A Novel UHPLC-MS/MS Method for the Quantification of Seven Opioids in Different Human Tissues
Abstract
:1. Introduction
2. Results
2.1. Calibration Curve and Dilution Integrity
2.2. Specificity and Selectivity
2.3. Lower Limit of Quantification (LLOQ) and Limit of Detection (LOD)
2.4. Stability
2.5. Recovery and Matrix Effect
2.6. Carry-Over
2.7. Testing of Participants’ Samples
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Preparation of Calibrators and Quality Control Samples
4.3. Sample Preparation
4.4. LC-MS Analysis
4.5. Method Validation
4.5.1. Results of Specificity and Selectivity Test
4.5.2. Accuracy, Precision, Calibration, Limits of Quantification and Detection, Dilution Integrity
4.5.3. Recovery
4.5.4. Shelf-Life Results
4.5.5. Matrix Effect
4.5.6. Carry-Over results
4.5.7. Application and Statistical Analysis
4.5.8. Samples Retesting
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bruera, E.; Paice, J.A. Cancer pain management: Safe and effective use of opioids. Am. Soc. Clin. Oncol. Educ. Book. 2015, 35, e593–e599. [Google Scholar] [CrossRef] [PubMed]
- McDonald, J.; Lambert, D.G. Opioid receptors. Contin. Educ. Anaesth. Crit. Care Pain 2005, 5, 22–25. [Google Scholar] [CrossRef]
- Trescot, A.M.; Datta, S.; Lee, M.; Hansen, H. Opioid pharmacology. Pain. Physician 2008, 11, S133–S153. [Google Scholar] [CrossRef] [PubMed]
- Waldhoer, M.; Bartlett, S.E.; Whistler, J.L. Opioid receptors. Annu. Rev. Biochem. 2004, 73, 953–990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CDC. Clinical Practice Guideline for Prescribing Opioids for Pain—United States. Available online: https://www.cdc.gov/mmwr/volumes/71/rr/rr7103a1.htm?s_cid=rr7103a1.htm_w (accessed on 18 April 2023).
- Nora, D.; Volkow, M.D. Oida Opioid Facts for Teens. Available online: https://nida.nih.gov/sites/default/files/nida_opioidfactsforteens_brochure_final_web.pdf (accessed on 18 April 2023).
- Wootton, M. Morphine is not the only analgesic in palliative care: Literature review. J. Adv. Nurs. 2004, 45, 527–532. [Google Scholar] [CrossRef]
- Wasan, A.D.; Michna, E.; Janfaza, D.; Greenfield, S.; Teter, C.J.; Jamison, R.N. Interpreting urine drug tests: Prevalence of morphine metabolism to hydromorphone in chronic pain patients treated with morphine. Pain. Med. 2008, 9, 918–923. [Google Scholar] [CrossRef]
- Inturrisi, C.E. Clinical pharmacology of opioids for pain. Clin. J. Pain. 2002, 18, S3–S13. [Google Scholar] [CrossRef]
- Vallner, J.J.; Stewart, J.T.; Kotzan, J.A.; Kirsten, E.B.; Honigberg, I.L. Pharmacokinetics and bioavailability of hydromorphone following intravenous and oral administration to human subjects. J. Clin. Pharm. 1981, 21, 152–156. [Google Scholar] [CrossRef]
- Vandenbosch, M.; Somers, T.; Cuypers, E. Distribution of Methadone and Metabolites in Skeletal Tissue. J. Anal. Toxicol. 2018, 42, 400–408. [Google Scholar] [CrossRef]
- Mercadante, S. Opioid metabolism and clinical aspects. Eur. J. Pharm. 2015, 769, 71–78. [Google Scholar] [CrossRef]
- Hutchinson, M.R.; Menelaou, A.; Foster, D.J.; Coller, J.K.; Somogyi, A.A. CYP2D6 and CYP3A4 involvement in the primary oxidative metabolism of hydrocodone by human liver microsomes. Br. J. Clin. Pharm. 2004, 57, 287–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, S.F. Polymorphism of human cytochrome P450 2D6 and its clinical significance: Part II. Clin. Pharm. 2009, 48, 761–804. [Google Scholar] [CrossRef] [PubMed]
- Caplehorn, J.R.; Drummer, O.H. Methadone dose and post-mortem blood concentration. Drug. Alcohol. Rev. 2002, 21, 329–333. [Google Scholar] [CrossRef]
