Systemic Chronic Treatment with Cannabidiol in Carioca High- and Low-Conditioned Freezing Rats in the Neuropathic Pain Model: Evaluation of Pain Sensitivity
Abstract
:1. Introduction
2. Results
2.1. Mechanical Sensitivity Assessment
2.2. Thermal Sensitivity to Cold
2.3. Thermal Sensitivity to Heat
2.4. The Open Field Test
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Chronic Constriction Injury of the Ischiatic Nerve (CCI) and Control Group (SHAM)
4.3. Treatment with CBD
4.4. Mechanical Sensitivity
4.5. Thermal Sensitivity to Cold
4.6. Hot Plate Test
4.7. Locomotion Activity
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rice, A.S.C.; Smith, B.H.; Blyth, F.M. Pain and the global burden of disease. Pain 2016, 157, 791–796. [Google Scholar] [CrossRef] [Green Version]
- Steingrímsdóttir, Ó.A.; Landmark, T.; Macfarlane, G.J.; Nielsen, C.S. Defining chronic pain in epidemiological studies. Pain 2017, 158, 2092–2107. [Google Scholar] [CrossRef] [PubMed]
- Tyrer, P.; Baldwin, D. Generalised anxiety disorder. Lancet 2006, 368, 2156–2166. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Depression and Other Common Mental Disorders: Global Health Estimates. World Heath Organization. 2017. Available online: https://apps.who.int/iris/handle/10665/254610 (accessed on 10 May 2023).
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Publising, Inc.: Arlington, VA, USA, 2013. [Google Scholar] [CrossRef]
- Merskey, H.; Bogduk, N. Classification of chronic pain: Descriptions of chronic pain syndromes and definitions of pain terms. Pain 1986, 3, S1-226. [Google Scholar]
- Nugraha, B.; Gutenbrunner, C.; Barke, A.; Karst, M. The IASP classification of chronic pain for ICD-11: Functioning properties of chronic pain. Pain 2019, 160, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Leite-Almeida, H.; Pinto-Ribeiro, F.; Almeida, A. Animal models for the study of comorbid pain and psychiatric disorders. Mod. Trends Pharm. 2015, 30, 1–21. [Google Scholar] [CrossRef]
- Bandelow, B. Generalized anxiety disorder and pain. Mod. Trends Pharm. 2015, 30, 153–165. [Google Scholar] [CrossRef]
- Gureje, O. Comorbidity of pain and anxiety disorders. Curr. Psychiatry Rep. 2008, 10, 318–322. [Google Scholar] [CrossRef]
- De Gregorio, D.; McLaughlin, R.J.; Posa, L.; Ochoa-Sanchez, R.; Enns, J.; Lopez-Canul, M.; Aboud, M.; Maione, S.; Comai, S.; Gobbi, G. Cannabidiol modulates serotonergic transmission and reverses both allodynia and anxiety-like behavior in a model of neuropathic pain. Pain 2019, 160, 136–150. [Google Scholar] [CrossRef]
- Bergamaschi, M.M.; Queiroz, R.H.C.; Zuardi, A.W.; Crippa, J.A.S. Safety and side effects of cannabidiol, a Cannabis sativa constituent. Curr. Drug Saf. 2011, 6, 237–249. [Google Scholar] [CrossRef]
- Uhelski, M.L.; Khasabova, I.; Simone, D.A. Modulation of pain by endocannabinoids in the periphery. In Recent Advances in Cannabinoid Research; IntechOpen: London, UK, 2018; pp. 101–118. [Google Scholar] [CrossRef] [Green Version]
