Radiochemical and Biological Evaluation of 3p-C-NETA-ePSMA-16, a Promising PSMA-Targeting Agent for Radiotheranostics
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. General Methods
4.1.1. Quality Control of 111In and 177Lu Labelings
4.1.2. Quality Control of 213Bi and Al18F Labelings
4.2. Chemistry
4.2.1. Synthesis of EuK(Ahx-Sta-Phe-Asp) (1)
4.2.2. Synthesis of (4-(4-(5-(4,7-bis(2-(tert-butoxy)-2-oxoethyl)-1,4,7-triazonan-1-yl)-4-(bis(2-(tert-butoxy)-2-oxoethyl)amino)pentyl)phenyl)amino)-4-oxobutanoic acid (3p-C-NETA oxanobutanoic acid) (2)
4.2.3. Synthesis of EuK(Ahx-Sta-Phe-Asp-3p-C-NETA(tBu)4) (3)
4.2.4. Synthesis of EuK(Ahx-Sta-Phe-Asp-3p-C-NETA), (3p-C-NETA-ePSMA-16)
4.3. Radiochemistry
4.3.1. Radiolabeling with [111In]InCl3 and [177Lu]LuCl3
4.3.2. Radiolabeling with 213BiI52−
4.3.3. Radiosynthesis of Al [18F]F-3p-C-NETA-ePSMA-16
4.3.4. Radiochemical Stability of [111In]In-3p-C-NETA-ePSMA-16 and [177Lu]Lu-3p-C-NETA-ePSMA-16
4.3.5. Radiochemical Stability of [213Bi]Bi-3p-C-NETA-ePSMA-16 and [18F]AlF-3p-C-NETA-ePSMA-16
4.3.6. Determination of LogD7.4 Value
4.3.7. Transchelation/Challenge Studies
4.4. Biological Assays
4.4.1. NAALADase Assay
4.4.2. Cell Lines
4.4.3. Cell Uptake and Internalization Assay
4.4.4. Animal Model for SPECT/CT
4.4.5. Animal Model for PET/CT
4.4.6. Ex Vivo Biodistribution of [111In]In-3p-C-NETA-ePSMA-16
4.4.7. SPECT/CT Imaging
4.4.8. PET/CT Imaging
4.4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benesová, M.; Schäfer, M.; Bauder-Wüst, U.; Afshar-Oromieh, A.; Kratochwil, C.; Mier, W.; Haberkorn, U.; Kopka, K.; Eder, M. Preclinical Evaluation of a Tailor-Made DOTA-Conjugated PSMA Inhibitor with Optimized Linker Moiety for Imaging and Endoradiotherapy of Prostate Cancer. J. Nucl. Med. 2015, 56, 914–920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sartor, O.; de Bono, J.; Chi, K.N.; Fizazi, K.; Herrmann, K.; Rahbar, K.; Tagawa, S.T.; Nordquist, L.T.; Vaishampayan, N.; El-Haddad, G.; et al. Lutetium-177-PSMA-617 for Metastatic Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2021, 385, 1091–1103. [Google Scholar] [CrossRef] [PubMed]
- Strosberg, J.; El-Haddad, G.; Wolin, E.; Hendifar, A.; Yao, J.; Chasen, B.; Mittra, E.; Kunz, P.L.; Kulke, M.H.; Jacene, H.; et al. Phase 3 Trial of (177)Lu-Dotatate for Midgut Neuroendocrine Tumors. N. Engl. J. Med. 2017, 376, 125–135. [Google Scholar] [CrossRef]
- Duan, H.; Iagaru, A.; Aparici, C.M. Radiotheranostics—Precision Medicine in Nuclear Medicine and Molecular Imaging. Nanotheranostics 2022, 6, 103–117. [Google Scholar] [CrossRef] [PubMed]
- Kolenc Peitl, P.; Rangger, C.; Garnuszek, P.; Mikolajczak, R.; Hubalewska-Dydejczyk, A.; Maina, T.; Erba, P.; Decristoforo, C. Clinical Translation of Theranostic Radiopharmaceuticals: Current Regulatory Status and Recent Examples. J. Label. Compd. Radiopharm. 2019, 62, 673–683. [Google Scholar] [CrossRef] [Green Version]
- Holik, H.A.; Ibrahim, F.M.; Elaine, A.A.; Putra, B.D.; Achmad, A.; Kartamihardja, A.H.S. The Chemical Scaffold of Theranostic Radiopharmaceuticals: Radionuclide, Bifunctional Chelator, and Pharmacokinetics Modifying Linker. Molecules 2022, 27, 3062. [Google Scholar] [CrossRef]
