

aureus 

DNA gyrase 
inhibitor 

[92,166] 

3,4,5-
trihydroxybenz
oic acid (Gallic 

acid) 

C7H6O5 370 

Mimosa 
bimucronata 

(DC.) Kuntze, 
Punica granatum 

L. 

Staphylococcus 
aureus, 

Escherichia 
coli, Listeria 

monocytogenes
, Pseudomonas 

aeruginosa 

Cell membrane 
disintegration 

[145] 

Ferulic acid C10H10O4 445858 
Commelinaceae 

Mirb. 

Staphylococcus 
aureus, 

Escherichia 
coli, Listeria 

monocytogenes
, Pseudomonas 

aeruginosa 

Cell membrane 
disintegration 

[145] 

Apigenin C15H10O5 5280443 
Pseudomonas 

aeruginosa 
NA [134,148] 

Asphodelus microcarpus Rchb.

Staphylococcus aureus,
Escherichia coli, Pseudomonas
aeruginosa, Candida albicans,

Botrytis cinerea

DNA gyrase inhibitor [165]

Aegelinol C14H14O4 600671
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Phlojodicarpus 
villosus (Turcz. 
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(Mill.) 
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Salmonella 
enterica 

serovar typhi, 
Enterobacter 

aerogenes, 
Enterobacter 

cloacae, 
Staphylococcus 

aureus 

DNA gyrase 
inhibitor 

[92,166] 

3,4,5-
trihydroxybenz
oic acid (Gallic 

acid) 

C7H6O5 370 

Mimosa 
bimucronata 

(DC.) Kuntze, 
Punica granatum 

L. 

Staphylococcus 
aureus, 

Escherichia 
coli, Listeria 

monocytogenes
, Pseudomonas 

aeruginosa 

Cell membrane 
disintegration 

[145] 

Ferulic acid C10H10O4 445858 
Commelinaceae 

Mirb. 

Staphylococcus 
aureus, 

Escherichia 
coli, Listeria 

monocytogenes
, Pseudomonas 

aeruginosa 

Cell membrane 
disintegration 

[145] 

Apigenin C15H10O5 5280443 
Pseudomonas 

aeruginosa 
NA [134,148] 

Phlojodicarpus villosus (Turcz. ex Fisch. &
C.A.Mey.) Turcz. ex Ledeb.,

Peucedanum praeruptorum Dunn, Ferulago
galbanifera (Mill.) W.D.J.Koch

Salmonella enterica serovar typhi,
Enterobacter aerogenes,

Enterobacter cloacae,
Staphylococcus aureus

DNA gyrase inhibitor [92,166]

3,4,5-trihydroxybenzoic
acid (Gallic acid) C7H6O5 370
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3,4,5-
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oic acid (Gallic 

acid) 

C7H6O5 370 
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(DC.) Kuntze, 
Punica granatum 
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Staphylococcus 
aureus, 

Escherichia 
coli, Listeria 
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, Pseudomonas 

aeruginosa 

Cell membrane 
disintegration 

[145] 

Ferulic acid C10H10O4 445858 
Commelinaceae 

Mirb. 

Staphylococcus 
aureus, 

Escherichia 
coli, Listeria 

monocytogenes
, Pseudomonas 

aeruginosa 

Cell membrane 
disintegration 

[145] 

Apigenin C15H10O5 5280443 
Pseudomonas 

aeruginosa 
NA [134,148] 

Mimosa bimucronata (DC.) Kuntze, Punica
granatum L.

Staphylococcus aureus,
Escherichia coli, Listeria

monocytogenes,
Pseudomonas aeruginosa

Cell
membrane disintegration [145]
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aerogenes, 
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Staphylococcus 
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3,4,5-
trihydroxybenz
oic acid (Gallic 

acid) 

C7H6O5 370 

Mimosa 
bimucronata 
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Punica granatum 
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Staphylococcus 
aureus, 
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Salmonella 
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serovar typhi, 
Enterobacter 

aerogenes, 
Enterobacter 

cloacae, 
Staphylococcus 
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DNA gyrase 
inhibitor 
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3,4,5-
trihydroxybenz
oic acid (Gallic 

acid) 

C7H6O5 370 

Mimosa 
bimucronata 

(DC.) Kuntze, 
Punica granatum 
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Staphylococcus 
aureus, 

Escherichia 
coli, Listeria 

monocytogenes
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aeruginosa 

Cell membrane 
disintegration 
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Ferulic acid C10H10O4 445858 
Commelinaceae 

Mirb. 

Staphylococcus 
aureus, 

Escherichia 
coli, Listeria 

monocytogenes
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aeruginosa 

Cell membrane 
disintegration 

[145] 

Apigenin C15H10O5 5280443 
Pseudomonas 

aeruginosa 
NA [134,148] 

Matricaria chamomilla L. Pseudomonas aeruginosa NA [134,148]

Genistein C15H10O5 5280961
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Eriodictyol C15H12O6 440735
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Eriodictyon californicum (Hook. & Arn.) Decne. Enterococcus
faecalis NA [161]

Agasyllin C19H20O5 15596603
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* Chemical structures of compounds have been taken from PubChem; www.pubchem.ncbi.nlm.nih.gov (Accessed on 10 December 2022).
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3.2.3. Organosulfur Compounds

Organosulfur compounds are sulfur-containing organic molecules that are responsible
for the strong aromas of Allium vegetables such as onions and garlic. They are also present
in cruciferous vegetables such as cabbage and broccoli. Several organosulfur compounds
such as allicin, ajoene, dialkenyl sulfides, S-allyl cysteine, and isothiocyanates were found
to be effective against both Gram-positive as well as Gram-negative bacteria [168–171].
Investigations have revealed that high-concentration polysulfide-containing plants possess
broad-spectrum antibacterial activities [172].

Diallyl thiosulfinate, commonly known as ‘allicin’, is an organosulfur compound that
is isolated from Allium sativum L. Its antibacterial action has been seen against a variety
of pathogenic microbes, including MRSA, Pseudomonas aeruginosa, Streptococcus agalactiae,
Staphylococcus epidermidis, and oral pathogens that can cause periodontitis [168,173]. Allicin
mainly causes the suppression of sulfhydryl-dependent enzymes, including alcohol dehy-
drogenase, thioredoxin reductase, and RNA polymerase, which is the primary mechanism
of its antibacterial activity. Further, allicin has also been shown to partially inhibit protein
and nucleic acid synthesis [174,175].

Ajoene, another organosulfur compound, is not as functionally diverse as allicin.
However, it exhibits potency against both Gram-positive as well as Gram-negative bacteria
along with some fungal strains, including Aspergillus niger and Candida albicans. The
mechanism of action is the same as that of allicin, as ajoene is also a sulfhydryl-dependent
enzyme inhibitor [168].

Isothiocyanates (ITCs) are exclusively abundant in members of the family Brassicaceae
Burnett. such as broccoli, cabbage, cauliflower, and mustard, and they show activity against
oral pathogens as well as Helicobacter pylori [170,176,177]. The antimicrobial mechanism of
ITCs is not fully understood yet. However, it is speculated that their activity might be due
to their reaction with cellular proteins and enzymes, which then hamper the biochemical
processes inside the cell. Due to the high electrophilicity of an ITC carbon atom, it can react
with amines, thiols, and hydroxyl groups of cellular proteins [170]. Table 5 lists some of the
important organosulfur compounds that have been found to have antimicrobial activities
against different pathogenic microbes.
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Table 5. List of important organosulfur/isothiocyanate classes of plant-based antimicrobial agents reported and their sources, pathogenic targets, and mechanisms
of action.

Bioactive Compound Chemical Formula PubChem CID Chemical Structure * Plant Source Target Pathogen Mode of Action References

Allicin C6H10OS2 65036
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Staphylococcus aureus, 

Escherichia coli, 
Helicobacter pylori 

Sulfhydryl-
dependent 

enzyme 
[168,180] 

Sulforaphane C6H11NOS2 
Bacillus cereus, 
Escherichia coli 

Membrane 
destruction, 
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inhibitor, 

DNA/protein 
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inhibitor 
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Allyl 
isothiocyanat

es (AITCs) 
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Oral pathogens, 
Helicobacter pylori, 

Escherichia coli 

Inhibition of 
urease, 

reducing the 
inflammatory 
component of 

Helicobacter 
infections, 

inhibition of 
ATP binding 

sites of P-
ATPase in 

bacteria 

[92,170] 

Benzyl 
isothiocyanat

e (BITC) 
C8H7NS 2346 

Methicillin-resistant 
Staphylococcus aureus 

Disruption of 
membrane 
integrity 

[176] 

Phenethyl 
isothiocyanat

e 
(PEITC) 

C9H9NS 16741 
Gram-positive 

bacteria 

Intracellular 
accumulation 

of reactive 
oxygen species 

(ROS), 
depolarization 

of 

[92,182] 

Allium sativum L.

