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Abstract: Mechanistic target of rapamycin (mTOR) is a protein kinase that regulates cellular growth,
development, survival, and metabolism through integration of diverse extracellular and intracellular
stimuli. Additionally, mTOR is involved in interplay of signalling pathways that regulate apoptosis
and autophagy. In cells, mTOR is assembled into two complexes, mTORC1 and mTORC2. While
mTORC1 is regulated by energy consumption, protein intake, mechanical stimuli, and growth factors,
mTORC2 is regulated by insulin-like growth factor-1 receptor (IGF-1R), and epidermal growth
factor receptor (EGFR). mTOR signalling pathways are considered the hallmark in cancer due to
their dysregulation in approximately 70% of cancers. Through downstream regulators, ribosomal
protein S6 kinase β-1 (S6K1) and eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1),
mTORC1 influences various anabolic and catabolic processes in the cell. In recent years, several
mTOR inhibitors have been developed with the aim of treating different cancers. In this review, we
will explore the current developments in the mTOR signalling pathway and its importance for being
targeted by various inhibitors in anti-cancer therapeutics.
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1. Introduction

The mammalian target of rapamycin or mechanistic target of rapamycin (mTOR) is
a serine–threonine protein kinase that modulates cellular metabolism, growth, cell prolif-
eration or survival and gene expression phenomena [1]. Structurally, mTOR is a 289-kDa
protein that is expressed in almost all the tissues of the body [2]. The phosphorylation
of mTOR is triggered at particular residues (S1261, T2446, S2448, S2481) in response to
growth factors, mitogens, hormones, and nutrition, whereas a lack of these factors and
oxygen can inhibit its activation and enzymatic activity [3]. There are two complexes of
mTOR, mTORC1 and mTORC2, which are physically and functionally distinct. While
mTORC1 is comprised of mTOR, GβL (positive regulator of mTOR, which increases the
kinase activity of mTOR), deptor, and raptor, mTORC2 is comprised of rictor, mTOR,
proline rich 5 (PPR5), GβL, deptor and SIN1 (Figure 1). The role of various components
of this signalling pathway is summarized briefly in Table 1 [4]. mTOR is linked to many
signalling cascades, including phosphoinositide 3-kinase/Protein kinase-B, also known as
Akt (PI3K/Akt), LKB1 (Liver kinase B-1/adenosine 5′-monophosphate-activated protein
kinase (AMPK), tuberous sclerosis complex subunit 1 TSC1/TSC2/Ras homolog enriched
in brain (Rheb), and Vam6/Rag GTPases [5]. It regulates cell proliferation, apoptosis, and

Pharmaceuticals 2023, 16, 1004. https://doi.org/10.3390/ph16071004 https://www.mdpi.com/journal/pharmaceuticals

https://doi.org/10.3390/ph16071004
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com
https://orcid.org/0000-0002-3968-8434
https://orcid.org/0000-0001-9421-6141
https://orcid.org/0000-0001-6266-7116
https://orcid.org/0000-0001-9941-2918
https://orcid.org/0000-0002-2185-5927
https://orcid.org/0000-0002-6820-0805
https://doi.org/10.3390/ph16071004
https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com/article/10.3390/ph16071004?type=check_update&version=3


Pharmaceuticals 2023, 16, 1004 2 of 24

autophagy (autophagic cell death) pathways by influencing various key processes like
transcription and protein synthesis by integrating diverse signalling stimuli [6].
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Figure 1. The mTOR complex, mTORC1, and mTORC2.

mTOR signalling is implicated in various diseases, like cancer, arthritis, insulin re-
sistance, and osteoporosis and in tumour angiogenesis [7]. Several reports support that
there is an aberrant activation of the mTOR signalling pathway in cancer [8,9]. Keeping in
view the role of this important signalling cascade in crucial stages of cancer development,
this review is aimed at highlighting the regulation of mTOR signalling pathway and its
involvement in tumourigenesis. Furthermore, the latest findings on mTOR inhibitors in the
treatment of various cancers are discussed.

Table 1. The various components of the mTOR complex, and their functions.

mTOR Components Associated with Mode of Action Reference

Raptor mTORC1 Positive regulator [10]

Rictor mTORC2 Positive regulator [11]

Daptor mTORC1 and mTORC2 Negative regulator [12]

Ttie/Tel2 mTORC1 and mTORC2 Positive regulator [13]

Protor mTORC2 Positive regulator [14]

mLST8 mTORC1 and mTORC2 Positive regulator [15]

PRAS40 mTORC1 Negative regulator [16]

mSin1 mTORC2 Positive regulator [17]