- Devinsky, O.; Cilio, M.R.; Cross, H.; Fernandez-Ruiz, J.; French, J.; Hill, C.; Katz, R.; Di Marzo, V.; Jutras-Aswad, D.; Notcutt, W.G.; et al. Cannabidiol: Pharmacology and potential therapeutic role in epilepsy and other neuropsychiatric disorders. Epilepsia 2014, 55, 791–802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedrazzi, J.F.C.; Issy, A.C.; Gomes, F.V.; Guimarães, F.S.; Del-Bel, E.A. Cannabidiol effects in the prepulse inhibition disruption induced by amphetamine. Psychopharmacology 2015, 232, 3057–3065. [Google Scholar] [CrossRef] [PubMed]
- Carlini, E.A.; Cunha, J.M. Hypnotic and antiepileptic effects of cannabidiol. J. Clin. Pharmacol. 2013, 21, 417S–427S. [Google Scholar] [CrossRef]
- Premoli, M.; Aria, F.; Bonini, S.A.; Maccarinelli, G.; Gianoncelli, A.; Della Pina, S.; Tambaro, S.; Memo, M.; Mastinu, A. Cannabidiol: Recent advances and new insights for neuropsychiatric disorders treatment. Life Sci. 2019, 1, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Blessing, E.M.; Steenkamp, M.M.; Manzanares, J.; Marmar, C.R. Cannabidiol as a potential treatment for anxiety disorders. Neurotherapeutics 2015, 12, 825–836. [Google Scholar] [CrossRef]
- Asmundson, G.J.G.; Katz, J. Understanding the co-occurrence of anxiety disorders and chronic pain: State-of-the-art. Depress. Anxiety 2009, 26, 888–901. [Google Scholar] [CrossRef] [PubMed]
- Etkin, A. Neurobiology of anxiety: From neural circuits to novel solutions? Depress. Anxiety 2012, 29, 355–358. [Google Scholar] [CrossRef]
- Brandão, M.L.; Vianna, D.M.; Masson, S.; Santos, J. Neural organization of different types of fear: Implications for the understanding of anxiety. Braz. J. Psiquiatr. 2003, 25 (Suppl. 2), 36–41. [Google Scholar] [CrossRef] [Green Version]
- Calhoon, G.G.; Tye, K.M. Resolving the neural circuits of anxiety. Nat. Neurosci. 2015, 18, 1394–1404. [Google Scholar] [CrossRef] [Green Version]
- Magri, L.V.; Carvalho, V.A.; Rodrigues, F.C.C.; Bataglion, C.; Leite-Panissi, C.R.A. Effectiveness of low-level laser therapy on pain intensity, pressure pain threshold, and SF-MPQ indexes of women with myofascial pain. Lasers Med. Sci. 2017, 32, 419–428. [Google Scholar] [CrossRef]
- Magri, L.V.; Carvalho, V.A.; Rodrigues, F.C.C.; Bataglion, C.; Leite-Panissi, C.R.A. Non-specific effects and clusters of women with painful TMD responders and non-responders to LLLT: Double-blind randomized clinical trial. Lasers Med. Sci. 2018, 33, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Melchior, M.O.; Mazzetto, M.O.; Magri, L.V. Clusters according to anxiety phenotypes impact on pain perception and muscular fatigue in temporomandibular disorders. Int. J. Oral Dent. Health 2019, 5, 083. [Google Scholar] [CrossRef]
- Rainville, P. Brain mechanisms of pain affect and pain modulation. Curr. Opin. Neurobiol. 2002, 12, 195–204. [Google Scholar] [CrossRef]
- Wiech, K.; Ploner, M.; Tracey, I. Neurocognitive aspects of pain perception. Trends Cogn. Sci. 2008, 12, 306–313. [Google Scholar] [CrossRef]
- Colloca, L.; Ludman, T.; Bouhassira, D.; Baron, R.; Dickenson, A.H.; Yarnitsky, D.; Freeman, R.; Truini, A.; Attal, N.; Finnerup, N.B.; et al. Neuropathic pain. Nat. Rev. Dis. Prim. 2017, 3, 17002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarado, S.; Tajerian, M.; Suderman, M.; Machnes, Z.; Pierfelice, S.; Millecamps, M.; Stone, L.S.; Szyf, M. An epigenetic hypothesis for the genomic memory of pain. Front. Cell. Neurosci. 2015, 9, 88. [Google Scholar] [CrossRef] [PubMed]