Salmonella typhimurium, Staphylococcus aureus,
Bacillus subtilis,

Bacillus typhosus, Bacillus paratyphosus, Morganella
morganii, Bacillus enteritidis,

Shigella dysenteriae, Vibrio cholera, Escherichia. coli,
Listeria monocytogenes, Helicobacter pylori,

drug-resistant strains of Mycobacterium tuberculosis

Sulfhydryl-dependent enzyme
inhibitor, DNA/RNA synthesis

inhibitor, inhibitor of
acetyl-CoA synthases in yeasts

[169,174,178,179]

Ajoene C9H14OS3 5386591
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Escherichia. coli, Listeria 

monocytogenes, 
Helicobacter pylori, 

drug-resistant strains 
of Mycobacterium 

tuberculosis 

Sulfhydryl-
dependent 

enzyme 
inhibitor, 

DNA/RNA 
synthesis 
inhibitor, 

inhibitor of 
acetyl-CoA 
synthases in 

yeasts 

[169,174,178,1
79] 

Ajoene C9H14OS3 

Campylobacter jejuni, 
Staphylococcus aureus, 

Escherichia coli, 
Helicobacter pylori 

Sulfhydryl-
dependent 

enzyme 
[168,180] 

Sulforaphane C6H11NOS2 
Bacillus cereus, 
Escherichia coli 

Membrane 
destruction, 

ATP synthase 
inhibitor, 

DNA/protein 
synthesis 
inhibitor 

[181] 

Allyl 
isothiocyanat

es (AITCs) 
C4H5NS 5971 

Oral pathogens, 
Helicobacter pylori, 

Escherichia coli 

Inhibition of 
urease, 

reducing the 
inflammatory 
component of 

Helicobacter 
infections, 

inhibition of 
ATP binding 

sites of P-
ATPase in 

bacteria 

[92,170] 

Benzyl 
isothiocyanat

e (BITC) 
C8H7NS 2346 

Methicillin-resistant 
Staphylococcus aureus 

Disruption of 
membrane 
integrity 

[176] 

Phenethyl 
isothiocyanat

e 
(PEITC) 

C9H9NS 16741 
Gram-positive 

bacteria 

Intracellular 
accumulation 

of reactive 
oxygen species 

(ROS), 
depolarization 

of 

[92,182] 

Allium sativum L. Campylobacter jejuni, Staphylococcus aureus,
Escherichia coli, Helicobacter pylori Sulfhydryl-dependent enzyme [168,180]

Sulforaphane C6H11NOS2 5350
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acetyl-CoA 
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Staphylococcus aureus, 

Escherichia coli, 
Helicobacter pylori 

Sulfhydryl-
dependent 

enzyme 
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Sulforaphane C6H11NOS2 
Bacillus cereus, 
Escherichia coli 

Membrane 
destruction, 

ATP synthase 
inhibitor, 

DNA/protein 
synthesis 
inhibitor 

[181] 

Allyl 
isothiocyanat

es (AITCs) 
C4H5NS 5971 

Oral pathogens, 
Helicobacter pylori, 

Escherichia coli 

Inhibition of 
urease, 

reducing the 
inflammatory 
component of 

Helicobacter 
infections, 

inhibition of 
ATP binding 

sites of P-
ATPase in 

bacteria 

[92,170] 

Benzyl 
isothiocyanat

e (BITC) 
C8H7NS 2346 

Methicillin-resistant 
Staphylococcus aureus 

Disruption of 
membrane 
integrity 

[176] 

Phenethyl 
isothiocyanat

e 
(PEITC) 

C9H9NS 16741 
Gram-positive 

bacteria 

Intracellular 
accumulation 

of reactive 
oxygen species 

(ROS), 
depolarization 

of 

[92,182] 

Brassicaceae
Burnett. Bacillus cereus, Escherichia coli

Membrane destruction, ATP
synthase inhibitor,

DNA/protein
synthesis inhibitor

[181]

Allyl isothio-
cyanates (AITCs) C4H5NS 5971
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Escherichia coli 
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reducing the 
inflammatory 
component of 

Helicobacter 
infections, 

inhibition of 
ATP binding 

sites of P-
ATPase in 

bacteria 
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Benzyl 
isothiocyanat

e (BITC) 
C8H7NS 2346 

Methicillin-resistant 
Staphylococcus aureus 

Disruption of 
membrane 
integrity 

[176] 

Phenethyl 
isothiocyanat

e 
(PEITC) 

C9H9NS 16741 
Gram-positive 

bacteria 

Intracellular 
accumulation 

of reactive 
oxygen species 

(ROS), 
depolarization 

of 

[92,182] 

Armoracia rusticana
G.Gaertn., B.Mey.,

& Scherb.
Oral pathogens, Helicobacter pylori, Escherichia coli

Inhibition of urease, reducing
the inflammatory component of

Helicobacter infections,
inhibition of ATP binding sites

of P-ATPase in bacteria

[92,170]

Benzyl
isothiocyanate (BITC) C8H7NS 2346
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Staphylococcus aureus, 
Bacillus subtilis, 
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enteritidis, 
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drug-resistant strains 
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dependent 

enzyme 
inhibitor, 

DNA/RNA 
synthesis 
inhibitor, 

inhibitor of 
acetyl-CoA 
synthases in 

yeasts 

[169,174,178,1
79] 

Ajoene C9H14OS3 

Campylobacter jejuni, 
Staphylococcus aureus, 

Escherichia coli, 
Helicobacter pylori 

Sulfhydryl-
dependent 

enzyme 
[168,180] 

Sulforaphane C6H11NOS2 
Bacillus cereus, 
Escherichia coli 

Membrane 
destruction, 

ATP synthase 
inhibitor, 

DNA/protein 
synthesis 
inhibitor 

[181] 

Allyl 
isothiocyanat

es (AITCs) 
C4H5NS 5971 

Oral pathogens, 
Helicobacter pylori, 

Escherichia coli 

Inhibition of 
urease, 

reducing the 
inflammatory 
component of 

Helicobacter 
infections, 

inhibition of 
ATP binding 

sites of P-
ATPase in 

bacteria 

[92,170] 

Benzyl 
isothiocyanat

e (BITC) 
C8H7NS 2346 

Methicillin-resistant 
Staphylococcus aureus 

Disruption of 
membrane 
integrity 

[176] 

Phenethyl 
isothiocyanat

e 
(PEITC) 

C9H9NS 16741 
Gram-positive 

bacteria 

Intracellular 
accumulation 

of reactive 
oxygen species 

(ROS), 
depolarization 

of 

[92,182] 

Alliaria petiolata (M.Bieb.)
Cavara & Grande Methicillin-resistant Staphylococcus aureus Disruption of

membrane integrity [176]

Phenethyl
isothiocyanate(PEITC) C9H9NS 16741
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Allicin C6H10OS2 

Salmonella 
typhimurium, 

Staphylococcus aureus, 
Bacillus subtilis, 

Bacillus typhosus, 
Bacillus paratyphosus, 

Morganella 
morganii, Bacillus 

enteritidis, 
Shigella dysenteriae, 

Vibrio cholera, 
Escherichia. coli, Listeria 

monocytogenes, 
Helicobacter pylori, 

drug-resistant strains 
of Mycobacterium 

tuberculosis 

Sulfhydryl-
dependent 

enzyme 
inhibitor, 

DNA/RNA 
synthesis 
inhibitor, 

inhibitor of 
acetyl-CoA 
synthases in 

yeasts 

[169,174,178,1
79] 

Ajoene C9H14OS3 

Campylobacter jejuni, 
Staphylococcus aureus, 

Escherichia coli, 
Helicobacter pylori 

Sulfhydryl-
dependent 

enzyme 
[168,180] 

Sulforaphane C6H11NOS2 
Bacillus cereus, 
Escherichia coli 

Membrane 
destruction, 

ATP synthase 
inhibitor, 

DNA/protein 
synthesis 
inhibitor 

[181] 

Allyl 
isothiocyanat

es (AITCs) 
C4H5NS 5971 

Oral pathogens, 
Helicobacter pylori, 

Escherichia coli 

Inhibition of 
urease, 

reducing the 
inflammatory 
component of 

Helicobacter 
infections, 

inhibition of 
ATP binding 

sites of P-
ATPase in 

bacteria 

[92,170] 

Benzyl 
isothiocyanat

e (BITC) 
C8H7NS 2346 

Methicillin-resistant 
Staphylococcus aureus 

Disruption of 
membrane 
integrity 

[176] 

Phenethyl 
isothiocyanat

e 
(PEITC) 

C9H9NS 16741 
Gram-positive 

bacteria 

Intracellular 
accumulation 

of reactive 
oxygen species 

(ROS), 
depolarization 

of 

[92,182] 

Brassica campestris L.,
Brassica rapa L. Gram-positive bacteria

Intracellular accumulation of
reactive oxygen species (ROS),

depolarization of
mitochondrial membrane

[92,182]
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Table 5. Cont.

Bioactive Compound Chemical Formula PubChem CID Chemical Structure * Plant Source Target Pathogen Mode of Action References

Berteroin C7H13NS2 206037
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mitochondrial 
membrane 

Berteroin C7H13NS2 206037 
Bacillus subtilis, 
Escherichia coli, 

Helicobacter pylori 
NA [93]

Cheirolin C5H9NO2S2 10454 Helicobacter pylori NA [134]

Alyssin C7H13NOS2 206035 Helicobacter pylori NA [134]

Brassica oleracea L. Bacillus subtilis, Escherichia coli, Helicobacter pylori NA [93]

Cheirolin C5H9NO2S2 10454
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mitochondrial 
membrane 

Berteroin C7H13NS2 206037 
Bacillus subtilis, 
Escherichia coli, 

Helicobacter pylori 
NA [93]

Cheirolin C5H9NO2S2 10454 Helicobacter pylori NA [134]

Alyssin C7H13NOS2 206035 Helicobacter pylori NA [134]

Cheiranthus cheiri L. Helicobacter pylori NA [134]

Alyssin C7H13NOS2 206035
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mitochondrial 
membrane 

Berteroin C7H13NS2 206037 
Bacillus subtilis, 
Escherichia coli, 

Helicobacter pylori 
NA [93]

Cheirolin C5H9NO2S2 10454 Helicobacter pylori NA [134]

Alyssin C7H13NOS2 206035 Helicobacter pylori NA [134]

Alyssum L. sp. Helicobacter pylori NA [134]

* Chemical structures of compounds have been taken from PubChem; www.pubchem.ncbi.nlm.nih.gov (Accessed on 10 December 2022).
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3.2.4. Terpenes

Terpenes are aromatic compounds found in many plants and are responsible for the
characteristic smell of many plants, such as cannabis, pine, and lavender, as well as fresh
orange peel. Terpenes are commonly distributed in nature, in nearly all living forms, and
perform a variety of functions in cells. Apart from being primary structural components of
cells (cholesterol and steroids in cellular membranes), they also act as functional molecules
such as carotenoids, quinones, and retinal in photosynthesis, electron transport, and vision,
respectively [183].