2. Assembly of mTOR Complex

The mTOR protein is made up of 2549 amino acids and is organized into many domains,
like NH2-terminal (N-HEAT), middle HEAT (M-HEAT), FAT domain (also called FKBP12-
rapamycin-associated protein, ataxia-telangiectasia and transactivation/transformation), ki-
nase domain with FRB (FKBP12 rapamycin-binding domain site) and a FAT carboxy-terminal
domain. [18]. To form a dimer under physiological conditions, the HEAT repeats (12–13) of
one mTOR monomer interact with the HEAT repeats (20–23) of another mTOR’s M-HEAT
domain as illustrated in Figure 2A,B [19]. Because its C-terminal region shares considerable
homology with the catalytic domain of PI3K, mTOR is also considered a member of the
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phosphatidylinositol-3-kinase superfamily [20]. Earlier, the difference between mTORC1 and
mTORC2 was linked to their definite elements and susceptibility to rapamycin that selectively
suppresses its activation of the mTORC1/2 complex. Originally it was thought that mTORC1
was rapamycin-sensitive, whereas mTORC2 does not bind to the drug. However, it is now a
well-established fact that chronic exposure to rapamycin inhibits both complexes [21]. mTOR,
DEP domain-containing mTOR interacting protein (Deptor), Ttie/Tel2 complex, and mam-
malian lethal with sec-13 protein 8 (mLst8) are the common subunits present in both mTORC1
and mTORC2 [22].
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3. Regulation of mTORC1

Although mTOR exists in two separate complexes, there exists a cross-talk between
mTORC1 and mTORC2. mTORC2 upregulates mTORC1 by activating the IGF-IR-Akt
axis [1,23]. mTORC1 inhibits mTORC2 by phosphorylating mSin1 and Rictor on T86/398 and
T1135 through its downstream regulator S6K1 via a feedback mechanism [24,25]. The
mTORC1 complex is regulated by energy consumption, protein intake, mechanical stimuli,
and growth factors (Figure 3). All of these components transmit signals to cells, which are
subsequently detected, transformed, and then integrated together, causing cellular func-
tions to alter. Signals are then detected by proteins containing surface receptors and intracel-
lular kinases [26,27]. mTORC1 is mainly regulated by insulin-like growth factor-1 (IGF-1R)
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and insulin receptor (IR), which are tyrosine kinase receptors whose activation leads to the
phosphorylation of insulin receptor substrates [27]. The insulin receptor substrates (IRS)
bind and activate Src Homology 2 (SH2) domain-containing phosphatidylinositol-3-kinase,
which in turn phosphorylates inositol phospholipids and forms phosphatidylinositol (3,4,5)-
triphosphate (PIP3). The PIP3 then interacts with the Pleckstrin homology domain (PH)
containing proteins like Akt and 3-phosphoinositide-dependent kinase (PDK1) [28]. The
interaction of PIP3 with Akt phosphorylates and activates PDK1. Akt, which is expressed
in skeletal muscles, is the main and important upstream regulator of mTORC1. Akt is
activated by phosphorylation at serine residue Thr308 by PKD1 [29–31]. Active AKT
phosphorylates tuberous sclerosis complex-2 (TSC2) leading to its suppression. TSC2
complex is a GTPase-activating protein (GAP) complex, which is comprised of TSC1/2
and TRE2-BUB2-CDC16 domain family member 7 (TBC1D7) [32,33]. Akt activates Ras
homolog enriched in the brain, Rheb, a GTP-binding protein, which leads to the activation
of mTORC1 [34]. At the lysosomal membrane, GTP-bound Rheb proteins (Rheb-GTP)
activate mTORC1 [35]. Very few studies have shown that, apart from insulin and IGF-I
modulation, androgens stimulate Akt phosphorylation [36–42]. Mitogen-activated protein
kinase (MEK1/2) phosphorylates mTORC1 by p90 ribosomal S6 kinase and Rs-dependent
extracellular signal-regulated kinase (ERK1/2), while the former phosphorylates raptor
at S719/722, and later phosphorylates raptor at S696, S863, and S6, thereby up-regulating
mTORC1 activity [43,44]. Apart from growth factors, mTORC1 is also regulated by the
energy status of the cell. The lack of cellular energy increases the AMP/ATP ratio, which
activates (AMPK) AMP-dependent kinase [45]. Activated AMPK phosphorylates two
residues of TSC2 viz. Thr1227 and Ser1345, and thus stimulates GAP activity of the com-
plex through inhibition of Rheb, which in turn downregulates or inhibits mTORC1 activity
(Figure 3) [46].
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4. Downstream Effectors of mTORC1: S6K1 and 4EBP1

mTORC1 phosphorylates its downstream regulator (4EBP1, and S6K1) [47] through
the interaction of raptor and TOR signalling (TOS) motif. The TOS motif is a five amino acid
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sequence located in C-terminus of 4E-BP1 (Phe-Glu-Met-Asp-Asp-I1e) and N-terminus of
S6K1 (Phe-Asp-I1e-Leu), which is mandatory for mTORC1 to phosphorylate these proteins
in vivo [48–51]. p70S6K1 is activated by MAPK, PDK1, and SAPK (stress-activated protein
kinase). mTORC1 phosphorylates S6K1 at Thr389, which is important for its activation.
mTOR inhibitors are known to diminish the Thr389 phosphorylation of the S6K1 [52,53].
Another downstream target of mTORC1 is 4E-BP1, which suppresses protein synthesis by
binding to and inhibiting eIF4E (eukaryotic initiation factor 4E) [54,55]. When activated,
mTORC1 promotes the dissociation of eIF4E from 4E-BP1, which enables free eIF4E to
produce and initiate cap-dependent protein translation. Rapamycin inhibits mTORC1 and
promotes dephosphorylation of 4EBP1, which limits denovo protein synthesis [56].