- Price, E.W.; Orvig, C. Matching Chelators to Radiometals for Radiopharmaceuticals. Chem. Soc. Rev. 2014, 43, 260–290. [Google Scholar] [CrossRef]
- Kostelnik, T.I.; Orvig, C. Radioactive Main Group and Rare Earth Metals for Imaging and Therapy. Chem. Rev. 2019, 119, 902–956. [Google Scholar] [CrossRef]
- Chong, H.S.; Milenic, D.E.; Garmestani, K.; Brady, E.D.; Arora, H.; Pfiester, C.; Brechbiel, M.W. In Vitro and in Vivo Evaluation of Novel Ligands for Radioimmunotherapy. Nucl. Med. Biol. 2006, 33, 459–467. [Google Scholar] [CrossRef]
- Sun, X.; Kang, C.S.; Sin, I.; Zhang, S.; Ren, S.; Wang, H.; Liu, D.; Lewis, M.R.; Chong, H.S. New Bifunctional Chelator 3p- C-NEPA for Potential Applications in Lu(III) and Y(III) Radionuclide Therapy and Imaging. ACS Omega 2020, 5, 28615–28620. [Google Scholar] [CrossRef]
- Chong, H.S.; Ma, X.; Lee, H.; Bui, P.; Song, H.A.; Birch, N. Synthesis and Evaluation of Novel Polyaminocarboxylate-Based Antitumor Agents. J. Med. Chem. 2008, 51, 2208–2215. [Google Scholar] [CrossRef] [PubMed]
- Dadwal, M.; Kang, C.S.; Song, H.A.; Sun, X.; Dai, A.; Baidoo, K.E.; Brechbiel, M.W.; Chong, H.-S. Synthesis and Evaluation of a Bifunctional Chelate for Development of Bi(III)-Labeled Radioimmunoconjugates. Bioorg. Med. Chem. Lett. 2011, 21, 7513–7515. [Google Scholar] [CrossRef] [Green Version]
- Kang, C.S.; Sun, X.; Jia, F.; Song, H.A.; Chen, Y.; Lewis, M.; Chong, H.S. Synthesis and Preclinical Evaluation of Bifunctional Ligands for Improved Chelation Chemistry of 90Y and 177Lu for Targeted Radioimmunotherapy. Bioconjug. Chem. 2012, 23, 1775–1782. [Google Scholar] [CrossRef] [Green Version]
- Ahenkorah, S.; Murce, E.; Cawthorne, C.; Ketchemen, J.P.; Deroose, C.M.; Cardinaels, T.; Seimbille, Y.; Fonge, H.; Gsell, W.; Bormans, G.; et al. 3p-C-NETA: A Versatile and Effective Chelator for Development of Al18F-Labeled and Therapeutic Radiopharmaceuticals. Theranostics 2022, 12, 5971–5985. [Google Scholar] [CrossRef]
- Kang, C.S.; Song, H.A.; Milenic, D.E.; Baidoo, K.E.; Brechbiel, M.W.; Chong, H.S. Preclinical Evaluation of NETA-Based Bifunctional Ligand for Radioimmunotherapy Applications Using 212Bi and 213Bi: Radiolabeling, Serum Stability, and Biodistribution and Tumor Uptake Studies. Nucl. Med. Biol. 2013, 40, 600–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cassells, I.; Ahenkorah, S.; Burgoyne, A.R.; Van de Voorde, M.; Deroose, C.M.; Cardinaels, T.; Bormans, G.; Ooms, M.; Cleeren, F. Radiolabeling of Human Serum Albumin with Terbium-161 Using Mild Conditions and Evaluation of In Vivo Stability. Front. Med. 2021, 8, 675122. [Google Scholar] [CrossRef] [PubMed]
- Kelly, J.M.; Amor-Coarasa, A.; Nikolopoulou, A.; Kim, D.; Williams, C.; Vallabhajosula, S.; Babich, J.W. Assessment of PSMA Targeting Ligands Bearing Novel Chelates with Application to Theranostics: Stability and Complexation Kinetics of 68Ga3 +, 111In3 +, 177Lu3 + and 225Ac3 +. Nucl. Med. Biol. 2017, 55, 38–46. [Google Scholar] [CrossRef]
- Kang, C.S.; Chen, Y.; Lee, H.; Liu, D.; Sun, X.; Kweon, J.; Lewis, M.R.; Chong, H.S. Synthesis and Evaluation of a New Bifunctional NETA Chelate for Molecular Targeted Radiotherapy Using90Y Or177Lu. Nucl. Med. Biol. 2015, 42, 242–249. [Google Scholar] [CrossRef] [Green Version]