Normally, terpenes have demonstrated more potent activity for Gram-positive than
Gram-negative bacteria and bring about their antibacterial effects mainly via lipophilic
features. Monoterpenes change membrane structure by changing their composition, which
increases fluidity and permeability and causes changes in the topology of membrane pro-
teins, causing disruptions throughout the respiratory chain [184]. Carvacrol is commonly
found in the essential oils of Thymus vulgaris L., Lepidium flavum Torr., Citrus aurantium
(Spreng.), Balle ssp. Bergamia, and Origanum vulgare L., among other plants. It has demon-
strated antibiofilm development activity against Staphylococcus aureus and Salmonella ty-
phimurium and is reported to have activity against tobacco mosaic virus and cucumber
mosaic virus [185,186]. Carvacrol has also been shown to be effective against food-borne
pathogens such as Escherichia coli, Salmonella, and Bacillus cereus [124].

Thymol, found as an essential oil component of Thymus vulgaris L, has shown antibac-
terial effects on tetracycline-resistant Salmonella typhimurium and Escherichia coli, penicillin-
resistant Staphylococcus aureus, and erythromycin-resistant Streptococcus pyogenes. The mech-
anism of action, as per many studies, involves disintegration of cell membranes [187,188].

Ursolic acid, a pentacyclic triterpene, possess broad-spectrum antibacterial activity. It
was shown that ursolic acid has disorganising effects on Escherichia coli membrane [189].
Eugenol and cinnamaldehyde are yet more important terpenes present in plant essential
oils and have shown activity against a wide range of pathogens including Helicobacter pylori,
causing damage to the cell membrane [190,191]. Eugenol has been shown to inhibit biofilm
formation by MRSA and MSSA clinical strains as well as the synthesis of virulence factors
by Pseudomonas aeruginosa [190,192]. The mechanism of eugenol action involves damage
to bacterial membrane, followed by leakage of cellular contents. As for cinnamaldehyde,
the compound works by damaging the membrane, decreasing the membrane potential,
and alterations in metabolic activity [193]. Some of the most significant terpenes having
antibacterial effects are listed in Table 6.
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Table 6. List of important terpene classes of plant-based antimicrobial agents reported and their sources, pathogenic targets, and mechanisms of action.

Bioactive Compound Chemical Formula PubChem CID Chemical Structure * Plant Source Target Pathogen Mode of Action References

Eugenol C10H12O2 3314
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Eugenol C10H12O2 3314 

Helicobacter pylori, 
Methicillin-resistant 
Staphylococcus aureus, 
Methicillin-sensitive 
Staphylococcus aureus, 

Pseudomonas aeruginosa 

Inhibits biofilm 
construction, 

interrupts cell-
to-cell 

communication
, eradicates the 
pre-established 
biofilms, and 

kills the 
bacteria in 
biofilms 

[190,192] 

Cinnamaldeh
yde 

C9H8O 637511 
Escherichia coli, 

Staphylococcus aureus 
Membrane 

damage 
[193] 

Ursolic acid C30H48O3 64945 Escherichia coli 
Cell membrane 

disturbance 
[189] 

Farnesol C15H26O 445070 
Staphylococcus aureus 

including MRSA 
Membrane 

damage 
[194] 

Carvacrol C10H14O 10364 Escherichia coli 
Cell membrane 

damage 
[167,195] 

Nerolidol C15H26O 5284507 
Staphylococcus aureus 

including MRSA 
Cell membrane 

damage 
[194] 

Thymol C10H14O 6989 
Staphylococcus aureus 

including MRSA 
NA [195,196]

Syzygium aromaticum (L.) Merr.
& L.M.Perr, Cinnamomum

zeylanicum Blume.

Helicobacter pylori, Methicillin-resistant
Staphylococcus aureus,

Methicillin-sensitive Staphylococcus
aureus, Pseudomonas aeruginosa

Inhibits biofilm construction,
interrupts cell-to-cell

communication, eradicates the
pre-established biofilms, and kills

the bacteria in biofilms

[190,192]

Cinnamaldehyde C9H8O 637511
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Staphylococcus aureus 

including MRSA 
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[194] 

Thymol C10H14O 6989 
Staphylococcus aureus 

including MRSA 
NA [195,196]

Cinnamomum verum J. Presl. Escherichia coli, Staphylococcus aureus Membrane damage [193]

Ursolic acid C30H48O3 64945
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Staphylococcus aureus 

including MRSA 
Cell membrane 

damage 
[194] 

Thymol C10H14O 6989 
Staphylococcus aureus 

including MRSA 
NA [195,196]

Salvia rosmarinus Spenn., Salvia
officinalis L. Escherichia coli Cell membrane disturbance [189]

Farnesol C15H26O 445070
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Helicobacter pylori, 
Methicillin-resistant 
Staphylococcus aureus, 
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construction, 

interrupts cell-
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bacteria in 
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Staphylococcus aureus 

including MRSA 
Membrane 

damage 
[194] 

Carvacrol C10H14O 10364 Escherichia coli 
Cell membrane 

damage 
[167,195] 

Nerolidol C15H26O 5284507 
Staphylococcus aureus 

including MRSA 
Cell membrane 

damage 
[194] 

Thymol C10H14O 6989 
Staphylococcus aureus 

including MRSA 
NA [195,196]

Vachellia farnesiana (L.)
Wight & Arn. Staphylococcus aureus including MRSA Membrane damage [194]

Carvacrol C10H14O 10364
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including MRSA 
Cell membrane 

damage 
[194] 
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Staphylococcus aureus 

including MRSA 
NA [195,196]

Thymus capitatus (L.)
Hoffmanns. & Link., Thymus

vulgaris L.
Escherichia coli Cell membrane damage [167,195]
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Table 6. Cont.

Bioactive Compound Chemical Formula PubChem CID Chemical Structure * Plant Source Target Pathogen Mode of Action References

Nerolidol C15H26O 5284507
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Eugenol C10H12O2 3314 

Helicobacter pylori, 
Methicillin-resistant 
Staphylococcus aureus, 
Methicillin-sensitive 
Staphylococcus aureus, 

Pseudomonas aeruginosa 

Inhibits biofilm 
construction, 

interrupts cell-
to-cell 

communication
, eradicates the 
pre-established 
biofilms, and 

kills the 
bacteria in 
biofilms 

[190,192] 

Cinnamaldeh
yde 

C9H8O 637511 
Escherichia coli, 

Staphylococcus aureus 
Membrane 

damage 
[193] 

Ursolic acid C30H48O3 64945 Escherichia coli 
Cell membrane 

disturbance 
[189] 

Farnesol C15H26O 445070 
Staphylococcus aureus 

including MRSA 
Membrane 

damage 
[194] 

Carvacrol C10H14O 10364 Escherichia coli 
Cell membrane 

damage 
[167,195] 

Nerolidol C15H26O 5284507 
Staphylococcus aureus 

including MRSA 
Cell membrane 

damage 
[194] 

Thymol C10H14O 6989 
Staphylococcus aureus 

including MRSA 
NA [195,196]

Cannabis sativa L. Staphylococcus aureus
including MRSA Cell membrane damage [194]

Thymol C10H14O 6989
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Helicobacter pylori, 
Methicillin-resistant 
Staphylococcus aureus, 
Methicillin-sensitive 
Staphylococcus aureus, 

Pseudomonas aeruginosa 

Inhibits biofilm 
construction, 

interrupts cell-
to-cell 

communication
, eradicates the 
pre-established 
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kills the 
bacteria in 
biofilms 

[190,192] 

Cinnamaldeh
yde 

C9H8O 637511 
Escherichia coli, 

Staphylococcus aureus 
Membrane 

damage 
[193] 

Ursolic acid C30H48O3 64945 Escherichia coli 
Cell membrane 
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[189] 

Farnesol C15H26O 445070 
Staphylococcus aureus 

including MRSA 
Membrane 

damage 
[194] 

Carvacrol C10H14O 10364 Escherichia coli 
Cell membrane 

damage 
[167,195] 

Nerolidol C15H26O 5284507 
Staphylococcus aureus 

including MRSA 
Cell membrane 

damage 
[194] 

Thymol C10H14O 6989 
Staphylococcus aureus 

including MRSA 
NA [195,196]

Thymus capitatus (L.)
Hoffmanns. & Link.

Staphylococcus aureus
including MRSA NA [195,196]

* Chemical structures of compounds have been taken from PubChem; www.pubchem.ncbi.nlm.nih.gov (Accessed on 10 December 2022).

www.pubchem.ncbi.nlm.nih.gov
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4. Himalayan Medicinal Plants as a Reservoir of Phytochemicals for Novel
Antimicrobial Drug Discovery
4.1. Plant Diversity of Indian Himalayas

The Indian Himalayas are one of the thirty-six designated biodiversity hotspots glob-
ally [16]. Spread over an area of 3000 km from Northern Pakistan to North East India,
the region spans incredible variations in climate across its course. Geographically, the
entire mountain range has been divided into two regions: the Eastern Himalayas, which
span from Nepal, Tibet, Bhutan, West Bengal, Assam, and Arunachal Pradesh to Northern
Myanmar; and the Western Himalayas, which include parts of Uttarakhand, Northwest
Kashmir, and Northern Pakistan [16].

The Indian Himalayan region is home to an estimated 10,000 species of vascular plants,
out of which 3160, accounting for almost 1/3rd of the total plant species found, are endemic
to the region [197]. Additionally, 71 genera and 5 plant families are also endemic to the
area. The endemic plant families include Trochodendraceae Eichler, Hamamelidaceae R. Br.,
Butomaceae Mirb., and Stachyuraceae J. Agardh. The largest family of flower-bearing plants
in the region is Orchidaceae Juss., with an estimated number of 750 species [197]. Among
the 5725 species of angiosperms endemically found in India, 3471 species are hosted by the
Himalayas themselves. Moreover, among the 147 genera of angiosperms that are endemic
to India, 71 are found exclusively in the Himalayan region [198]. The Himalayas host
all the conifer (gymnosperms) flora of India except for Podocarpus wallichianus C.Presl
and Podocarpus neriifolius D.Don, which are found in peninsular India and the Andamans,
respectively. Among the gymnosperm shrubs, Ephedra gerardiana Wall. ex Klotzsch &
Garcke is exclusively distributed in the Himalayas and is highly revered as a medicinal
plant due to its alkaloid ephedrine [199]. Among the pteridophytes, the Eastern Himalayas
contain about 847 taxa in 179 genera, followed by the Western Himalayas, which contain
340 taxa in 101 genera of pteridophytes [200]. Of the 2000 species of mosses (bryophyte)
found in India, the Eastern Himalayas contain 1030 species and 751 species are distributed
in the Western Himalayas [201]. About 30% of the total liverwort population is maximally
distributed in the Eastern Himalayas followed by the Western Himalayas and the Western
Ghats [202].