4.1. Eukaryotic Translation Initiation Factor 4E Binding Protein-1

mTOR and other kinases phosphorylate 4EBP1 at numerous serine/threonine sites in
reaction to stimuli brought on by mitogens, growth factors, G-protein coupled agonists,
and cytokines, which help in the dissociation of eIF4E from 4EBP1. This free eIF4E then
binds to large scaffolding proteins, eIF4G, ATP-dependent RNA helicase eIF4A, and eIF4B,
facilitating its cap-dependent protein translation [57,58]. The activation of mTOR signalling
is often indicated by the phosphorylation of 4E-BP1. 4E-BP1 is a protein that contains
seven different phosphorylation sites, namely Thr 37, Thr 46, Thr 70, Ser 65, Ser 83, Ser
101, and Ser, 112 [59]. Numerous experimental findings indicate that mTOR plays a
direct role in phosphorylating 4EBP1 and activating eIF4E, which is simulated by various
mitogenic signals [60]. The typical mTOR/4E-BP1 cascade may not be the only one that
phosphorylates 4E-BP1, as numerous kinases have recently been proven to phosphorylate
4EBP1, either dependently or independently of mTOR [61]. Several signalling mechanisms
have been proposed as potential kinases responsible for independent phosphorylation of
4EBP1 independent of mTOR pathway. These include extracellular signal-regulated kinase
(ERK), glycogen synthase kinase-3 beta (GSK3β), prim-2 proto-oncogene, serine/threonine
kinase (PIM2), ataxia telangiectasia mutated (ATM), cell division cycle protein 2/cyclin-
dependent kinase-1 (CDC2/CDK1), p38 mitogen-activated protein kinases (p38MAPK),
and leucine-rich repeat kinase 2 (LRRK2) signalling mechanisms. These findings suggest
that mTOR inhibitors may not be absolutely effective in inactivating 4EBP1, which is
activated alternatively by many other factors as discussed [62].

4.2. Ribosomal Protein S6 Kinase β-1 (S6K1)

The serine/threonine kinase S6K1 is another significant downstream target of mTOR.
S6K1 is phosphorylated by activated mTOR on Thr389, which then phosphorylates S6K15, a
component of the 40S ribosomal protein [63]. The ribosomal protein S6K Beta 1 (RPS6KB1)
gene encodes two isoforms, p70S6K1 and p85S6K1 [64]. This mTOR-S6K1 signalling axis
regulates important cellular functions like cell proliferation, metabolism, protein and lipid
synthesis, translation, and transcription [64]. Additionally, this axis is responsible for adipocyte
metabolism, learning, aging, memory, growth and development, while also controlling insulin
sensitivity, glucose homeostasis, and other processes [65]. As a result, S6K1 is thought to be
involved in critical functions in regulating cellular physiology [65]. Any disruption in this
axis has negative consequences and can lead to the development of serious diseases ranging
from metabolic disorders to cancer [64]. As a result, this network has remained a prime focus
for different therapies used to treat different pathologies over the years. However, therapeutic
interventions targeting mTOR in various cancers, notably renal and breast carcinomas, have
resulted in a significant number of relapses due to the presence of feedback mechanisms in
the signalling pathway [63]. Overcoming the resistance developed to mTOR inhibitors and
other chemotherapeutic agents after chronic exposure to these drugs remains one of the key
challenges that the scientific community is facing today.
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5. Structure and Regulation of mTORC2

mTORC2 consists of four primary subunits, namely mTOR, RICTOR, mSIN1, and mLST8.
Within mTORC1, the essential core subunit is regulatory-associated protein of mTOR (RAP-
TOR), while mTORC2 possesses distinct core subunits, namely rapamycin-insensitive compan-
ion of mTOR (RICTOR) and mammalian stress-activated Map kinase-interacting 1 (mSIN1).
While numerous substrates of mTORC1 have been identified, mTORC2 predominantly phos-
phorylates AGC kinases, such as Akt (also referred to as protein kinase B, PKB), serum- and
glucocorticoid-induced kinase 1 (SGK1), and members of the protein kinase C (PKC) family at
their hydrophobic motif (HM) and turn motif (TM) [66].

The regulatory mechanisms of mTORC2 activity are lesser known than that of mTORC1.
Recent studies suggest that mTORC2 is also regulated by several mechanisms. The platelet-
derived growth factor, insulin like growth factor 1 receptor and epidermal growth factor
receptor regulates its activity through PI3K signalling pathway, as PI3K helps binding of
PIP3 with PH domain of mSin1, which restricts the kinase activity of mTOR, thereby acti-
vating mTORC2 and recruits it to the plasma membrane [66,67]. Growth factors stimulate
phosphorylation of PI (4,5) P2 to produce phosphatidylinositol 3,4,5-triphosphate at plasma
membrane by PI3K, this PIP3 has been proposed to directly activate mTORC2 [68]. Two
models, which suggests the activation of mTORC2 are: PIP3 dependent activation, where
mTORC2 is localized to plasma membrane, and other is that PIP3 brings conformational
change in the mTORC2 leading to increase in its activity. However, emerging evidence
suggests that mTORC2 permanently resides at plasma membrane and is constituently
active [69].