- Kinnunen, M.; Kokki, H.; Hautajarvi, H.; Lantto, J.; Rasanen, J.; Voipio, H.M.; Kokki, M. Oxycodone concentrations in the central nervous system and cerebrospinal fluid after epidural administration to the pregnant ewe. Basic. Clin. Pharmacol. Toxicol. 2019, 125, 430–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guillot, E.; de Mazancourt, P.; Durigon, M.; Alvarez, J.C. Morphine and 6-acetylmorphine concentrations in blood, brain, spinal cord, bone marrow and bone after lethal acute or chronic diacetylmorphine administration to mice. Forensic Sci. Int. 2007, 166, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Nakhla, D.S.; Hussein, L.A.; Magdy, N.; Abdallah, I.A.; Hassan, H.E. Precise simultaneous quantification of methadone and cocaine in rat serum and brain tissue samples following their successive i.p. administration. J. Chromatogr. B Analyt Technol. Biomed. Life Sci. 2017, 1048, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Colucci, A.P.; Aventaggiato, L.; Centrone, M.; Gagliano-Candela, R. Validation of an extraction and gas chromatography-mass spectrometry quantification method for cocaine, methadone, and morphine in postmortem adipose tissue. J. Anal. Toxicol. 2010, 34, 342–346. [Google Scholar] [CrossRef] [Green Version]
- Frost, J.; Løkken, T.N.; Helland, A.; Nordrum, I.S.; Slørdal, L. Post-mortem levels and tissue distribution of codeine, codeine-6-glucuronide, norcodeine, morphine and morphine glucuronides in a series of codeine-related deaths. Forensic Sci. Int. 2016, 262, 128–137. [Google Scholar] [CrossRef] [Green Version]
- Platosz, N.A.; Binz, T.M.; Baumgartner, M.R.; Lendoiro, E.; de Castro, A.; Concheiro, M. Quantification of Classic, Prescription and Synthetic Opioids in Hair by LC-MS-MS. J. Anal. Toxicol. 2021, 45, 943–949. [Google Scholar] [CrossRef]
- Liu, P.; Liu, W.; Qiao, H.; Jiang, S.; Wang, Y.; Chen, J.; Su, M.; Di, B. Simultaneous quantification of 106 drugs or their metabolites in nail samples by UPLC-MS/MS with high-throughput sample preparation: Application to 294 real cases. Anal. Chim. Acta 2022, 1226, 340170. [Google Scholar] [CrossRef]
- Shen, M.; Chen, H.; Xiang, P. Determination of opiates in human fingernail—comparison to hair. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2014, 967, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Maurer, H.H. Advances in analytical toxicology: The current role of liquid chromatography-mass spectrometry in drug quantification in blood and oral fluid. Anal. Bioanal. Chem. 2005, 381, 110–118. [Google Scholar] [CrossRef]
- Chatterton, C.N.; Scott-Ham, M. The distribution and redistribution of fentanyl & norfentanyl in post mortem samples. Forensic Sci. Int. 2018, 284, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Chesser, R.; Pardi, J.; Concheiro, M.; Cooper, G. Distribution of synthetic opioids in postmortem blood, vitreous humor and brain. Forensic Sci. Int. 2019, 305, 109999. [Google Scholar] [CrossRef] [PubMed]
- Jakobsson, G.; Larsson, R.; Pelle, L.; Kronstrand, R.; Green, H. Oxycodone findings and CYP2D6 function in postmortem cases. Forensic Sci. Int. Genet. 2021, 53, 102510. [Google Scholar] [CrossRef]
- Poklis, J.; Poklis, A.; Wolf, C.; Mainland, M.; Hair, L.; Devers, K.; Chrostowski, L.; Arbefeville, E.; Merves, M.; Pearson, J. Postmortem tissue distribution of acetyl fentanyl, fentanyl and their respective nor-metabolites analyzed by ultrahigh performance liquid chromatography with tandem mass spectrometry. Forensic Sci. Int. 2015, 257, 435–441. [Google Scholar] [CrossRef] [Green Version]
- Gosetti, F.; Mazzucco, E.; Gennaro, M.C.; Marengo, E. Ultra high performance liquid chromatography tandem mass spectrometry determination and profiling of prohibited steroids in human biological matrices. A review. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2013, 927, 22–36. [Google Scholar] [CrossRef]
- Thomas, S.N.; French, D.; Jannetto, P.J.; Rappold, B.A.; Clarke, W.A. Liquid chromatography-tandem mass spectrometry for clinical diagnostics. Nat. Rev. Methods Prim. 2022, 2, 96. [Google Scholar] [CrossRef]
- Perez de Souza, L.; Alseekh, S.; Scossa, F.; Fernie, A.R. Ultra-high-performance liquid chromatography high-resolution mass spectrometry variants for metabolomics research. Nat. Methods 2021, 18, 733–746. [Google Scholar] [CrossRef]
- Thakur, D.; Lal, U.R.; Kapoor, D.N.; Kumar, D. Identification and quantification of polyphenolic secondary metabolites in Stem Bark of Ficus Religiosa (Moraceae) using UPLC-HRMS and RP-HPLC-PDA. Separations 2023, 10, 338. [Google Scholar] [CrossRef]
- EMA. Guideline on Bioanalytical Method Validation. Available online: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2011/08/WC500109686.pdf (accessed on 4 March 2021).