Around 30% of India’s land area, including biodiversity hotspots such as the Hi-
malayas, the Western Ghats, and the Nicobar Islands, is still unexplored and unrecorded
in terms of its floral richness. Therefore, our understanding of the delicate ecosystems of
these hotspots is still insufficient [16].

4.2. Medicinal Plant Resources of Himalayas and Alternate Systems of Medicine

The Indian subcontinent possesses one of the oldest and most well-structured med-
ical systems, which originated more than 5000 years ago [203]. The vast information on
medicine is backed by different traditional medicinal practices such as Ayurveda and Unani
and various literary manuscripts such as Charak Samhita, Sushruta Samhita, Dhanvantri, and
Nighatu [204,205]. These scriptures provide a solid foundation for traditional medicinal
practices in India [206]. Various communities in India, both tribal and urban, rely on tradi-
tional medicine, and it has long been an important element in the treatment of diseases and
disorders. Around 25000 phytocompounds are used as herbal formulations in rural Indian
traditional medicine, particularly in tribal populations [207]. Of these phytocompounds,
only 5–10% have been confirmed scientifically [208]. Due to the rising interest in adopting
traditional medicine globally, government institutions in India have made attempts to
validate the therapeutic efficiency of the drugs used in traditional medicine [209]. The
Himalayan region is home to many endemic human populations, and due to the remoteness
of the area, the people have been relying on forest products for multiple needs, including
the ethnomedicinal use of plants for disease treatment, as a result of which the people of
the Himalayas have a strong belief in traditional herbal medicine [210,211].

The Indian Himalayas foster around 10,000 species of higher plants, of which 1748 species
reportedly have medicinal properties [18,19]. Medicinal plants of the region have played
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fundamental roles in the disease treatment of the people living in and around the Himalayan
mountain range [19]. The vegetation of the area is determined by the climate and weather
conditions of the area. For instance, the North-Western Himalayas, including the areas
of Ladakh and Gilgit, have weather conditions ranging from mild summers to severely
cold winters, and the medicinal flora are represented by Achillea millefolium L., Bunium
persicum (Boiss.) B. Fedtsch., Picrorhiza kurroa Royle ex Benth., Juniperus communis L., and
Ephedra gerardiana Wall. ex Klotzsch & Garcke [212]. The Western Himalayan region,
including Jammu and Kashmir, Himachal Pradesh, Garhwal, and Kumaon Himalaya,
experiences warm humid summers and cold humid winters, and the medicinal flora are
primarily represented by Saussurea costus (Falc.) Lipsch., Colchucum luteum Baker, Atropa
acuminata Royle ex Lindl., and Physochlaina praealta (Decne.) Miers. On the other hand,
the Eastern Himalayas, comprising areas such as Darjeeling, parts of Assam, Sikkim, and
Arunachal Pradesh, are characterized by warm summer and cool winter. Hence, the
vegetation is represented predominantly by Aquilaria malaccensis Benth., Coptis teeta Wall.,
and Panax pseudoginseng Wall. [16]. In the adjoining Himalayan region of north-western
Pakistan, medicinal plants such as Berberis lyceum Royle, Achillea millefolium L., Bergenia
ciliata (Royle) A.Braun ex Engl., and Aloe vera L. have been reported to be used against
urinary tract infections due to their antimicrobial activity against Staphylococcus aureus
and Escherichia coli [140]. Further, medicinal plants such as Impatiens glandulifera Royle,
Artemisia scoparia Waldst. & Kit., Ageratum conyzoides L., and Achillea millefolium L. have
been reported to be used as treatment options for various ailments such as urinary tract
infections, cardiac diseases, baldness, abortion and miscarriage jaundice, hepatitis, typhoid,
fever, and tuberculosis [211].

In India, around 17,000 species of higher plants have been discovered, of which
7500 plant species have been found to have medicinal properties, which is the highest total-
plants-to-medicinal-plants proportion so far reported [16,17]. The maximum population of
medicinal plants (1717 species) has been reported at an elevation of 1800 m. Traditional
medical practices of the Indian subcontinent use many medicinal plants, and Ayurveda
alone has reported 2000 medicinal plant species. One of the oldest written documents on
herbal medicine, the Charak Samhita, documents 340 herbal drug productions and their
aboriginal uses [213]. The rich diversity of medicinal plants in the Himalayas gave rise to
the traditional medicine practices such as Ayurveda and Unani. Apart from the widely
followed systems of traditional medicine, various local systems of practices based on the
cultural demography have also developed. For instance, the traditional healers of Ladakh
region (North-Western Himalayas) are known as “amchies”, those who practice in Kashmir
Valley are known as “hakeems”, and those in Jammu are called “veds”. These traditional
practices came into existence primarily because of the absence of modern medicine in past
times and are still carried forward to this date as a part of tradition [214].

5. Antimicrobial Profile of Himalayan Medicinal Plants

One of the main causes of clinical mortality in humans has been infectious diseases.
Moreover, with the emergence of multidrug-resistant microbes, the existing antimicrobial
therapies have been rendered inactive, which has made the development of new antimicro-
bials necessary [26]. In the pursuit of novel antimicrobials, plants blessed with a plethora
of secondary metabolites offer a vast array of phytochemicals to be screened for novel
antimicrobials and developed into new antimicrobial therapies [102]. Humans have been
using plants for remedial measures against various ailments for generations, as a result of
which many forms of traditional medicines came into existence. These herbal medicines
constitute a major part of traditional medical practices [206,211]. The Indian Himalayan
region comprises 31% native, 15.5% endemic, and 14% threatened plant species [204]. The
floristically rich Himalayan region is a potential source of many drug-yielding plants [215].
Many of the medicinal plants in the Himalayas have shown potent antimicrobial activity
against pathogenic microbes [14,216].
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Angiosperms such as Acorus calamus L. (asarone), Aegle marmelos (L.) Corrêa (rutacin),
Arnebia euchroma (Royle ex Benth.) I.M.Johnst. (shikonin), Berberis L. sp. (berberine), Calli-
carpa macrophylla Vahl (sesquiterpenes and triterpenes), Curcuma caesia Roxb. (cinnamate),
Hedychium spicatum G.Lodd. (limonene, linalool), Inula racemosa Hook.f. (isoalantolactone),
Jasminum officinale L. (jasminol, lupeol), Myrsine semiserrata Wall. (embelic acid), Nar-
dostachys jatamansi (D.Don) DC. (jatamansic acid), and Piper longum L. (piperine) are a few
of the candidate phytochemicals that have shown potent antimicrobial activities. Prunus
cornuta (Wall. ex Royle) Steud. and Quercus semecarpifolia Sm. have shown antibacterial
activity against Acinetobacter baumannii, Salmonella enterica, and Escherichia coli [212].

Gymnosperm plants such as the species of Cycas L. and Ginkgo L., Sabina chinensis (L.)
Antoine, Cedrus deodara (Roxb. ex D.Don) G.Don, Pinus bungeana Zucc. ex Endl., Platycladus
orientalis (L.) Franco, and Torreya grandis Fortune ex Lindl. have shown antimicrobial
activities. The essential oil ‘turpentine’ obtained from plants such as Abies balsamea (L.)
Mill., Pinus brutia Ten., and Pinus roxburghii Sarg. has demonstrated antimicrobial activity
against MRSA [199].

Among the pteridophytes, Adiantum philippense L., Adiantum caudatum L., Adiantum
incisum C. Presl., and Adiantum venustum D.Don have shown strong antimicrobial activity
against pathogens, causing food-borne infections [217]. Members of the genus Dryopteris
have shown activity against Pseudomonas aeruginosa [218]. Equisetum arvense L. has shown
activity against Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas
aeruginosa, Salmonella enteritidis, Aspergillus niger, and Candida albicans [219].

Many bryophytes have been used traditionally for inflammation, heart disease, diges-
tive problems, lung, and skin diseases [220]. However, some bryophytes (mosses) have
shown antimicrobial properties [221]. Marchatia polymorpha L. has demonstrated antimicro-
bial activity against Escherichia coli, Staphylococcus aureus, Proteus mirabilis, Aspergillus niger,
Aspergillus flavus, and Candida albicans [222]. Some antimicrobial bioactive compounds such
as polygodial, norpiguisone, and lunularin have been isolated from Porella platyphylloidea
(L.) Pfeiff., Conocephalum conicum (L.) Dumort, and Lunularia cruciate (L.) Dumort. ex Lindb.

Medicinal plants are still being used in domestic households for many infectious
diseases. For instance, paste of Rheum emodi Wall. is used to cure abscesses and boils in many
parts of the North-Western Himalayas, particularly in Kashmir Valley; a fermented product
of Viola odorata L. is used to treat respiratory tract infections; and roots of Juglans regia L. are
used to treat gum infections [19]. Despite the availability of modern antibiotics, many parts
of the Himalayan region, particularly the tribal population, still practice and prefer herbal
medicine over modern antibiotics. Although many plant species of Himalayan medicinal
plants have been investigated for their antimicrobial activities, given the medicinal plant
diversity of the Himalayas, extensive research is needed to explore the untapped reserve of
phytochemicals produced by the medicinal plants. The phytochemicals could act as novel
antimicrobials, antibiotic potentiators, or resistance breakers. Table 7 summarizes selected
medicinal plants of the Indian Himalayas that have shown potency as novel antimicrobials.

Table 7. List of plants found in the Indian Himalayan region and their reported antimicrobial
bioactive compounds.