It is well established that mTORC1 is responsive to both nutrition and growth factors,
whereas mTORC2 is primarily controlled by growth factors [70]. Ample evidence suggests
that amino acids lead to the activation of mTORC2. A reduction in glutamine catabolites
caused by food restriction can activate mTORC2 and cause glutamine–fructose-6-phosphate
amidotransferase 1 expression to rise (GFAT1) [71].

While PI3K regulation is the primary focus of most studies on mTORC2, recent research
has unveiled the involvement of other signalling pathways in fine tuning mTORC2 activity.
These include AMP-activated protein kinase (AMPK), Wnt signalling, and feedback control
between mTORC1 and mTORC2.

AMP-activated protein kinase (AMPK) inhibits mTORC1 either by phosphorylating
RAPTOR, or increasing the GTPase-activating protein (GAP) activity of TSC complex
towards the GTPase Ras homology enriched in brain (RHEB) by phosphorylating TSC2,
and hence indirectly activating mTORC2, which is responsible for the adaptation of low
energy status of cells [46,72,73]. AMPK phosphorylates both Rictor and mTOR, which is
primarily required and enough to increase the kinase activity of mTORC2. However, the
molecular mechanism and phosphorylation sites, which regulate mTORC2 activity, are
yet to be evaluated fully [74]. There is also a feedback control loops connecting mTORC1
and mTORC2. mTORC1 has a negative effect on mTORC2 through S6K1. S6K1, which is
activated by mTORC1, causes inhibitory phosphorylation of IRS1 and reduces the amount
of IRS1 protein. Inactivation of mTORC2 occurs as a result of the downregulation of insulin-
PI3K signalling [75]. mTORC1 controls mTORC2 through an additional negative feedback
loop involving growth factor-bound–receptor protein10 (Grb10) [76].

6. mTORC2 Effectors

mTORC2 is known to phosphorylate AGC kinases family proteins like Protein kinas A
(Akt) and Protein Kinase C (PKC). It also phosphorylates glucocorticoid and serum-induced
kinase-1 (SGK1) at their hydrophobic motif (HM) and turn motif (TM) [11].

The phosphorylation of HM motif of Akt at Ser473 [77] by mTORC2 is supposed to be
a context-dependent event. This has been best illustrated in the study conducted by Estela
Jacinto and his colleagues, where they have shown that Akt is incapable of phosphorylating
FoxO1/3a, but predominantly phosphorylates other targets like TSC2 and GSK-3 in mSIN1
knockout mouse embryonic fibroblasts (MEFs) [17]. Similar to mTORC1, mTORC2 plays an
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important role in cell metabolism, regulating processes related to fatty acids, lipids, glucose,
amino acid, and nucleotides [1]. It suppresses the activity of xCT (cysteine-glutamate
antiporter), which is a solute carrier family 7 member 11 (SLC7A11) by phosphorylating it
at xCT Ser26 [78].

7. Role of mTOR Signalling in Cancer at a Glance

Resistance to macrolide antibiotic, rapamycin in the yeast Saccharomyces cerevisiae, led
to the discovery of the target of rapamycin (TOR). This eventually led to the discovery of the
mammalian target of rapamycin (mTOR) in eukaryotes, which has the biochemical proper-
ties as that of the TOR [79]. The mTOR signalling pathway has a greater influence on basic
critical cellular activities as its dysregulation disrupts normal physiological functioning in
humans, leading to various diseases. It has been linked to various pathological conditions
such as neuronal degeneration, obesity, type 2 diabetes mellitus, and cancer [9,80]. Both
upstream and downstream effectors of mTORC1 play pivotal roles in the development of
human cancers. Genetic mutations and amplifications are the two typical genetic alterations
that cause protein molecules to become constitutively active. Hyper-activation of one of
these upstream effectors, such as PI3K, Akt, or loss of phosphatase and TENs in homolog
deleted on chromosome 10 (PTEN) molecules, triggers mTOR signalling cascade in cancer
and plays a role in cellular proliferation, invasion, cytoskeleton rearrangement, metastasis,
and cell survival and inhibits initiation of apoptosis and cellular autophagy.

Hanahan and Weinberg described that activation of mTOR signalling is the hallmark
of a large number of cancers [81]. According to reports, more than 70% of malignancies
have aberrantly overactivated mTOR pathways. It has been amply proven in recent years in
cancer patients and animal models that mTOR malfunction promotes carcinogenesis [82,83].
Table 2 outlines how the activation of the mTOR pathway, either by oncogene stimulation
or the loss of tumour suppressors can lead to the development of tumour angiogenesis and
metastasis in various in-vitro cell lines and in-vivo mouse xenograft models [56].

Table 2. Tumour-associated genes and cancer.

Tumour Promoter Genes Associated Cancers Reference

S6K1 In lung and ovarian malignancies, expression of S6K1 is high, while in breast, kidney, and
hepatocellular carcinomas, its high expression is associated with a bad prognosis. [84–86]

PI3K In ovarian, gastrointestinal, breast, and prostate cancers, high PI3K activity is linked to
cellular transformation and tumour growth. [87–89]

Akt Subgroups of human malignancies, like breast and ovarian tumours,
have increased levels of Akt. [87]

Rheb Numerous tumour cells have overexpressed Rheb levels. Increased Rheb level is related to
poor prognosis of breast, head, and neck malignancies. [90]

eIF4e

The overexpression of eIF4E, whether in vitro or in vivo, can cause changes in cells.
Furthermore, eIF4E is found to be overexpressed in numerous types of cancers, such as
nonlymphomas, Hodgkin’s acute and myelogenous leukemia, as well as colon, head,
breast, and neck malignancies.