- Weisenberg, M.; Aviram, O.; Wolf, Y.; Raphaeli, N. Relevant and irrelevant anxiety in the reaction to pain. Pain 1984, 20, 371–383. [Google Scholar] [CrossRef]
- Nahman-Averbuch, H.; Sprecher, E.; Jacob, G.; Yarnitsky, D. The Relationships Between Parasympathetic Function and Pain Perception: The Role of Anxiety. Pain Pract. 2016, 16, 1064–1072. [Google Scholar] [CrossRef]
- Belzung, C.; Lemoine, M. Criteria of validity for animal models of psychiatric disorders: Focus on anxiety disorders and depression. Biol. Mood Anxiety Disord. 2011, 1, 9. [Google Scholar] [CrossRef] [Green Version]
- Willner, P. The validity of animal models of depression. Psychopharmacology 1984, 83, 1–16. [Google Scholar] [CrossRef]
- de Castro Gomes, V.; Hassan, W.; Maisonnette, S.; Johnson, L.R.; Ramos, A.; Landeira-Fernandez, J. Behavioral evaluation of eight rat lines selected for high and low anxiety-related responses. Behav. Brain Res. 2013, 257, 39–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Castro Gomes, V.; Landeira-Fernandez, J. Amygdaloid lesions produced similar contextual fear conditioning disruption in the carioca high- and low-conditioned freezing rats. Brain Res. 2008, 1233, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Gomes, V.D.C.; Silva, C.E.B.; Landeira-Fernandez, J. The carioca high and low conditioned freezing lines: A new animal model of generalized anxiety disorder. Anxiety Disord. 2011, 1, 121–134. [Google Scholar] [CrossRef] [Green Version]
- Macêdo-Souza, C.; Maisonnette, S.S.; Filgueiras, C.C.; Landeira-Fernandez, J.; Krahe, T.E. Cued fear conditioning in carioca high- and low-conditioned freezing rats. Front. Behav. Neurosci. 2020, 13, 285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galvão, B.D.O.; Gomes, V.D.C.; Maisonnette, S.; Landeira-Fernandez, J. Panic-like behaviors in carioca high-and low-conditioned freezing rats. Psychol. Neurosci. 2011, 4, 205–210. [Google Scholar] [CrossRef] [Green Version]
- Bezerra-Karounis, M.A.; Krahe, T.E.; Maisonnette, S.; Landeira-Fernandez, J. Alcohol intake in carioca high- and low-conditioned freezing rats. Pharmacol. Biochem. Behav. 2020, 197, 173019. [Google Scholar] [CrossRef]
- Lages, Y.V.; Maisonnette, S.S.; Marinho, B.; Rosseti, F.P.; Krahe, T.E.; Landeira-Fernandez, J. Behavioral effects of chronic stress in carioca high- and low-conditioned freezing rats. Stress 2021, 24, 602–611. [Google Scholar] [CrossRef]
- Silva-Cardoso, G.; Lazarini-Lopes, W.; Hallak, J.; Crippa, J.; Zuardi, A.; Garcia-Cairasco, N.; Leite-Panissi, C. Cannabidiol effectively reverses mechanical and thermal allodynia, hyperalgesia, and anxious behaviors in a neuropathic pain model: Possible role of CB1 and TRPV1 receptors. Neuropharmacology 2021, 197, 108712. [Google Scholar] [CrossRef]
- León, L.A.; Brandão, M.L.; Cardenas, F.P.; Parra, D.; Krah, T.E.; Cruz, A.P.M.; Landeira-Fernandez, J. Distinct patterns of brain Fos expression in carioca high- and low-conditioned freezing rats. PLoS ONE 2020, 15, e0236039. [Google Scholar] [CrossRef]