Plant Name Bioactive Compounds Target Pathogen References

Abrus precatorius L. 6-propionyloxymethyl-4′ ,5,7-
trihydroxyisoflavanone

Bacillus cereus,
Escherichia coli [223]

Abutilon theophrasti Medik.

Rutin,

Salmonella enterica,
Escherichia coli,

Streptococcus pneumoniae,
Staphylococcus aureus

[224]

quercetin 7-o-β-glucoside,
kaempferol 3-o-α-rhamnopyranosyl

(1→6)-β-glucopyranoside,
luteolin,

apigenin 7-o-β-diglucoside,
poncirin,
tiliroside

Achillea millefolium L.
Camphor, germacrene-d, (e)-nerolidol, sabinene,

(e)-p-mentha-2,8-dien-1-ol,
1,8-cineole

Salmonella typhimurium, Salmonella agona [225]
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Table 7. Cont.

Plant Name Bioactive Compounds Target Pathogen References

Achyranthes aspera L. Achyranthine, betaine, betanin, isobetanin Bacillus subtilis, Escherichia coli, Pseudomonas
aeruginosa, Staphylococcus aureus [226]

Aconitum
violaceum Jacq. ex Stapf. Ethyl acetate fraction Escherichia coli, Shigella flexneri,

Bacillus subtilis, Staphylococcus aureus [227]

Aconitum
heterophyllum Wall. ex Royle

6-dehydroacetylsepaconitine, Staphylococcus aureus, Salmonella typhi,
Pseudomonas aeruginosa [228]13-hydroxylappaconitine, lycoctonine,

lappaconitine

Acorus calamus L. Asarone Aspergillus niger, Candida albicans [229]

Adiantum
capillus-veneris L.

3-p-coumaroylquinic acid,
kaempferol 3-o-glucoside

Staphylococcus aureus, Staphylococcus epidermidis,
β-hemolytic Streptococcus, Enterococcus faecalis,

Escherichia coli, Pseudomonas aeruginosa
[230]

Adiantum
pedatum Ethyl and acetone extracts Staphylococcus aureus, Klebsiella pneumoniae,

Pseudomonas aeruginosa, Escherichia coli [231]

Aegle
marmelos (L.) Corrêa

Limonene, β-ocimene, germacrene,
α-phellandrene Caenorhabditis elegans [232]

Ageratum houstonianum Mill. Ageratochromene, demothoxyageratochromene,
β-caryophyllene Micrococcus luteus, Rhodococcus rhodochrous [233]

Ajuga parviflora Benth. Ajugin A, ajugin B Citrobacter sp., Pseudomonas aeruginosa [234]

Allamanda
cathartica L. Silver nanoparticles of flower aqueous extracts Salmonella typhimurium, Staphylococcus aureus,

Escherichia coli, Klebsiella pneumoniae [235]

Allium
cepa L. Allicin Salmonella typhimurium, Staphylococcus aureus,

Escherichia coli [236]

Allium
sativum L.

Allicin,

Aspergillus versicolor, Penicillium citrinum,
Burkholderia cepacia, Staphylococcus aureus,
Escherichia coli, Bacillus subtilis, Penicillium

funiculosum, Candida albicans, Helicobacter pylori

[179]

diallyl sulfide,
diallyl disulfide,
diallyl trisulfide,

e/z-ajoene,
s-allyl-cysteine,

s-allyl-cysteine sulfoxide.

Amaranthus
caudatus L. Ferulic acid Escherichia coli [145]

Amaranthus viridis L. Rutin, quercetin, spinosterol, amasterol Staphylococcus aureus, Escherichia coli, c, Rhizopus
oligosporus, Colletotrichum musae, Fusarium solani [237]

Amomum subulatum Roxb. 1,8-cineole, α-terpineol, α-pinene, β-pinene Aspergillus niger [238]

Angelica glauca Edgew.

β-phellandrene, (z)-ligustilide methyl octane,
limonene, β-phellandrene, β-pinene,

(z)-3-butylidene-phthalide, (z)-ligustilide,
(e)-ligustilide, citronellyl acetate

Clostridium difficile, Clostridium perfringens,
Enterococcus faecalis, Eubacterium limosum,

Peptostreptococcus anaerobius, Candida albicans
[239]

Arctium
lappa L.

Chlorogenic acid,
caffeic acids

Pseudomonas aeruginosa,
Bacillus cereus [240]

Arnebia
benthamii (Wall. ex G.Don) I.M.Johnst.

Shikonin,
Escherichia coli, Pseudomonas aeruginosa, Shigella

flexneri, Klebsiella pneumoniae, Salmonella
typhimurium, Staphylococcus aureus

[241]
alkanin hoslundal,

artemidiol,
ganoderiol,

2-hexaprenyl-6-hydroxyphenol

Artemisia
dubia Wall. ex Besser Chrysanthenone, coumarin, camphor Aspergillus niger [242]

Artemisia indica Willd.

Isoascaridole,
trans-p-mentha-2,8-dien-1-ol, trans-verbenol,

artemisia ketone, germacrene B, borneol,
cis-chrysanthenyl acetate, davanone, β-pinene.

Bacillus subtilis, Staphylococcus epidermidis,
Pseudomonas aeruginosa, Salmonella typhi, Klebsiella

pneumoniae, Penicillium chrysogenum,
Aspergillus niger

[242,243]

Asparagus
racemosus Willd.

Catecholic tannin,
saponin,

gallic tannin

Escherichia coli, Salmonella typhimurium,
Bacillus subtilis, Pseudomonas aeruginosa,

Staphylococcus aureus, Klebsiella pneumoniae,
Enterococcus faecalis, Saccharomyces cerevisiae

[244]

Atropa
acuminata Royle ex Lindl. Aqueous extract

Bacillus Subtilis, Escherichia coli, Klebsiella
pneumoniae, Pseudomonas aeruginosa, Salmonella

typhimurium,
Staphylococcus aureus

[245]

Atropa
bella-donna L. Ethanolic extracts Staphylococcus aureus,

Escherichia coli [246]

Bacopa
monnieri (L.) Wettst. Luteolin Staphylococcus aureus, Alternaria alternate, Fusarium

acuminatum [247]
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Baliospermum
montanum (Willd.) Müll.Arg.

Leaf (methanolic and aqueous extract),
callus (acetone and ethanolic extract)

Bacillus subtilis, Klebsiella pneumoniae,
Staphylococcus aureus, Escherichia coli [248]

Berberis lyceum Royle Berberine
Streptococcus agalactiae, Staphylococcus aureus,

Streptococcus mutans,
Streptococcus pyogenes, Corynebacterium diphtheriae

[110]

Bergenia
ciliate (Haw.) Sternb.

Pyrogallol,
Staphylococcus aureus, Bacillus subtilis, Bacillus
megaterium, Escherichia coli, Serratia marcescens,

Nocardia tenerifensis, Streptomyces sp., Aspergillus
niger, Fusarium oxysporum

[249]

rutin,
morin,

bergenin,
catechin,

gallic acid

Betula utilis D.Don

Geranic acid,
Staphylococcus aureus,

Bacillus subtilis,
Pseudomonas aeruginosa,

Escherichia coli

[250]

β-seleneol,
β-linalool,

β-sesquiphellendrene,
champacol,
1,8-cineol.

Bidens
biternate (Lour.) Merr. & Sherff Methanolic extract

Escherichia coli, Klebsiella pneumoniae,
Pseudomonas sp., Staphylococcus aureus,

Staphylococcus epidermidis
[251]

Blumea lacera (Burm.f.) DC. Lachnophyllum ester, lachnophyllic acid,
germacrene d, β-farnesene.

Staphylococcus aureus, Candida albicans,
Aspergillus niger [252]

Bridelia
retusa (L.) A.Juss. Ethanolic extract Pseudomonas aeruginosa,

Escherichia coli [253]

Calendula
officinalis L.

Selenium nanoparticles of methanolic extract of
flowers

Serratia marcescens, Enterobacter cloacae,
Alcaligenes faecalis [254]

Calotropis procera (Aiton) W.T.Aiton α-amyrin, lupeol acetate, phytol, hexadecanoic
acid, stigmasterol, linolenic acid, gombasterol A

Staphylococcus aureus, Klebsiella pneumoniae,
Escherichia coli [255]

Caltha
palustris L. Methanolic extract Staphylococcus epidermidis,

Proteus vulgaris [256]

Cannabis
sativa L. Cannabidiol (cannabinoids)

Staphylococcus aureus (MDR, MRSA),
Staphylococcus epidermidis, Streptococcus

pneumoniae, Streptococcus pyogenes, Enterococcus
faecium, Cutibacterium acnes, Clostridium difficile,

Escherichia coli, Klebsiella pneumoniae, Pseudomonas
aeruginosa, Acinetobacter baumannii, Serratia

marcescens, Proteus mirabilis,
Salmonella typhimurium

[257]

Cassia fistula L. Eugenol, phytol, camphor, linonene, salicyl
alcohol, 4-hydroxybenzyl alcohol Aspergillus niger, Candida albicans [229]

Cassia tora L. Elemol, linalool, palmitic acid Bacillus cereus, Staphylococcus aureus [229]

Cedrus deodara (Roxb. ex D.Don) G.Don

Wikstromal, matairesinol, dibenzylbutyrolactol,
berating, isopimpillin, lignans 1, 4 diaryl butane,

benzofuranoid neo lingam, isohemacholone,
sesquiterpenes, deodarone, atlantone, deodarin,

deodardione, limonenecarboxylic acid,
α-himacholone, β-himacholone, α-pinene,

β-pinene, myrcene, cedrin
(6-methyldihydromyricetin), taxifolin, cedeodarin

(6-methyltaxifolin), dihydromyricetin
and cedrinoside

Escherichia coli [258]

Chaerophyllum villosum Wall. ex DC. γ-terpinene, p-cymene, carvacrol methyl ether,
myristicin, thymol

Staphylococcus aureus, Streptococcus mutans,
Candida albicans, Candida glabrata [259]

Chenopodium
ambrosioides L.