[84,90]

4E-BP1 4EBP1 expression has been linked to a poor prognosis. Also, its phosphorylation has been
linked with chemoresistance in ovarian cancer [91,92]

Tumour suppressor genes

TSC1/TSC2 The occurrence of mutations in the TSC can result in the formation of hamartomas in
several organs. [93]

PTEN The function of PTEN is frequently lost in varied cancers like renal, breast and prostate. [88,94]

LKB1
People who have genetic changes in the LKB1 gene can develop a condition called
Peutz–Jeghers syndrome, which is characterized by the growth of abnormal tissue called
hamartomas in the gastrointestinal tract

[95,96]

The loss of PTEN function, receptor tyrosine kinase overexpression, or mutations in
Akt and PI3K are not the only factors that can lead to mTOR activation. It can be activated
through another mechanism that includes mutation and gene amplification [97]. COSMIC
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database analysis shows overexpression of mTOR in the skin (8.25%), urinary tract (8.33%),
and ovary (9.77%) cancers, and downregulation in central nervous system cancers (13.06%).
S2215Y [98] and R2605P are the two distinct point mutations that lead to mTOR activation
in cells even under starved conditions as revealed in the COSMIC database. It has also been
reported that meningeal cancers (18.63%) have the highest number of mutations in mTOR.
The other cancer where mTOR is highly mutated is endometrioid carcinoma (12.63%) [23].

8. Autophagy, Apoptosis, and mTOR Signalling: A Connecting Link

Under normal and pathological circumstances, mTOR is implicated in the suppression
of autophagy, which is otherwise triggered by nutrient stress and energy deprivation [99,100].
When autophagy is triggered, lysosomal degradation of cytosolic components occurs. Recent
data have shown that mTORC1 phosphorylates UNC-5 like Autophagy Activating Kinase
(ULK) 1/2, which results in its deactivation [101]. ULK1/2 phosphorylates ATG13 and FIP200
thereby initiating the autophagic processes [102,103]. mTORC1 also controls autophagy at the
transcriptional level by regulating the localization of the transcription factor EB (TFEB), which
is responsible for regulating genes involved in autophagy and lysosomes [104,105].

Up-regulation of mTOR1 inhibits glycogen synthase kinase (GSK-3) whose inhibition
leads to the suppression of the caspases-3 signalling pathway, which ultimately reduces
ROS generation. Decreased ROS generation leads to the inhibition of apoptosis [106,107].

In conclusion, it is inferred that the mTOR signalling pathway may contribute to
cancer development by blocking autophagy and apoptotic pathways.

9. mTOR Inhibitors in Cancer

As mTOR plays a crucial role in the development of tumours, mTOR inhibitors have
the potential to be effective in various cancer treatments [108]. Rapamycin analogues
(rapalogue) have received medical approval for the treatment of various cancers [109]. Ad-
ditionally, other mTOR inhibitors with various modes of action have been developed. These
rapalogues have been subclassified into three generations, some of which are presently
undergoing clinical trials in a range of human cancers.

9.1. First-Generation mTOR Inhibitors: Allosteric Inhibitors
Rapamycin and Analogues (Rapalogues)

In a soil sample from Easter Island, a fungus namely Streptomyces hygroscopicus was
shown to generate the antifungal metabolite rapamycin (also known as “Rapa Nu” in the
native language) (Figure 4A). It is a potent inhibitor of S6K1. Rapamycin specifically binds
to the 12-kDa FK506-binding protein (FKBP12) and by doing so, it allosterically inhibits
mTORC1. This leads to the inhibition of the intrinsic kinase activity of TOR, including to
autophosphorylation, and prevents TOR from reaching its substrates (Figure 4B) [110]. As
a result, drugs that exclusively target mTORC1, such as rapamycin, are likely to impede
cancer metabolism and are seen as promising anti-cancer therapy agents. However, due to the
poor solubility and pharmacokinetic profile of rapamycin have prompted the development of
multiple rapamycin analogues (rapalogues). In 2007 and 2009, the Food and Drug Adminis-
tration (FDA) permitted the use of two water-soluble rapamycin derivatives, temsirolimus
and everolimus, respectively, to treat advanced renal malignant carcinoma (RCC).