- FDA. Guidance for Industry: Bioanalytical Method Validation. Available online: https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf (accessed on 4 March 2021).
- De Nicolò, A.; Cantu, M.; D’Avolio, A. Matrix effect management in liquid chromatography mass spectrometry: The internal standard normalized matrix effect. Bioanalysis 2017, 9, 1093–1105. [Google Scholar] [CrossRef] [PubMed]
- Karinen, R.; Øiestad, E.L.; Andresen, W.; Smith-Kielland, A.; Christophersen, A. Comparison of the Stability of Stock Solutions of Drugs of Abuse and Other Drugs Stored in a freezer, refrigerator, and at Ambient Temperature for Up to One Year. J. Anal. Toxicol. 2011, 35, 583–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wehrfritz, A.; Schmidt, S.; Ihmsen, H.; Schuttler, J.; Jeleazcov, C. Long-Term Stability of Hydromorphone in Human Plasma Frozen at −20 °C for Three Years Quantified by LC-MS/MS. Int. J. Anal. Chem. 2022, 2022, 3645048. [Google Scholar] [CrossRef] [PubMed]
- Papoutsis, I.; Nikolaou, P.; Pistos, C.; Dona, A.; Stefanidou, M.; Spiliopoulou, C.; Athanaselis, S. Stability of morphine, codeine, and 6-acetylmorphine in blood at different sampling and storage conditions. J. Forensic Sci. 2014, 59, 550–554. [Google Scholar] [CrossRef] [PubMed]
- Palmquist, K.B.; Swortwood, M.J. Long-Term Stability of 13 Fentanyl Analogs in Blood. J. Anal. Toxicol. 1999, 45, 870–877. [Google Scholar] [CrossRef]
- Moody, D.E.; Monti, K.M.; Spanbauer, A.C. Long-term stability of abused drugs and antiabuse chemotherapeutical agents stored at −20 degrees C. J. Anal. Toxicol. 1999, 23, 535–540. [Google Scholar] [CrossRef] [Green Version]
- Matuszewski, B.K. Standard line slopes as a measure of a relative matrix effect in quantitative HPLC-MS bioanalysis. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2006, 830, 293–300. [Google Scholar] [CrossRef]
- Matuszewski, B.K.; Constanzer, M.L.; Chavez-Eng, C.M. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal. Chem. 2003, 75, 3019–3030. [Google Scholar] [CrossRef]
Morphine | Oxymorfone | Hydromorfone | Oxycodone | Hydrocodone | Fentanyl | Methadone | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
m | k | Dev. from Ref. | m | k | Dev. from Ref. | m | k | Dev. from Ref. | m | k | Dev. from Ref. | m | k | Dev. from Ref. | m | k | Dev. from Ref. | m | k | Dev. from Ref. | |
Pure solvent (reference) | 1.030 | 0.007 | n.a. | 5.437 | 0.022 | n.a. | 3.752 | 0.027 | n.a. | 2.544 | 0.026 | n.a. | 3.980 | −0.012 | n.a. | 4.451 | −0.001 | n.a. | 2.236 | 0.002 | n.a. |