Rutin (3,3′ ,4′ ,5,7-pentahydroxyflavone-3-
rhamnoglucoside)

Staphylococcus aureus, Pseudomonas aeruginosa,
Enterococcus faecalis, Paenibacillus apiarius,

Paenibacillus thiaminolyticus
[260]

Cichorium
intybus L.

Triterpenois, cichoridiol, intybusoloid,
lupeol, fridelin, β- sitosterol, sigmasterol,

betulinic acid, betunaldehyde, syringic acid,
vanilic acid

Pseudomonas aeruginosa,
Staphylococcus aureus [260]

Cinnamomum glanduliferum (Wall.) Meisn. 1,8-cineole, α-pinene, α-terpineol, germacrene
d-4-ol, α-thujene

Micrococcus luteus, Escherichia coli, Pseudomonas
aeruginosa, Aeromonas salmonicida [261]

Cissampelos pareira L.
Bis-benzylisoquinoline, benzylisoquinoline,

tropoloisoquinoline, aporphine,
azafluoranthene, protoberberine

Staphylococcus aureus, Streptococcus pneumoniae,
Escherichia coli, Pseudomonas aeruginosa, Klebsiella

pneumoniae, Proteus vulgaris
[262]
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Convolvulus
arvensis L. Butanolic extract

Staphylococcus aureus, Acinetobacter junii, Klebsiella
pneumoniae, Acinetobacter baumannii, Escherichia

coli, Enterococcus faecalis, Pseudomonas aeruginosa,
Salmonella dysenteriae, Vibrio cholera, Proteus

mirabilis, Salmonella paratyphi, Serratia marcescens,
Enterobacter cloacae

[263]

Coriandrum
sativum L. β-linalool (essential oil) Bacillus subtilis,

Stenotrophomonas maltophilia [264]

Crocus sativus L. Crocin, safranal
semi-synthetic safranal derivatives

Helicobacter pylori, Staphylococcus aureus, Listeria
spp. Bacillus subtilis, Bacillus cereus, Salmonella

enterica,
Shigella dysenteriae, Escherichia coli

[265]

Curcuma Longa L. α-turmerone, β-turmerone, α-phellandrene,
1,8-cineole, p-cymene, terpinolene

Bacillus cereus, Staphylococcus aureus, Aspergillus
niger [266]

Cuscuta reflexa Roxb. cis-3-butyl-4-vinylcyclopentane, limonene,
(e)-nerolidol Aspergillus niger [267]

Cymbopogon
citratus (DC.) Stapf

α-citral, Pseudomonas aeruginosa, Escherichia coli, Klebsiella
pneumoniae, Staphylococcus aureus, Bacillus subtilis [268]β-citral,

myrcene

Cyperus
rotundus L.

α.-pinene, camphene, D-limonene,
Bacillus subtilis,

Pseudomonas aeruginosa, Escherichia coli,
Staphylococcus aureus (ARSA)

[269,270]
camphenol, p-mentha-1,5-dien-8-ol,
thymol, myrtenal, carveol, copaene,

caryophyllene, naphthalene,
1,6-dimethyl-4-(1-methylethyl).

Datura metel L. Daturaolone
Escherichia coli, Staphylococcus aureus, Bacillus

subtilis, Klebsiella pneumoniae,
Staphylococcus epidermidis

[271]

Datura
stramonium L. Chloroform extracts Staphylococcus aureus [272]

Daucus
carota L. Methylisoeugenol Campylobacter jejuni [273]

Dioscorea
bulbifera L.

Bafoudiosbulbins,
2,7-dihydroxy-4-methoxyphenanthrene

Escherichia coli, Enterobacter aerogenes, Klebsiella
pneumoniae,

Pseudomonas aeruginosa
[274]

Dodecadenia grandiflora Nees Germacrene D, furanodiene Staphylococcus aureus, Pasteurella multocida [275]

Dodonaea viscosa Jacq.

Hautriwaic acid, dodonoside B, dodonic acid,
kaempferol, sakuranetin, dehydrohautriwaic acid,

hautriwaic lactone, alizarin, penduletin,
3,5,7-trihydroxy-4′-methoxyflavone,

isorhamnetin-3-rhamnosylgalactoside, donoside a,
5- hydroxy-3,6,7,4′-tetra methoxy flavone

Streptococcus pyogenes, Escherichia coli, Klebsiella
pneumonia, Pseudomonas fluorescens, Staphylococcus

aureus, Bacillus subtilis
[276]

Epimedium grandiflorum C. Morren Hydroethanolic extract
Bacillus subtilis, Staphylococcus aureus, Escherichia

coli, Klebsiella pneumoniae, Acinetobacter sp.,
Pseudomonas sp., Salmonella sp.

[277]

Equisetum
diffusum D. Don Aqueous extract

Escherichia coli, Micrococcus luteus, Pseudomonas
aeruginosa, Bacillus pumilus, Bacillus cereus, Bacillus

licheniformis, Salmonella typhi,
Streptococcus mutans

[278]

Eupatorium adenophorum Spreng. p-cymene, bornyl acetate, amorph-4-en-7-ol,
camphene

Arthrobacter protophormiae, Escherichia coli,
Micrococcus luteus, Rhodococcus rhodochrous,

Staphylococcus aureus
[233]

Euphorbia
helioscopia L. Euphoheliosnoid E Streptococcus mutans, Actinomyces viscosus [279]

Euphorbia
wallichii Hook. f.

Acorenone B, cycloisosativene, β-cedrene,
copaene, 3β-hydroxy-5α-androstane,

palmitic acid
Staphylococcus aureus [279]

Foeniculum
vulgare Mill. Dillapional Bacillus subtilis [280]

Fritillaria
roylei Hook. Peonidin

Escherichia coli, Klebsiella pneumoniae,
Micrococcus luteus, Staphylococcus pneumonia,

Haemophilus influenza,
Neisseria mucosa

[281]

Fumaria indica (Hausskn.) Pugsley n-octacosan-7β-ol

Leishmania donovani promastigotes,
Staphylococcus epidermidis, Escherichia coli, Candida

albicans,
Aspergillus niger

[282]
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Galium aparine L. Chlorogenic acid, p-coumaric acid, ferulic acid,
luteolin, rutin Staphylococcus aureus, Listeria monocytogenes [283]

Gentiana kurroo Royle Flavonoids and phenols
Proteus mirabilis, Streptococcus faecalis,
Escherichia coli, Salmonella enteritidis,

Micrococcus luteus, Enterobacter cloacae
[284]

Geranium
wallichianum D.Don ex Sweet

Leaf extracts conjugated with zinc
oxide nanoparticles

Bacillus subtilis, Staphylococcus aureus,
Pseudomonas aeruginosa, Escherichia coli,

Klebsiella pneumoniae
[285]

Girardinia
diversifolia (Link) Friis

β-sitosterol,
3-hydroxystigmast-5-en-7-one,

7-hydroxysitosterol

Bacillus pumilus,
Escherichia coli, Staphylococcus aureus [286]

Gaultheria fragrantissima Wall. Methyl salicylate Staphylococcus aureus [259]

Hedychium
spicatum G.Lodd.

Hedychenone, spicatanol,
6-endo-hydroxycineole

Shigella boydii, Shigella sonnei, Shigella flexneri,
Bacillus cereus, Vibrio cholera, Escherichia coli,

Staphylococcus aureus, Pseudomonas aeruginosa,
Klebsiella pneumoniae

[287,288]

Holarrhena
antidysenterica Wall. Conessine Acinetobacter baumannii,

Pseudomonas aeruginosa [120]

Hyoscyamus
niger L. Non-alkaloidal seed extract Bacillus subtilis, Escherichia coli,

Staphylococcus aureus [289]

Hypericum
perforatum L. Hypericin

Methicillin-resistant Staphylococcus aureus,
methicillin-sensitive Staphylococcus aureus,

Escherichia coli
[290]

Inula cappa (Buch.-Ham. ex D.Don) DC. β-caryophyllene, cis-dihydro-mayurone,
β-bisabolene, (E)-β-farnesene

Enterococcus faecalis, Klebsiella pneumoniae,
Xanthomonas phaseoli and Bacillus subtilis [291]

Inula
racemose Hook.f. Isoalantolactone

Bacillus subtilis, Escherichia coli, Pseudomonas
fluorescens, Staphylococcus lentus,

Staphylococcus aureus
[292]

Iris ensata Thunb. Methanolic extracts Bacillus cereus, Pseudomonas aeruginosa, Proteus
vulgaris, Escherichia coli [293]

Iris kashmiriana
Baker

Irigenin, iridin, junipeginin-c, Bacillus subtilis, Staphylococcus epidermidis, Proteus
vulgaris, Pseudomonas aeruginosa, Staphylococcus

aureus, Staphylococcus typhimurium, Escherichia coli,
Shigella dysenteriae,

Klebsiella pneumoniae

[293]resveratrol, piecid, resveratroloside,

isorhamnetin-3-oneohesperidoside

Iris
nepalensis D.Don Methanolic extract

Staphylococcus aureus,
Escherichia coli,

Pseudomonas aeruginosa
[294]

Jasminum
officinale L. Ethanolic extract Methicillin-resistant Staphylococcus aureus [295]

Juglans regia L.
α-pinene, β-pinene, β-caryophyllene,

germacrene d, limonene, eugenol, methyl
salicylate, germacrene d, (e)-β-farnesene

Bacillus subtilis, Staphylococcus epidermidis, Proteus
vulgaris, Pseudomonas aeruginosa, Staphylococcus
aureus, Salmonella typhi, Escherichia coli, Shigella

dysenteriae, Klebsiella pneumoniae

[296]

Juniperus macropoda Boiss.
Sabinene, terpinen-4-ol, cedrol, β-elemene,

trans-sabinene hydrate, α-cubebene,
α-thujone, biformene

Candida albicans, Colletotrichum fragariae,
Colletotrichum gloeosporioides [297]

Lagenaria siceraria (Molina) Standl.