However, the efficacy of rapamycin and rapalogues when used alone seems to be lower
than anticipated [111]. Everolimus, an oral mTOR inhibitor, was first developed to suppress
the immune system during solid-organ transplantation [112]. It inhibits both B and T cell
proliferation and differentiation by blocking the cytokine-driven activation responses of
these cells [113,114]. Its potential to act as an antiproliferative agent in various in vitro and
in vivo studies led to its approval by FDA for different tumours. Its efficacy in treating these
malignancies prompted the scientific world to investigate its impact on cancers having
dysregulation of the critical PI3K/Akt/mTOR pathway [115,116]. The drug is known to
inhibit HLA-I-stimulated cellular proliferation through the ERK1/2 mTORC1 signalling
cascade. Despite the enormous therapeutic potential of mTOR inhibition alone, rapamycin
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and its derivatives (rapalogues) have limited effectiveness against specific substrates and
can activate multiple negative oncogenic feedback loops. This has led to the development
of new strategies to overcome these limitations. One approach was to combine rapalogues
with other known inhibitors. Table 3 outlines the cellular effects of everolimus.
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Temsirolimus, another rapalogue, has been extensively studied for its potential use
in treating blood-related cancers. In clinical settings, it has been administered in combina-
tion with other medications. Patients with B-cell non-Hodgkin lymphoma and multiple
myeloma who have received other treatments have been evaluated by using a combination
of temsirolimus and bortezomib [117,118]. In both studies, participants were given intra-
venous temsirolimus (25 mg) once a week (on first day of week for 4 weeks), along with
intravenous bortezomib (1.6 mg/m2) once a week (on first day of week for 4 weeks), with a
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treatment duration of 35 days. Around 33% of multiple myeloma patients showed a partial
or better response to the treatment. A phase I clinical study has demonstrated that the
addition of temsirolimus to rituximab and bendamustine resulted in promising outcomes
in terms of both effectiveness and safety profile for patients with mantle cell lymphoma
(MCL) and relapsed/refractory cancers [118,119].

9.2. Second-Generation mTOR Inhibitors: mTOR Kinase Inhibitors

In addition to rapalogues, second-generation mTOR inhibitors have generated mTOR
to combat cancer in a better way, with one class inhibiting selectively both mTORC1 and
mTORC2 without having any effect on other kinases. The other class of these second-
generation mTOR inhibitors has shown the capability of inhibiting both mTOR and PI3K
(dual inhibitors) [120,121]. As they can inhibit mTOR, PI3K, and Akt, they have the
advantage of overcoming feedback loops [122]. A team of researchers who studied two
mTOR inhibitors, namely PP242 and PP30, concluded that these inhibitors possess a central
pyrazolo [3,4-d]pyrimidine ring with a C4 amino group, distinct heterocyclic substituents,
and an N1 isopropyl substituent on C3. Both inhibitors competitively targeted mTORC1 and
mTORC2 through ATP binding, exerting more significant effects on cell cycle regulation,
cell growth, and proliferation, as well as cap-dependent translation when compared to the
conventional inhibitor rapamycin [123]. Table 4 summarizes the second-generation mTOR
inhibitors being tested at different phases of clinical trials.

Table 3. The impact of everolimus treatment on cell functioning.

Down-Regulation Up-Regulation Cellular Effects

4E-BP1 and S6K1 LC3B and beclin1

CDK2 FOXO family

PPARγ Increases response to radiation
therapy

HIF-Iα

PPARα Increases response to radiation
therapy

PGC1α

Akt BAD

Myc

Cyclin A and D1 GSK3 G0/G1 cell cycle arrest

Myc CDK inhibitors p21 cip1 and p27 kip1 Decreased cellular proliferation

VEGF
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Table 4. Summary of second-generation mTOR inhibitors.

Compound/Molecule Company Producing Generic Name Given The Phase of the Study Condition Used for Mechanism of Action Clinical Outcome Clinical Trail
Registration Number Ref.

GDC-0980 Genentech Apitolisib I and II Lymphomas, renal, and
breast cancer

Inhibits both mTOR
and PI3K

Less effective than
eveloremus NCT01442090 [124]

XL765 Exelixis/Sanofi-Aventis Voxtalisib I-II Lung, Breast cancer Inhibits both mTOR
and PI3K Has better safety profile NCT01403636 [125]

Pf-05212384 Pfizer Gedatolisisb I-II Colorectal and Breast
cancer

Inhibits both mTOR
and PI3K

Gedatolisib
combination therapy
showed an acceptable
tolerability profile

NCT01920061 [126]

NVP-BEZ235 Novartis Doctolisib I-II
Sarcoma, leukemia,
prostate, and renal
cancer

Dual PI3K/mTOR
inhibitor

Comibation of
NVP-BEZ235 with
evelorimous resulted in
increase steady state
pharmacokinetics of
evelorimous

NCT01508104 [127]

TAK-228 Intellikine Sapanisertib I-II
Lymphomas,
Advanced solid
tumours

Selective mTORC1/2
inhibitor

It demonstrated
improved safety profile NCT01058707 [128]

CC-223 Celgene Pilaralisib I-II Advanced solid
tumours

Selective mTORC1/2
inhibitor

High durable tumour
regression, improved
safety profile, and high
durable response

NCT01177397 [129]

AZD8055 AstraZeneca I-II Advanced solid
tumours, Lymphomas

Selective mTORC1/2
inhibitor

Better safety profle than
different rapalogues
but showed an elevated
transaminase levels,
now AZD2014 is now
being developed,
which has reported no
rise in transaminase
levels

NCT00731263 [130]

XL147 Exelixis/Sanofi-Aventis I-II Lung, Breast, and
Glioblastoma

Dual PI3K/mTOR
inhibitor

Complete or partain
response, with better
sfaety profile

NCT01240460 [131]
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9.3. Third-Generation mTOR Inhibitor: RapaLink