- Chong, H.S.; Song, H.A.; Birch, N.; Le, T.; Lim, S.; Ma, X. Efficient Synthesis and Evaluation of Bimodal Ligand NETA. Bioorganic Med. Chem. Lett. 2008, 18, 3436–3439. [Google Scholar] [CrossRef]
- Eder, M.; Schäfer, M.; Bauder-Wüst, U.; Hull, W.-E.; Wängler, C.; Mier, W.; Haberkorn, U.; Eisenhut, M. 68Ga-Complex Lipophilicity and the Targeting Property of a Urea-Based PSMA Inhibitor for PET Imaging. Bioconjug. Chem. 2012, 23, 688–697. [Google Scholar] [CrossRef]
- Archibald, S.J.; Allott, L. The Aluminium-[18F]Fluoride Revolution: Simple Radiochemistry with a Big Impact for Radiolabelled Biomolecules. EJNMMI Radiopharm. Chem. 2021, 6, 1–28. [Google Scholar] [CrossRef]
- McBride, W.J.; Sharkey, R.M.; Karacay, H.; D’Souza, C.A.; Rossi, E.A.; Laverman, P.; Chang, C.H.; Boerman, O.C.; Goldenberg, D.M. A Novel Method of 18F Radiolabeling for PET. J. Nucl. Med. 2009, 50, 991–998. [Google Scholar] [CrossRef] [Green Version]
- Song, H.A.; Kang, C.S.; Baidoo, K.E.; Milenic, D.E.; Chen, Y.; Dai, A.; Brechbiel, M.W.; Chong, H.-S. Efficient Bifunctional Decadentate Ligand 3p-C-DEPA for Targeted α-Radioimmunotherapy Applications. Bioconjug. Chem. 2011, 22, 1128–1135. [Google Scholar] [CrossRef] [Green Version]
- Barinka, C.; Rojas, C.; Slusher, B.; Pomper, M. Glutamate Carboxypeptidase II in Diagnosis and Treatment of Neurologic Disorders and Prostate Cancer. Curr. Med. Chem. 2012, 19, 856–870. [Google Scholar] [CrossRef] [Green Version]
- Vaughn, B.A.; Loveless, C.S.; Cingoranelli, S.J.; Schlyer, D.; Lapi, S.E.; Boros, E. Evaluation of (177)Lu and (47)Sc Picaga-Linked, Prostate-Specific Membrane Antigen-Targeting Constructs for Their Radiotherapeutic Efficacy and Dosimetry. Mol. Pharm. 2021, 18, 4511–4519. [Google Scholar] [CrossRef]
- McInnes, L.E.; Cullinane, C.; Roselt, P.D.; Jackson, S.; Blyth, B.J.; van Dam, E.M.; Zia, N.A.; Harris, M.J.; Hicks, R.J.; Donnelly, P.S. Therapeutic Efficacy of a Bivalent Inhibitor of Prostate-Specific Membrane Antigen Labeled with 67Cu. J. Nucl. Med. 2021, 62, 829–832. [Google Scholar] [CrossRef]
- Tshibangu, T.; Cawthorne, C.; Serdons, K.; Pauwels, E.; Gsell, W.; Bormans, G.; Deroose, C.M.; Cleeren, F. Automated GMP Compliant Production of [18F]AlF-NOTA-Octreotide. EJNMMI Radiopharm. Chem. 2020, 5, 4. [Google Scholar] [CrossRef] [Green Version]
- Ory, D.; Van den Brande, J.; de Groot, T.; Serdons, K.; Bex, M.; Declercq, L.; Cleeren, F.; Ooms, M.; Van Laere, K.; Verbruggen, A.; et al. Retention of [18F]Fluoride on Reversed Phase HPLC Columns. J. Pharm. Biomed 2015, 111, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Bouvet, V.; Wuest, M.; Jans, H.S.; Janzen, N.; Genady, A.R.; Valliant, J.F.; Benard, F.; Wuest, F. Automated Synthesis of [18F]DCFPyL via Direct Radiofluorination and Validation in Preclinical Prostate Cancer Models. EJNMMI Res. 2016, 6, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breeman, W.; de Zanger, R.; Chan, H.; Blois, E. Alternative Method to Determine Specific Activity of 177Lu by HPLC. Curr. Radiopharm. 2015, 8, 119–122. [Google Scholar] [CrossRef] [PubMed]