β-carotene, 22-deoxocurcubitacin-d,
22-deoxoisocurcubitacin D, avenasterol,

codisterol, elesterol, isofucasterol, stigmasterol,
sitosterol, compesterol, spinasterol,

7-0-glucosyl-6-c-glucoside apigenin, 6-c-glucoside
apigenin, 6-cglucoside luteolin, 7,4′-o-diglucosyl-

6-c-glucoside, apigenin

Staphylococcus aureus, Pseudomonas sp., Escherichia
coli, Bacillus subtilis, Candida sp., Aspergillus niger [298]
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Lantana camara (Hayek) R.W.Sanders

Germacrene B, β-caryophyllen,
3,7,11-trimethyl-1,6,10-dodecatriene,

β-caryophyllene, zingiberene, γ-curcumene,
davanone, (E)-nerolidol

Arthrobacter protophormiae, Micrococcus luteus,
Rhodococcus rhodochrous, Staphylococcus aureus [233]

Lavandula
stoechas L.

1,8-cineole, Methicillin-resistant Staphylococcus aureus,
Klebsiella pneumoniae,

Salmonella typhimurium
[299]fenchone,

camphor

Lindera neesiana (Wall. ex Nees) Kurz Geranial, neral, citronellal, 1,8-cineole, α-pinene,
β-pinene, methyl chavicol, safrole Staphylococcus aureus, Candida albicans [300]

Lindera pulcherrima (Nees) Benth. ex
Hook.f. Curzerenone, furanodienone Staphylococcus aureus, Salmonella enterica [275]

Mallotus philippensis (Lam.) Müll.Arg. Bergenin, mallotophilippinens, rottlerin,
and isorottlerin

Bacillus cereus var mycoides, Bacillus pumilus,
Bacillus subtilis, Bordetella bronchiseptica,
Micrococcus luteus, Staphylococcus aureus,

Staphylococcus epidermidis, Escherichia coli, Klebsiella
pneumoniae, Candida albicans,

Saccharomyces cerevisiae

[301,302]

Malva neglecta Wallr.

Hydrotyrosol, coumaroylhexoside, kaempferol-3-
(p-coumaroyldiglucoside)-7-glucoside,

quercetin-3-o-rutinoside,
epicatechin-3-o-(4-o-methyl)-gallate, oleic acid,

taurine, ethylene dimercaptan, isoeugenol,
patchoulane, methyl 12-methyltetradecanoate,

isopropyl myristate

Escherichia coli, Staphylococcus aureus, Klebsiella
pneumoniae, Salmonella typhi, Bacillus subtilis,

Aspergillus fumigatus, Aspergillus flavus, Aspergillus
niger, Fusarium solani

[303]

Marrubium
vulgare L. Methanolic extract

Escherichia coli, Bacillus subtilis,
Staphylococcus aureus, Staphylococcus epidermidis,

Pseudomonas aeruginosa,
Proteus vulgaris, Candida albicans

[304]

Melia azedarach L. Crude extract

Bacillus subtilis, Proteus mirabilis, Shigella flexneri,
Proteus mirabilis, Shigella flexneri, Staphylococcus
aureus, Bacillus subtilis, Pseudomonas aeruginosa,

Shigella flexneri

[305]

Morina longifolia Wall. ex DC. Germacrene d, α-pinene, bicyclogermacrene,
α-cadinol, (e)-citronellyl tiglate, β-phellandrene

Escherichia coli, Staphylococcus aureus, Proteus
vulgaris, Klebsiella pneumoniae, Bacillus subtilis,

Pseudomonas aeruginosa, Alternaria alternata,
Aspergillus flavus, Aspergillus fumigatus,

Fusarium solani

[306,307]

Nepeta
cataria L.

Nepetalactone, Neisseria subflava, Citrobacter freundii,
Branhamella ovis, Aeromonas caviae,

Escherichia coli, Serratia marcescens, Enterococcus
species, Staphylococcus aureus

[308,309]β-caryophyllene,

thymol

Nardostachys jatamansi (D.Don) DC. β-gurjunene, valerena-4,7(11)-diene (7.1%),
nardol a, 1(10)-aristolen-9β-ol, jatamansone Bacillus cereus, Escherichia coli, Candida albicans [310]

Oxalis
corniculate L. Methanolic extract

Staphylococcus aureus, Escherichia coli,
Shigella dysenteriae, Shigella flexneri,

Shigella boydii, Shigella sonnei
[311]

Paeonia emodi Royle Leaf extract nanoparticles
Staphylococcus aureus, Bacillus subtilis,

Escherichia coli, Salmonella typhi,
Pseudomonas aeruginosa, Klebsiella pneumoniae

[312]

Phoebe lanceolata (Nees) Nees 1,8-cineole, β-caryophyllene Escherichia coli [275]

Persicaria hydropiper (L.) Delarbre Confertifolin, polygodial

Enterococcus faecalis, Bacillus subtilis, Staphylococcus
aureus, Escherichia coli, Salmonella enterica,

Epidermophyton floccosum, Curvularia lunata,
Scopulariopsis sp., Candida albicans, Candida utilis,

Candida krusei, Cryptococcus neoformans,
Saccharomyces cerevisiae, Epidermophyton floccosum,
Trichophyton mentagrophytes, Penicillium marneffei

[313]

Plantago lanceolata L.

Luteolin 7-glucoside, hispidulin 7-glucuronide,
luteolin 7-diglucoside, apigenin 7-glucoside,
nepetin 7-glucoside and luteolin 6-hydroxy

4′-methoxy 7-galactoside, oleanolic acid, sitosterol
acid, 18β-glycyrrhetinic, plantamajoside,

verbacoside, 10-hydroxymajoroside,
10-acetoxymajoroside

Bacillus subtilis, Staphylococcus aureus, Candida
albicans, Candida tropicalis, Escherichia coli,

Streptococcus pneumoniae
[314]
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Podophyllum hexandrum Royle

Phthalic acid,

Bacillus megaterium, Pseudomonas aeruginosa,
Aspergillus flavus,

Fusarium solani, Staphylococcus aureus,
Salmonella typhi, Klebsiella pneumoniae,

Enterococcus faecalis

[315,316]

di-isobutyl ester,

1,2-benzenedicarboxylic acid,

diisooctyl ester,

polyneuridine,

podophyllotoxin,

β-sitosterol

Punica
granatum L. Punicalagin

Pseudomonas aeruginosa, Salmonella enteritidis,
Escherichia coli,

Staphylococcus epidermidis,
Staphylococcus xylosus, Staphylococcus aureus,

Bacillus cereus,
Enterococcus faecium, Enterococcus faecalis

[317]

Prunus
domestica L. Quercetin-3-o-galactoside

Campylobacter jejuni, Salmonella typhimurium,
Escherichia coli,

Staphylococcus aureus, Listeria monocytogenes
[318]

Rheum
emodi Wall.

Emodin, rhein, chrysophanol dimethyl ether,
resveratrol,

revandchinone-4

Escherichia coli, Staphylococcus aureus, Klebsiella
pneumoniae,

Bacillus subtilis, Pseudomonas aeruginosa, Klebsiella
aerogenes,

Bacillus sphaericus,
Chromobacterium violaceum

[319]

Rhododendron anthopogon D.Don α-pinene, β-pinene, limonene, δ-cadinene Bacillus subtilis, Mycobacterium tuberculosis,
Candida pseudotropicalis [320]

Rumex dentatus L.
Musizin,

torachrysone-glucoside,
2-methoxystypandrone

Escherichia coli, Klebsiella pneumoniae,
Salmonella typhi, Pseudomonas aeruginosa, Bacillus

subtilis, Streptococcus pneumoniae, Listeria
monocytogenes,

Staphylococcus epidermidis, Staphylococcus aureus,
Bacillus cereus

[321]

Salix alba L. Anthocyanins, p-hydroxybenzoic, gallic acid,
gentisic acid, sisymbrifolin, catechol

Pseudomonas aeruginosa, Escherichia coli, Salmonella
enterica, Staphylococcus aureus [322]

Salvia sclarea L. Essential oil Escherichia coli, Staphylococcus aureus,
Methicillin-resistant Staphylococcus epidermidis [323]

Sambucus wightiana Wall. ex Wight & Arn. Gold nanoparticles of whole-plant extract Escherichia coli, Staphylococcus epidermidis,
Salmonella enteritidis [324]

Saussurea lappa (Decne.) Sch.Bip.
Sesquiterpene lactones,

zinc oxide nanoparticles of rhizome methanolic
extract

Staphylococcus aureus, Sphingobacterium
thalpophilum, Staphylococcus aureus, Escherichia coli,

Pseudomonas aeruginosa, Sphingobacterium sp.,
Acinetobacter sp.,
Ochrobactrum sp.

[325]

Skimmia laureola (DC.) Decne. Linalyl acetate, linalool, limonene, α-terpineol,
geranyl acetate

Staphylococcus aureus, Staphylococcus epidermidis,
Aspergillus niger, Penicillium chrysogenum [326]

Solanum tuberosum L. Potide-g, afp-j,
potamin-1 or pg-2

Staphylococcus aureus, Listeria monocytogenes,
Escherichia coli,

Candida albicans
[327]

Sonchus arvensis L. Phenols and flavonoids Escherichia coli, Salmonella enterica, Vibrio
parahaemolyticus, Staphylococcus aureus [328]

Stephania glabra (Roxb.) Miers Glabradine
Staphylococcus aureus, Streptococcus. mutans,

Microsporum gypseum, Microsporum canis,
Trichophyton rubrum

[329]

Taraxacum officinale F.H.Wigg.
9-hydroxyoctadecatrienoic acid,

9-hydroxyoctadecadienoic acid, vanillin,
coniferaldehyde, p-methoxyphenylglyoxylic acid

Staphylococcus aureus, Methicillin-resistant
Staphylococcus aureus, Bacillus cereus [330]

Terminalia arjuna (Roxb. ex DC.)
Wight & Arn. Silver nanoparticles of bark extract Escherichia coli [331]
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Terminalia chebula Retz. 1,2,6-tri-o-galloyl-β-d-glucopyranose

Escherichia coli, Pseudomonas aeruginosa,
Klebsiella pneumoniae, Staphylococcus aureus,

methicillin-resistant Staphylococcus aureus, Proteus
mirabilis, Acinetobacter baylyi, Bacillus megaterium

[332–334]

Valeriana jatamansi (D.Don) Wall. Maaliol, 3-methylvaleric acid, β-gurjunene Microsporum canis, Fusarium solani [335]

Verbascum
Thapsus L.