- Roeska, K.; Ceci, A.; Treede, R.D.; Doods, H. Effect of high trait anxiety on mechanical hypersensitivity in male rats. Neurosci. Lett. 2009, 464, 160–164. [Google Scholar] [CrossRef]
- Fanselow, M.S. Conditional and unconditional components of post-shock freezing. Pavlov. J. Biol. Sci. 1980, 15, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Blanchard, R.J.; Blanchard, D.C. Ethoexperimental Approaches. Annu. Rev. Psychol. 1988, 39, 43–68. [Google Scholar] [CrossRef]
- Messing, R.B.; Rijk, H.; Rigter, H. Facilitation of hot-plate response learning by pre- and posttraining naltrexone administration. Psychopharmacology 1983, 81, 33–36. [Google Scholar] [CrossRef]
- Iffland, K.; Grotenhermen, F. An update on safety and side effects of cannabidiol: A review of clinical data and relevant animal studies. Cannabis Cannabinoid Res. 2017, 2, 139–154. [Google Scholar] [CrossRef] [Green Version]
- Stern, C.A.J.; da Silva, T.R.; Raymundi, A.M.; de Souza, C.P.; Hiroaki-Sato, V.A.; Kato, L.; Guimarães, F.S.; Andreatini, R.; Takahashi, R.N.; Bertoglio, L.J. Cannabidiol disrupts the consolidation of specific and generalized fear memories via dorsal hippocampus CB1 and CB2 receptors. Neuropharmacology 2017, 125, 220–230. [Google Scholar] [CrossRef]
- Riaz, S.; Schumacher, A.; Sivagurunathan, S.; Van Der Meer, M.; Ito, R. Ventral, but not dorsal, hippocampus inactivation impairs reward memory expression and retrieval in contexts defined by proximal cues. Hippocampus 2017, 27, 822–836. [Google Scholar] [CrossRef]
- Taylor, B.K.; Westlund, K.N. The noradrenergic locus coeruleus as a chronic pain generator. J. Neurosci. Res. 2017, 95, 1336–1346. [Google Scholar] [CrossRef] [PubMed]
- Tatem, K.S.; Quinn, J.L.; Phadke, A.; Yu, Q.; Gordish-Dressman, H.; Nagaraju, K. Behavioral and locomotor measurements using an open field activity monitoring system for skeletal muscle diseases. J. Vis. Exp. 2014, 29, e51785. [Google Scholar] [CrossRef] [Green Version]
- Prut, L.; Belzung, C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: A review. Eur. J. Pharmacol. 2003, 463, 3–33. [Google Scholar] [CrossRef]
- Malvestio, R.B.; Medeiros, P.; Negrini-Ferrari, S.E.; Oliveira-Silva, M.; Medeiros, A.C.; Padovan, C.M.; Luongo, L.; Maione, S.; Coimbra, N.C.; de Freitas, R.L. Cannabidiol in the prelimbic cortex modulates the comorbid condition between the chronic neuropathic pain and depression-like behaviour in rats: The role of medial prefrontal cortex 5-HT1A and CB1 receptors. Brain Res. Bull. 2021, 174, 323–338. [Google Scholar] [CrossRef]
- Jochum, T.; Boettger, M.K.; Wigger, A.; Beiderbeck, D.; Neumann, I.D.; Landgraf, R.; Sauer, H.; Bär, K.J. Decreased sensitivity to thermal pain in rats bred for high anxiety-related behaviour is attenuated by citalopram or diazepam treatment. Behav. Brain Res. 2007, 183, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Magri, L.V.; Bataglion, C.; Leite-Panissi, C.R.A. Follow-up results of a randomized clinical trial for low-level laser therapy in painful TMD of muscular origins. Cranio J. Craniomandib. Pract. 2021, 39, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Rahi, V.; Kumar, P. Animal models of attention-deficit hyperactivity disorder (ADHD). Int. J. Dev. Neurosci. 2021, 81, 107–124. [Google Scholar] [CrossRef]