- de Blois, E.; Sze Chan, H.; Konijnenberg, M.; de Zanger, R.; Breeman, W.A.P. Effectiveness of Quenchers to Reduce Radiolysis of 111In- or 177Lu-Labelled Methionine-Containing Regulatory Peptides. Maintaining Radiochemical Purity as Measured by HPLC. Curr. Top. Med. Chem. 2013, 12, 2677–2685. [Google Scholar] [CrossRef] [PubMed]
- de Zanger, R.M.S.; Chan, H.S.; Breeman, W.A.P.; de Blois, E. Maintaining Radiochemical Purity of [177Lu]Lu-DOTA-PSMA-617 for PRRT by Reducing Radiolysis. J. Radioanal. Nucl. Chem. 2019, 321, 285–291. [Google Scholar] [CrossRef] [Green Version]
- Dekempeneer, Y.; Caveliers, V.; Ooms, M.; Maertens, D.; Gysemans, M.; Lahoutte, T.; Xavier, C.; Lecocq, Q.; Maes, K.; Covens, P.; et al. The Therapeutic Efficacy of 213Bi-Labeled SdAbs in a Preclinical Model of Ovarian Cancer. Mol. Pharm. 2020, 17, 3553–3566. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.T.; Nieuwenhuizen, J.; Handula, M.; Seimbille, Y. A Novel Clickable MSAP Agent for Dual Fluorescence/Nuclear Labeling of Biovectors. Org. Biomol. Chem. 2020, 18, 6134–6139. [Google Scholar] [CrossRef]
- Fridman, R.; Benton, G.; Aranoutova, I.; Kleinman, H.K.; Bonfil, R.D. Increased Initiation and Growth of Tumor Cell Lines, Cancer Stem Cells and Biopsy Material in Mice Using Basement Membrane Matrix Protein (Cultrex or Matrigel) Co-Injection. Nat. Protoc. 2012, 7, 1138–1144. [Google Scholar] [CrossRef]
- du Sert, N.P.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; et al. The ARRIVE Guidelines 2.0: Updated Guidelines for Reporting Animal Research. PLoS Biol 2020, 18, e3000410. [Google Scholar]
Radionuclide | RCY | RCP | Stability in PBS | Stability in Serum |
---|---|---|---|---|
111In | >99% | >99% | >99%, 24 h | >99%, 24 h b |
177Lu | 93.6% | 89% | 89%, 24 h | 89%, 24 h b |
213Bi | 94.0% a | 94.0% | - | 97.4%, 4 h c,d |
Al18F | 40% e | 97.4% | - | 96.1%, 4 h c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murce, E.; Ahenkorah, S.; Beekman, S.; Handula, M.; Stuurman, D.; de Ridder, C.; Cleeren, F.; Seimbille, Y. Radiochemical and Biological Evaluation of 3p-C-NETA-ePSMA-16, a Promising PSMA-Targeting Agent for Radiotheranostics. Pharmaceuticals 2023, 16, 882. https://doi.org/10.3390/ph16060882
Murce E, Ahenkorah S, Beekman S, Handula M, Stuurman D, de Ridder C, Cleeren F, Seimbille Y. Radiochemical and Biological Evaluation of 3p-C-NETA-ePSMA-16, a Promising PSMA-Targeting Agent for Radiotheranostics. Pharmaceuticals. 2023; 16(6):882. https://doi.org/10.3390/ph16060882
Chicago/Turabian StyleMurce, Erika, Stephen Ahenkorah, Savanne Beekman, Maryana Handula, Debra Stuurman, Corrina de Ridder, Frederik Cleeren, and Yann Seimbille. 2023. "Radiochemical and Biological Evaluation of 3p-C-NETA-ePSMA-16, a Promising PSMA-Targeting Agent for Radiotheranostics" Pharmaceuticals 16, no. 6: 882. https://doi.org/10.3390/ph16060882
APA StyleMurce, E., Ahenkorah, S., Beekman, S., Handula, M., Stuurman, D., de Ridder, C., Cleeren, F., & Seimbille, Y. (2023). Radiochemical and Biological Evaluation of 3p-C-NETA-ePSMA-16, a Promising PSMA-Targeting Agent for Radiotheranostics. Pharmaceuticals, 16(6), 882. https://doi.org/10.3390/ph16060882