Heart | 1.062 | 0.006 | 3.1% | 4.994 | 0.046 | −8.1% | 3.730 | 0.007 | −0.6% | 2.510 | 0.006 | −1.3% | 4.042 | −0.014 | 1.6% | 4.422 | 0.005 | −0.7% | 2.442 | 0.024 | 9.2% |
Lung | 1.015 | 0.006 | −1.5% | 4.808 | 0.038 | −11.6% | 3.716 | −0.004 | −1.0% | 2.488 | 0.015 | −2.2% | 4.050 | −0.013 | 1.8% | 4.422 | 0.002 | −0.7% | 2.406 | 0.014 | 7.6% |
Kidney | 1.011 | 0.007 | −1.8% | 5.26 | −0.011 | −3.3% | 3.712 | 0.003 | −1.1% | 2.525 | 0.013 | −0.7% | 4.006 | 0.007 | 0.7% | 4.420 | 0.003 | −0.7% | 2.35 | 0.017 | 5.1% |
Liver | 1.022 | −0.001 | −0.8% | 5.62 | 0.042 | 3.4% | 3.820 | 0.001 | 1.8% | 2.678 | −0.009 | 5.3% | 3.982 | 0.016 | 0.1% | 4.453 | −0.006 | 0.0% | 2.449 | 0.017 | 9.5% |
Intestine | 1.032 | 0.001 | 0.2% | 5.476 | 0.046 | 0.7% | 3.678 | 0.012 | −2.0% | 2.678 | 0.061 | 5.3% | 4.053 | −0.005 | 1.8% | 4.416 | 0.001 | −0.8% | 2.36 | 0.009 | 5.5% |
Subcut. fat | 1.044 | −0.012 | 1.4% | 5.408 | −0.053 | −0.5% | 3.598 | 0.003 | −4.1% | 2.385 | 0.024 | −6.3% | 3.932 | −0.003 | −1.2% | 4.344 | −0.005 | −2.4% | 2.203 | 0.015 | −1.5% |
Plasma | 0.961 | 0.012 | −6.7% | 4.851 | 0.021 | −10.8% | 3.891 | −0.031 | 3.7% | 2.451 | 0.001 | −3.7% | 4.038 | −0.022 | 1.5% | 4.32 | 0.005 | −2.9% | 2.361 | 0.016 | 5.6% |
Inter-tissue CV | Mean Dev. | Inter-tissue CV | Mean Dev. | Inter-tissue CV | Mean Dev. | Inter-tissue CV | Inter-tissue CV | Inter-tissue CV | Mean Dev. | Inter-tissue CV | Mean Dev. | Inter-tissue CV | Mean Dev. | ||||||||
3.11% | −0.9% | 6.17% | −4.3% | 2.55% | −0.5% | 4.37% | −0.5% | 1.11% | 0.9% | 1.10% | −1.2% | 3.50% | 5.9% |
DRUGs | RT (min) | Calibration Range (ng) | [M+H]+ (m/z) | Dwell Time (ms) | Quantification Trace (m/z) | Entrance Voltage (V) | Collision Energy Second Product Ion Trace (eV) | Qualifier Trace (m/z) | Entrance Voltage (V) | Collision Energy First Ion Product Trace (eV) |
---|---|---|---|---|---|---|---|---|---|---|
MRPH | 1.32 | 0.027–20 | 286.10 | 25 | 201.10 | 40 | −32 | 165.10 | 40 | −50 |
MRPH-D3 | 1.30 | - | 289.10 | 25 | 201.10 | 40 | −33 | 165.10 | 40 | −50 |
O-MRPH | 1.47 | 0.020–15 | 302.10 | 25 | 227.10 | 30 | −35 | 198.10 | 28 | −60 |
O-MRPH -D3 | 1.45 | - | 305.10 | 25 | 230.10 | 30 | −35 | 201.10 | 28 | −60 |
H-MRPH | 1.64 | 0.014–10 | 286.10 | 25 | 185.10 | 46 | −40 | 128.10 | 47 | −79 |
H-MRPH -D3 | 1.63 | - | 289.10 | 25 | 185.10 | 46 | −40 | 128.10 | 47 | −79 |
O-COD | 2.15 | 0.020–15 | 316.20 | 25 | 212.10 | 30 | −55 | 241.10 | 30 | −55 |
O-COD -D3 | 2.14 | - | 319.20 | 25 | 215.10 | 30 | −35 | 244.10 | 30 | −55 |
H-COD | 2.22 | 0.014–10 | 300.10 | 15 | 241.10 | 40 | −34 | 199.10 | 40 | −39 |