1-hexzanol
2-hexene

Klebsiella pneumoniae, Staphylococcus aureus,
Escherichia coli, Mycobacterium phlei,

methicillin-resistant Staphylococcus aureus
[336]

Viola
odorata L.

3-(2′ ,4′ ,6′ ,6′-tetramethylcyclohexa-1′ ,4′-dienyl)
acrylic acid

Haemophilus influenzae, Pseudomonas aeruginosa,
Staphylococcus aureus,

Streptococcus pneumoniae
[337]

Viscum
album L. Hydroxycinnamic acids

Xanthomonas campestris, Clavibacter michiganensis,
Alternaria alternate,

Fusarium oxysporum
[338]

Vitex negundo L. Methanolic extract Vibrio cholerae, Vibrio parahaemolyticus, Vibrio
mimicus, Escherichia coli, Shigella sp., Aeromonas sp. [339]

6. Challenges of Using Phytochemicals as Medicine
6.1. Effects of Climate Change

The productivity of medicinal plants is susceptible to changes in climatic conditions,
leading to varied responses among different species. This could result in decreased biomass
production along with changes in the production of secondary metabolites, thus impacting
the quality and safety of herbal medicinal products [340]. Abiotic stresses such as extreme
temperatures, increased CO2 concentration, and drought conditions influence secondary
metabolite production [341]. Since the production of phytochemicals greatly depends on
the physiological condition of a plant, the plant response to any of these stress conditions
would therefore result in the increase or decrease in the production of phytochemicals
from its normal value and hence the compromised efficacy and safety of the prepared
herbal formulation [342]. Climate change can severely affect the composition as well as the
production of secondary metabolites by the plant, which in the long term may compromise
or altogether abrogate the medicinal value of the plant. Further, climate change along
with unsustainable harvesting practices can drive plant species to extinction. Therefore, in
order to minimize the long-term effects of climate change, conservation efforts, sustainable
harvesting practices, preservation of traditional knowledge, and climate change mitigation
measures are highly recommended [340].

6.2. Toxicity of Herbal Medicine

While herbal medicines are generally considered safer than synthetic counterparts,
they can still pose cellular toxicity risks and cause adverse effects on the human system.
Toxicity issues may arise from the specific effects of certain phytochemicals in addition to the
issues of self-medication, unqualified practitioners, sub-standard products, and improper
dosages [343]. Different toxicity issues have been reported with herbal formulations, such as
nephrotoxicity induced by a diterpenoid epoxide produced by Tripterygium wilfordii Hook.,
renal calcification caused by Guaiacum officinale L., and Arctostaphylos uva-ursi L. [344].
Neurotoxicity has been observed with plant species such as Catharanthus roseus (L.) G.
Don, Papaver somniferum L., and Cannabis indica Mure [345,346]. Cardiotoxicity has been
reported with plants such as Ephedra distachya L., Mandragora officinarum L., and Aconitum
napellus L., [347]. Similarly, hepatotoxicity has been associated with Teucrium chamaedrys L.,
Scutellaria baicalensis Georgi, and Larrea tridentata (DC.) [348].

Apart from inherent toxicity issues, related contamination could occur during product
development, which includes heavy metal and microbial contamination, plant misiden-
tification, and economically motivated adulteration [349]. Therefore, to assess the safety
of herbal formulations, different techniques could be employed such as predictive toxicol-
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ogy approaches involving in silico modelling. Omics approaches for toxicology studies
including toxicogenomics, toxicometabolomics, and toxicoproteomics could be used for
early prediction of toxicity in product development [349].

6.3. Other Challenges and Regulation

The introduction of phytochemicals in modern medicine poses a number of challenges
in terms of standardizing plant extracts to ensure the consistent quality of the end product.
The identification and isolation of bioactive compounds, followed by the elucidation
of their mechanisms of action, is yet another challenging task due to the presence of
diverse compounds in them. Different phytochemicals can interact to work in synergy to
bring about their antimicrobial effects, an understanding of which will be crucial in the
development of combination therapies. Insufficient scientific evidence and intellectual
property protection pose additional hindrances to the integration of herbal formulations in
modern medicine. Most of these challenges could be overcome by creating proper checks
and balances in the form of comprehensive regulatory bodies, quality control measures,
conduction of clinical trials, intellectual property protection, and integration of traditional
knowledge with scientific advancements [350].

To set forth a proper safety assessment plan and regulatory laws for manufacturing
herbal medicine, different regulatory bodies around the globe such as the International Life
Sciences Institute, Washington, DC, USA; International Union of Pure and Applied Chem-
istry, North Carolina, USA; European Medicines Agency, Amsterdam, The Netherlands;
and European Food Safety Authority, Parma, Italy, have issued guidance documents for the
assessment of safety of herbal medicine [351]. In the USA, the sale and purchase of herbal
medicines is regulated by the Dietary Supplement Health and Education Act of 1994 [352].
In the European Union, the production and marketing of herbal drugs are regulated by
various national regulatory bodies such as the Committee on Herbal Medicinal Products
(HMPC), which is a part of the European Medicines Agency [349]. Similarly, Canada has
Natural Health Products Regulations (NHPR), and Australia has the Therapeutic Goods
Administration (TGA) as the regulatory authority to assess and ensure the manufacturing
and marketing of herbal drugs [353,354]. In India, the Ministry of AYUSH is the regula-
tory authority, which provides licenses for the manufacturing and marketing of herbal
drugs [355].

7. Methodology

In the present study, three databases, namely PubMed, DOAJ, and Google Scholar,
were searched by using specific keywords: “Antimicrobial resistance”, “plant antimicro-
bials”, and “Himalayan medicinal plants”. Collectively, a total number of 4878 articles,
both reviews as well as original research articles, published from the year 1940 to 2023,
were identified. The selection of articles was rigorously conducted as per the focus of the
review article, and only those articles published in peer-reviewed journals were included
in the study to ensure the quality of the work.

Furthermore, the chemical structures and formulae of phytocompounds were sourced
from PubChem by using their common as well as IUPAC names (wherever necessary), and
their respective PubChem IDs were assigned to the compounds in the tabular form. The
botanical names of the plants mentioned in the study have been cross-verified with the
International Plant Names Index (IPNI).

8. Conclusions and Future Prospects

Since the advent of antibiotics, the development of antibiotic resistance and subsequent
pursuit of novel antimicrobials has always been a run-and-chase scenario. The discovery
of every antibiotic was followed by its resistance development in bacteria. To overcome
the resistance against antimicrobials, several anti-resistance measures were taken up; one
of the approaches was to develop inhibitors. Clavulanic acid, produced by Streptomyces
clavuligerus, though far less effective as an antimicrobial agent by itself, proved to be very
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efficient in augmenting the activity of antibiotics in combination therapies against bacteria
producing serine β-lactamases. However, the inefficiency of clavulanic acid in inhibiting
metallo-β-lactamases made it a weak option for overcoming the multifaceted mechanisms
of antimicrobial resistance. Plant secondary metabolites, on the other hand, are structurally
and functionally dynamic entities that have shown broad-spectrum antimicrobial activities.

This study summarizes the timeline of antibiotic discovery and the subsequent emer-
gence of resistance among microbes, along with the mechanistic details of various resistance
determinants expressed by multidrug-resistant pathogens. This study further shows the
need to explore plants as alternative sources of antimicrobials and sums up the mecha-
nistic effects of various phytochemicals on microbial strains, including those expressing
resistance phenotypes. Plant phytochemicals have shown multifaceted effects on microbial
cells, such as alkaloids imposing their antimicrobial effects by inhibiting efflux pumps, nu-
cleic acid synthesis, enzyme activities, ATP synthesis, cell-to-cell communication, cell wall
biosynthesis, and jeopardizing the cell division machinery. Phenols act as antimicrobials
by inhibiting metabolically important enzymes, efflux pumps, and cell wall biosynthesis;
inactivating enzymes such as DNA gyrase and penicillinases; and increasing the membrane
permeability, eventually leading to cell death. Organosulfur compounds inhibit nucleic
acid synthesis and act as potent enzyme inhibitors, while terpenes mostly exert their action
by compromising the membrane integrity of microbial cells.

Plant-based antimicrobials have attracted significant attention due to the reduced
potency and increasing toxicity of synthetic antimicrobials. Plant-based antimicrobial
formulations have emerged as a boon in medical sciences, as they are easily available and
have almost no side effects. The limited target specificity of existing synthetic antibiotics
can be overcome by the broad-spectrum antibacterial action of phytochemicals. The poor
adaptability of bacteria, fungi, and viruses to a plant-based antimicrobial regime might
be the reason for the efficacy of herbal treatment against diseases. Therefore, synergistic
combinations of synthetic antimicrobials and chemically defined phytochemicals will
not only help to deal with global antimicrobial resistance but will also assure no further
resistance development. This study provides a comprehensive overview of the medicinal
plants of the Indian Himalayan region. The region, as discussed, possesses a mammoth
repository of medicinal plants. The Indian Himalayan region happens to be one of the
world’s 36 biodiversity hotspots. With such boundless plant resources available, the tribal
communities in particular have developed traditional ways to use these plants for medicinal
purposes. However, detailed studies deciphering the medicinal importance of these plants
in the region have been scarce. In this study, 123 plants, native to the Himalayan region,
with antimicrobial properties have been described along with their reported bioactive
compounds and the target pathogens against which they are active. However, details on
their mechanistic roles as antimicrobials are not available in every case where the effects of
their crude extracts have been described. Further research is required on the identification
of active substances and the underlying mechanisms of action, and efficacy analysis during
in vivo applications is highly necessary to assist the pursuance of potent antimicrobials.
This not only will allow the development of novel plant-based antimicrobials but also
opens up the possibilities for developing combination therapies as multitarget solutions,
which will greatly help to combat antimicrobial resistance in bacterial strains.
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