- Yen, Y.-C.; Anderzhanova, E.; Bunck, M.; Schuller, J.; Landgraf, R.; Wotjak, C.T. Co-segregation of hyperactivity, active coping styles, and cognitive dysfunction in mice selectively bred for low levels of anxiety. Front. Behav. Neurosci. 2013, 7, 103. [Google Scholar] [CrossRef] [Green Version]
- Varvel, S.A.; Wiley, J.L.; Yang, R.; Bridgen, D.T.; Long, K.; Lichtman, A.H.; Martin, B.R. Interactions between THC and cannabidiol in mouse models of cannabinoid activity. Psychopharmacology 2006, 186, 226–234. [Google Scholar] [CrossRef]
- Lages, Y.V.; Maisonnette, S.S.; Rosseti, F.P.; Galvão, B.O.; Landeira-Fernandez, J. Haloperidol and methylphenidate alter motor behavior and responses to conditioned fear of Carioca Low-conditioned Freezing rats. Pharmacol. Biochem. Behav. 2021, 211, 173296. [Google Scholar] [CrossRef]
- Hayakawa, K.; Mishima, K.; Hazekawa, M.; Sano, K.; Irie, K.; Orito, K.; Egawa, T.; Kitamura, Y.; Uchida, N.; Nishimura, R.; et al. Cannabidiol potentiates pharmacological effects of Δ9-tetrahydrocannabinol via CB1 receptor-dependent mechanism. Brain Res. 2008, 1188, 157–164. [Google Scholar] [CrossRef]
- Calapai, F.; Cardia, L.; Calapai, G.; Di Mauro, D.; Trimarchi, F.; Ammendolia, I.; Mannucci, C. Effects of cannabidiol on locomotor activity. New Trends Pharm. Sci. 2022, 12, 652. [Google Scholar] [CrossRef] [PubMed]
- ElBatsh, M.M.; Assareh, N.; Marsden, C.A.; Kendall, D.A. Anxiogenic-like effects of chronic cannabidiol administration in rats. Psychopharmacology 2012, 221, 239–247. [Google Scholar] [CrossRef]
- Bennett, G.J.; Xie, Y.K. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 1988, 33, 87–107. [Google Scholar] [CrossRef]
- Dias, Q.M.; Rossaneis, A.C.; Fais, R.S.; Prado, W.A. An improved experimental model for peripheral neuropathy in rats. Braz. J. Med. Biol. Res. 2013, 46, 253–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noreen, N.; Muhammad, F.; Akhtar, B.; Azam, F.; Anwar, M.I. Is cannabidiol a promising substance for new drug development? A review of its potential therapeutic applications. Crit. Rev. Eukaryot. Gene Expr. 2018, 28, 73–86. [Google Scholar] [CrossRef] [PubMed]
- Campos, A.C.; Moreira, F.A.; Gomes, F.V.; del Bel, E.A.; Guimarães, F.S. Multiple mechanisms involved in the large-spectrum therapeutic potential of cannabidiol in psychiatric disorders. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 3364–3378. [Google Scholar] [CrossRef] [Green Version]
- Deiana, S.; Watanabe, A.; Yamasaki, Y.; Amada, N.; Arthur, M.; Fleming, S.; Woodcock, H.; Dorward, P.; Pigliacampo, B.; Close, S.; et al. Plasma and brain pharmacokinetic profile of cannabidiol (CBD), cannabidivarine (CBDV), Δ 9-tetrahydrocannabivarin (THCV) and cannabigerol (CBG) in rats and mice following oral and intraperitoneal administration and CBD action on obsessive—compulsive behaviour. Psychopharmacology 2012, 219, 859–873. [Google Scholar] [CrossRef]
- Britch, S.C.; Babalonis, S.; Walsh, S.L. Cannabidiol: Pharmacology and therapeutic targets. Psychopharmacology 2021, 238, 9–28. [Google Scholar] [CrossRef]