H-COD -D3 | 2.22 | - | 303.10 | 25 | 241.10 | 40 | −34 | 199.10 | 40 | −39 |
FEN | 3.24 | 0.007–5 | 337.30 | 25 | 188.20 | 33 | −31 | 105.10 | 34 | −57 |
FEN -D5 | 3.23 | - | 342.30 | 25 | 188.20 | 33 | −31 | 105.10 | 34 | −57 |
MET | 3.76 | 0.027–20 | 310.30 | 25 | 105.10 | 20 | −40 | 91.00 | 20 | −64 |
MET -D3 | 3.75 | - | 313.30 | 25 | 105.10 | 20 | −40 | 92.10 | 20 | −64 |
Analyte | QC Level | Trueness (%) | Precision | |
---|---|---|---|---|
Intra-Day (CV%) | Inter-Day (CV%) | |||
Morphine | H (10 ng) | 101.5 | 6.7 | 5.5 |
M (1 ng) | 98.4 | 4.4 | 7.5 | |
L (0.1 ng) | 97.7 | 12.1 | 3.0 | |
LLOQ (0.027 ng) | 111.2 | 11.3 | 8.2 | |
LOD (0.009 ng) | - | - | - | |
Oxymorphone | H (7.5 ng) | 103.3 | 4.3 | 2.2 |
M (0.75 ng) | 104.6 | 6.5 | 3.0 | |
L (0.075 ng) | 101.5 | 11.8 | 6.2 | |
LLOQ (0.020 ng) | 107.8 | 12.1 | 10.2 | |
LOD (0.007 ng) | - | - | - | |
Hydromorphone | H (5 ng) | 104.2 | 4.8 | 5.5 |
M (0.5 ng) | 99.8 | 7.9 | 7.1 | |
L (0.05 ng) | 96.9 | 8.3 | 3.2 | |
LLOQ (0.014 ng) | 108.2 | 10.8 | 12.1 | |
LOD (0.005 ng) | - | - | - | |
Oxycodone | H (7.5 ng) | 101.1 | 7.8 | 1.5 |
M (0.75 ng) | 102.3 | 7.2 | 0.5 | |
L (0.075 ng) | 96.3 | 10.9 | 8.7 | |
LLOQ (0.020 ng) | 106.2 | 11.6 | 10.1 | |
LOD (0.007 ng) | - | - | - | |
Hydrocodone | H (5 ng) | 102.2 | 5.6 | 2.7 |
M (0.5 ng) | 101.5 | 8.6 | 8.6 | |
L (0.05 ng) | 97.6 | 12.5 | 6.8 | |
LLOQ (0.014 ng) | 110.5 | 13.1 | 14.0 | |
LOD (0.005 ng) | - | - | - | |
Fentanyl | H (2.5 ng) | 98.8 | 1.8 | 1.9 |
M (0.25 ng) | 96.8 | 2.2 | 2.2 | |
L (0.025 ng) | 95.9 | 5.2 | 2.8 | |
LLOQ (0.007 ng) | 98.2 | 9.3 | 9.1 | |
LOD (0.002 ng) | - | - | - | |
Methadone | H (10 ng) | 97.5 | 5.2 | 0.7 |
M (1 ng) | 97.0 | 3.7 | 0.9 | |
L (0.1 ng) | 93.6 | 7.0 | 3.6 | |
LLOQ (0.027 ng) | 91.8 | 8.9 | 9.6 | |
LOD (0.009 ng) | - | - | - |
Recovery and Matrix Effect by Post-Extraction Addition | |||||
---|---|---|---|---|---|
Analyte | QC Level | REC (%) | IS-nREC (%) | EM (%) | IS-nEM (%) |
Morphine | H | 88.8 (18.5) | 91.8 (5.6) | −1.0 (21.9) | 9.9 (5.3) |
M | 92.9 (21.9) | 99.0 (4.6) | −13.9 (22.6) | −5.0 (5.9) | |
L | 91.6 (26.5) | 95.3 (10.0) | −19.7 (23.9) | 4.8 (9.5) | |
Oxymorphone | H | 90.2 (11.1) | 101.2 (5.0) | 0.1 (14.9) | 0.3 (5.5) |
M | 91.9 (14.9) | 101.4 (3.7) | −12.5 (18.0) | 1.2 (5.9) | |
L | 93.1 (17.7) | 105.8 (10.3) | −15.5 (16.8) | −0.4 (5.1) | |
Hydromorphone | H | 89.9 (13.0) | 101.5 (4.2) | −1.5 (4.1) | −3.1 (2.4) |
M | 94.3 (14.2) | 100.4 (3.9) | −16.1 (10.6) | −3.0 (3.6) | |
L | 88.2 (20.2) | 100.2 (8.2) | −2.9 (14.9) | 8.8 (9.6) | |
Oxycodone | H | 102.1 (24.9) | 97.6 (8.4) | −22.5 (24.8) | −0.8 (9.9) |