Since mTOR signalling pathway has an important role in normal cellular function,
a complete blockade might have catastrophic effects [132]. Additionally, autophagy gets
initiated by the blockade of mTORC1, thus promoting cancer cell survival as seen with the
use of AZD8055 [133]. To solve this problem, Rodrick-Outmezguine developed a molecule
by linking binding sites rapamycin and INK-128 leading to the generation of a dual mTOR
inhibitor called Rapalink [134]. Its property of using the binding sites of both first- and
second-generation inhibitors makes it a unique molecule to inhibit and be effective against
drug-resistant mTOR mutants that have shown resistance to mTOR kinase inhibitors
(TORKi). RapaLink-1 has been found more potent and effective in inhibiting mTOR than
Rapamycin and second-generation mTOR inhibitors as evidenced by the treatment of
RapaLink-1 in U87MG and LN229 cells. It has also been reported that FKBP12 bound to
RapaLink-1 enhances the accumulation of Rapalink-1 molecules inside the cell, and thus
makes it a potential drug to inhibit cancer-associated activating mTOR mutant [134,135].
A study conducted by Kazuki and collegues, 2020, reported that Rapalink-1 showed a better
response in sunitinib-sensitive and sunitinib-resistant renal cell carcinoma (RCC) than
temsirolimus. It has also been stated that rapalink-1 not only inhibits PI3K/AKT/mTOR
but has a significant effect on ErbB (erythroblastic leukemia viral oncogene) signalling and
ABC transporters [136].

It has been observed that MCF-7 cells treated with Rapalink did not develop resistance
to chemotherapeutic drugs. However, significant resistance was observed after three
months of treatment with either first- or second-generation mTOR inhibitors [109].

10. Combination Therapies

mTOR is the major signalling pathway involved in the development of resistance
to already-existing cancer therapies. In recent years cancer biologists have shifted the
focus to developing mTOR-based combination therapies. Positive feedback in PI3K/mTOR
signalling pathway has limited the clinical effects of mTOR inhibitors through the activation
of AKT by activation of downstream target and nuclear factor kappa B (Nf-κB), which
helps in the accumulation of PIP3 and, hence continuous, AKT activation [137]. Built on
these assumptions, that simultaneous inhibition of various signalling pathways together
will minimize the incidences/chances of resistance, combining mTOR inhibitors with other
drugs is now being explored. Numerous clinical trials are being conducted to evaluate
the effectiveness of mTOR inhibitors in combination with other targeted therapies or
chemotherapeutic drugs. To develop a successful combination therapy, issues related to
toxicity and reliable biomarkers are important parameters to be kept in mind while selecting
a patient to treat. As a result, a combination therapy of everolimus and exemestance
is approved for human epidermal growth factor receptor 2 (HER2)-negative/Estrogen
receptor (ER)-positive breast cancer [138]. Another study conducted by Mortzer and
colleagues reported that everolimus, when combined with lenvatinib (vascular endothelial
growth factor inhibitor), is found to be more effective in metastatic renal cell carcinoma
than when used alone [139]. Also phase-II clinical trial of a combination of letrolzole, an
aromatase inhibitor, and the rapamycin analogue, everolimus, has shown promising results
in oestrogen receptor-positive ovarian cancer, achieving 12-week progressive free survival
in 47% of patients [140]. Table 5 summarizes the mTOR-based combination therapies that
are being explored in clinical trials. Overall, these studies using mTOR-based combination
therapies have suggested that using mTOR inhibitors with other anti-cancer agents to
overcome the limitations facing these regimens when using alone.

Since insulin-like growth factor 1 and insulin receptor (IGF-IR) signalling could po-
tentially lead to resistance against mTORC1 inhibitors, a clinical trial was carried out to
evaluate the effectiveness of combining cixutumumab, a humanized monoclonal antibody
targeting IGF-1R, with temsirolimus. The outcome of the trail was that the combination ther-
apy exhibits better clinical response in patients diagnosed with sarcoma and adrenocortical
carcinoma than when temsirolimus was used alone [141].
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In another clinical trial, CTRI/2018/05/014178, conducted by Timothy Crook and
co-workers in 2020, it was demonstrated that mTOR-based drug combination improved
treatment outcomes, like response rate and disease control rate [142].

Despite attempts to use combination therapies, favourable outcomes are not consis-
tently achieved. This was evident in a clinical trial where the combination of everolimus and
the epidermal growth factor receptor (EGFR) inhibitor gefitinib showed limited effective-
ness in reducing tumour activity in patients diagnosed with metastatic castration-resistant
prostate cancer [143]. Similarly in patients with advanced solid tumours, the combination
of pimasertib and voxtalisib exhibited inadequate long-term tolerability and restricted
effectiveness in reducing tumour activity [144].

The combinations of mTOR inhibitors with other targeted agents or cytotoxics have
been shown to delay the emergence of resistance to these agents. They have demonstrated
the potential anticancer activity against several types of cancers including hormone positive
and HER2- negative breast cancers, whose treatment otherwise is challenge [145].

Table 5. Summary of the mTOR-based drug combinations investigated in various cancers.

mTOR
Inhibitor

Combined
with Drug

Tumour Applied
and Type of Study Outcome Ref.