- Deuis, J.R.; Dvorakova, L.S.; Vetter, I. Methods used to evaluate pain behaviors in rodents. Front. Mol. Neurosci. 2017, 10, 284. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.J.; Kim, S.S.; Zhuo, M. Molecular Targets of Anxiety: From Membrane to Nucleus. Neurochem. Res. 2008, 33, 1925–1932. [Google Scholar] [CrossRef] [PubMed]
Nociceptive Tests | Lineage Factor | Condition Factor | Treatment Factor | Time Factor | Interaction |
---|---|---|---|---|---|
(CLF vs. CTL vs. CHF) | (SHAM vs. CCI) | (VEHI vs. CBD) | (Basal × 13th × 23th) | (Lineage vs. Condiction vs. Treatment) | |
von Frey | F(4, 168) = 6.409 | F(2, 168) = 547.176 | F(2, 168) = 312.546 | F(2, 168) = 657.563 | F(4, 168) = 2.187 |
p < 0.05 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.05 | |
Acetone | F(4, 168) = 1.811 | F(2, 168) = 247.434 | F(2, 168) = 43.275 | F(2, 168) = 244.175 | F(4, 168) = 0.368 |
p > 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p > 0.0001 | |
Hot Plate | F(4, 168) = 5.137 | F(2, 168) = 17.451 | F(2, 168) = 10.532 | F(2, 168) = 29.308 | F(4, 168) = 0.479 |
p = 0.001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p > 0.05 |
OFT | Lineage Factor | Condition Factor | Treatment Factor | Interaction |
---|---|---|---|---|
(CLF vs. CTL vs. CHF) | (SHAM vs. CCI) | (VEHI vs. CBD) | (Lineage vs. Condiction vs. Treatment) | |
% time in center | F(2.84) = 3.127 | F(1.84) = 8.156 | F(1.84) = 6.038 | F(2.84) = 1.156 |
p < 0.05 | p < 0.05 | p < 0.05 | p > 0.05 | |
Total of crosses | F(2.84) = 20.519 | F(1.84) = 5.445 | F(1.84) = 0.045 | F(2.84) = 4.248 |
p < 0.0001 | p < 0.0001 | p > 0.05 | p < 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macêdo-Souza, C.; Maisonnette, S.S.; Hallak, J.E.; Crippa, J.A.; Zuardi, A.W.; Landeira-Fernandez, J.; Leite-Panissi, C.R.A. Systemic Chronic Treatment with Cannabidiol in Carioca High- and Low-Conditioned Freezing Rats in the Neuropathic Pain Model: Evaluation of Pain Sensitivity. Pharmaceuticals 2023, 16, 1003. https://doi.org/10.3390/ph16071003
Macêdo-Souza C, Maisonnette SS, Hallak JE, Crippa JA, Zuardi AW, Landeira-Fernandez J, Leite-Panissi CRA. Systemic Chronic Treatment with Cannabidiol in Carioca High- and Low-Conditioned Freezing Rats in the Neuropathic Pain Model: Evaluation of Pain Sensitivity. Pharmaceuticals. 2023; 16(7):1003. https://doi.org/10.3390/ph16071003
Chicago/Turabian StyleMacêdo-Souza, Carolina, Silvia Soares Maisonnette, Jaime E. Hallak, José A. Crippa, Antônio W. Zuardi, J. Landeira-Fernandez, and Christie Ramos Andrade Leite-Panissi. 2023. "Systemic Chronic Treatment with Cannabidiol in Carioca High- and Low-Conditioned Freezing Rats in the Neuropathic Pain Model: Evaluation of Pain Sensitivity" Pharmaceuticals 16, no. 7: 1003. https://doi.org/10.3390/ph16071003
APA StyleMacêdo-Souza, C., Maisonnette, S. S., Hallak, J. E., Crippa, J. A., Zuardi, A. W., Landeira-Fernandez, J., & Leite-Panissi, C. R. A. (2023). Systemic Chronic Treatment with Cannabidiol in Carioca High- and Low-Conditioned Freezing Rats in the Neuropathic Pain Model: Evaluation of Pain Sensitivity. Pharmaceuticals, 16(7), 1003. https://doi.org/10.3390/ph16071003