M | 97.7 (25.7) | 100.1 (7.4) | −23.2 (17.4) | 1.5 (5.8) | |
L | 95.5 (19.9) | 97.9 (10.2) | −23.1 (19.2) | −6.9 (7.7) | |
Hydrocodone | H | 108.8 (22.5) | 99.7 (4.6) | −12.1 (25.3) | 1.6 (5.7) |
M | 99.6 (17.9) | 101.5 (7.1) | −7.5(15.5) | 2.5 (5.9) | |
L | 101.5 (19.7) | 103.7 (6.6) | −2.3 (19.5) | 1.0 (5.2) | |
Fentanyl | H | 106.3 (32.5) | 99.8 (1.7) | −33.2 (35.0) | −1.1 (1.1) |
M | 102.2 (30.9) | 99.3 (2.1) | −33.2 (19.9) | −1.3 (2.2) | |
L | 95.4 (29.1) | 99.3 (4.8) | −23.8 (28.5) | 0.3 (5.1) | |
Methadone | H | 100.8 (30.3) | 100.7 (5.1) | −28.8 (28.2) | −0.8 (4.2) |
M | 104.9 (29.7) | 101.8 (3.8) | −36.6 (19.4) | −2.6 (2.9) | |
L | 94.7 (26.3) | 98.6 (7.2) | −30.3 (27.7) | 6.1 (5.5) |
Participant 1 | |||||||
---|---|---|---|---|---|---|---|
Morphine (ng/g) Mean (CV%) | Oxymorphone (ng/g) Mean (CV%) | Hydromorphone (ng/g) Mean (CV%) | Oxycodone (ng/g) Mean (CV%) | Hydrocodone (ng/g) Mean (CV%) | Fentanyl (ng/g) Mean (CV%) | Methadone (ng/g) Mean (CV%) | |
Heart | n.d. | 33.4 (14.0) | n.d. | 703.4 (18.2) | n.d. | n.d. | n.d. |
Lung | n.d. | 24.9 (10.7) | n.d. | 1046.4 (6.9) | n.d. | n.d. | n.d. |
Kidney | n.d. | 380.7 (2.8) | n.d. | 2580.6 (1.2) | n.d. | n.d. | n.d. |
Liver | n.d. | 317.5 (4.5) | n.d. | 4421.7 (5.3) | n.d. | n.d. | n.d. |
Left colon | n.d. | 18.9 (0.8) | n.d. | 455.7 (7.4) | n.d. | n.d. | n.d. |
Abdominal adipose tissue | n.d. | 3.9 (2.6) | n.d. | 108.8 (3.4) | n.d. | n.d. | n.d. |
Plasma (pre-mortem) | n.d. | 2.0 (4.3) | n.d. | 38.0 (6.7) | n.d. | n.d. | n.d. |
Participant 2 | |||||||
Morphine (ng/g) Mean (CV%) | Oxymorphone (ng/g) Mean (CV%) | Hydromorphone (ng/g) Mean (CV%) | Oxycodone (ng/g) Mean (CV%) | Hydrocodone (ng/g) Mean (CV%) | Fentanyl (ng/g) Mean (CV%) | Methadone (ng/g) Mean (CV%) | |
Heart | 75,753 (5.7) | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Lung | 13,119 (13.6) | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Kidney | 11,739 (15.1) | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Liver | 10,166 (2.8) | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Left colon | 413,709 (3.5) | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Abdominal adipose tissue | 510 (4.2) | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Plasma (post-mortem) | 4013 (7.8) | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Participant 3 | |||||||
Morphine (ng/g) Mean (CV%) | Oxymorphone (ng/g) Mean (CV%) | Hydromorphone (ng/g) Mean (CV%) | Oxycodone (ng/g) Mean (CV%) | Hydrocodone (ng/g) Mean (CV%) | Fentanyl (ng/g) Mean (CV%) | Methadone (ng/g) Mean (CV%) | |
Heart | n.d. | n.d. | n.d. | n.d. | n.d. | 60.5 (2.6) | 569 (1.1) |
Lung | n.d. | n.d. | n.d. | n.d. | n.d. | 80.7 (0.5) | 1699 (15.9) |
Kidney | 323.2 (16.3) | n.d. | n.d. | n.d. | n.d. | 57.1 (19.5) | 710 (18.2) |
Liver | n.d. | n.d. | n.d. | n.d. | n.d. | 96 (3.3) | 853 (1.3) |
Left colon | n.d. | n.d. | n.d. | n.d. | n.d. | 14.1 (13.4) | 171 (8.0) |
Abdominal adipose tissue | n.d. | n.d. | n.d. | n.d. | n.d. | 45.3 (1.2) | 239 (4.4) |
Plasma (post-mortem) | n.d. | n.d. | n.d. | n.d. | n.d. | 10.6 (1.3) | 181 (4.9) |
Participant 4 | |||||||
Morphine (ng/g) Mean (CV%) | Oxymorphone (ng/g) Mean (CV%) | Hydromorphone (ng/g) Mean (CV%) | Oxycodone (ng/g) Mean (CV%) | Hydrocodone (ng/g) Mean (CV%) | Fentanyl (ng/g) Mean (CV%) | Methadone (ng/g) Mean (CV%) | |
Heart | n.d. | n.d. | 221.6 (11.1) | n.d. | n.d. | n.d. | n.d. |
Lung | n.d. | n.d. | 221.6 (15.8) | n.d. | n.d. | n.d. | n.d. |
Kidney | n.d. | n.d. | 134.4 (1.4) | n.d. | n.d. | n.d. | n.d. |
Liver | n.d. | n.d. | 39.8 (9.6) | n.d. | n.d. | n.d. | n.d. |
Left colon | n.d. | n.d. | 37.7 (8.6) | n.d. | n.d. | n.d. | n.d. |
Abdominal adipose tissue | n.d. | n.d. | 54.6 (6.4) | n.d. | n.d. | n.d. | n.d. |
Plasma (pre-mortem) | n.d. | n.d. | 9.0 (2.3) | n.d. | n.d. | n.d. | n.d. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manca, A.; De Nicolò, A.; De Vivo, E.D.; Ferrara, M.; Oh, S.; Khalili, S.; Higgins, N.; Deiss, R.G.; Bonora, S.; Cusato, J.; et al. A Novel UHPLC-MS/MS Method for the Quantification of Seven Opioids in Different Human Tissues. Pharmaceuticals 2023, 16, 903. https://doi.org/10.3390/ph16060903
Manca A, De Nicolò A, De Vivo ED, Ferrara M, Oh S, Khalili S, Higgins N, Deiss RG, Bonora S, Cusato J, et al. A Novel UHPLC-MS/MS Method for the Quantification of Seven Opioids in Different Human Tissues. Pharmaceuticals. 2023; 16(6):903. https://doi.org/10.3390/ph16060903
Chicago/Turabian StyleManca, Alessandra, Amedeo De Nicolò, Elisa Delia De Vivo, Micol Ferrara, Sharon Oh, Sahar Khalili, Niamh Higgins, Robert G. Deiss, Stefano Bonora, Jessica Cusato, and et al. 2023. "A Novel UHPLC-MS/MS Method for the Quantification of Seven Opioids in Different Human Tissues" Pharmaceuticals 16, no. 6: 903. https://doi.org/10.3390/ph16060903
APA StyleManca, A., De Nicolò, A., De Vivo, E. D., Ferrara, M., Oh, S., Khalili, S., Higgins, N., Deiss, R. G., Bonora, S., Cusato, J., Palermiti, A., Mula, J., Gianella, S., & D’Avolio, A. (2023). A Novel UHPLC-MS/MS Method for the Quantification of Seven Opioids in Different Human Tissues. Pharmaceuticals, 16(6), 903. https://doi.org/10.3390/ph16060903