Everolimus Trametinib
(kinase inhibitor)

Advanced solid
tumours/
Phase 1B
NCT00955773

Among 67 patients, 5 patients (7%)
achieved partial response (PR) to
treatment and 21 (31%) displayed stable
disease (SD)

[146]

Everolimus
Lenvatinib
(multiple receptor
kinase inhibitor)

RCC/Phase-II
NCT01136733

Survival rate increased when used in
combination [139]

Everolimus Carboplatin and
paclitaxel

LCNEC/
Phase II
NCT01317615

Improvement in overall response rate and
tumour regression, combination is
effective and well tolerated than using
drug alone

[147]

Rapamycin
Entinostat
(benzamide histone
deacetylase inhibitor)

General cancers/
In vitro

This led to the halting of the cell cycle and
the start of programmed cell death
(apoptosis), it promotes MYC degradation

[148]

Rapamycin AR inhibitor
enzalutamide

HCC/
In vitro and In vivo

Enalutamide and rapamycin together
yielded stronger anti-HCC activity than
each drug alone in vitro and in vivo. Also,
combination exhibited more potent
antitumour activity in the xenograft
tumour model than cultured cancer cells,
causing elevated apoptotic cell death and
tumour regression

[149]

Rapamycin STX-0119 Glioblastoma/
In vitro

Combining of two drugs had significant
growth inhibitory effect against the
TMZ-R U87 cell line.
IC50 decreased to 11.3µM (drug
combination) from 78 µM (STX-0119) and
30.5 µM (rapamycin)

[150]

AR: androgen receptor, HCC: hepatic cell carcinoma, LCNEC: large-cell neuroendocrine carcinoma, RCC: renal
cell carcinoma.

Figure 5 shows the structures of some of the mTOR inhibitors, while Figure 6 illustrates
the mTOR signalling and the effect of its inhibitors.
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11. Adverse Events Related to the Use of mTOR Inhibitors

The side effects of modern targeted therapies differ from those observed with tradi-
tional chemotherapy. Mammalian target of rapamycin (mTOR) inhibitors have attained
significant attention in the field of oncology and exhibit a wide range of toxic effects like
headache, mucositis, rashes, and metabolic toxicities including hyperglycemia, hyperlipi-
demia, and hypophosphatemia. These adverse effects can be mild to severe, which require
medical attention [151].

Skin toxicity, usually on face and neck, occurs with the use of mTOR inhibitors. The
reported rate of skin rashes with the use of everolimus is 25–50%, temsirolimus 47–76%,
and ridaforolimus 48–66% [151–154].

Development of adverse reactions or events (AR/AE) with the use of mTOR inhibitors
requires attention, and it is important to understand their underlying mechanisms for
managing such AEs [154]. Pneumonitis [155], metabolic adverse events like hyperglycemia
(13–50%) and hyperlipidemia (12%) with the use of everolimus and 11% with the use of
temsirolimus [156]. The incidence of mTOR inhibitors associated stomatitis (mIAS) has been
also reported in some studies [157]. The use of mTOR inhibitors has been associated with
haematological adverse events such as thrombocytopenia and leucopenia/neutropenia
and, hence, their use requires routine complete blood counts [158].

Fatigue, weakness, changes in taste perception, and diarrhoea are among the frequently
observed adverse effects in clinical trials involving mTOR inhibitors [159].

The novel mTOR inhibitors also have been associated with bone marrow suppression.
In a phase III clinical trial of temsirolimus, 45% of patients reported anaemia, and 20% of
them had severe anaemia (grade 3–4) [152]. Similarly, in another phase III clinical trial with
everolimus, it was revealed that 91% patients had anaemia, with 9% grade three, and 1%
with grade four [160].

A meta-analysis conducted by Jian Xu and Deying Tian in 2014 included a total
of 5436 patients with various solid tumours from 26 clinical trials. The study findings
indicated the following rates of hematologic toxicities associated with mTOR inhibitors:
anaemia in 38.8%, with 7.5% of patients experiencing severe anaemia; leucopenia in 19.6%,
with 1.8% of patients experiencing severe leucopenia; and neutropenia in 14.9%, with
5.6% of patients experiencing severe neutropenia [161]. Table 6 summarizes the AE/AR
associated with the use of mTOR inhibitors in various cancers.

Table 6. Summary of AR/AE with the use of some of the mTOR inhibitors.

Type of Toxicity
Temsirolimus [152] Everolimus [160] Ridaforolimus [153]

All Grades (%) Grade 3
4 (%) All Grades (%) Grade 3

4 (%) All Grades (%) Grade 3
4 (%)

Anemia 29–45 9–20 91–92 9–13 53 0

Skin rashes 47–76 4 25–29 <1 48–66 2–3

Hyperglycemia 26–89 17–16 50–57 12–15 22 6–13

Hypophosphatemia 13–49 13–18 32–37 4–6 23 15

Mucositis 20–75 1–4 40–44 3–4 45–78 15–16

Fatigue 38–51 8–11 31–38 4–5 20–76 3–4

12. mTOR Inhibitors in Combination with Chimeric Antigen Receptor Treatment
(CAR-T) Therapy and Immune Check Point Inhibitor (ICI) Therapy

Managing advanced and metastatic cancers poses a formidable challenge, which is
why combination therapies are employed to effectively address the underlying cause of
the issue. Numerous combination therapies have been investigated so far, and among the
recently explored approaches in the treatment of various solid tumours is the combination
of CAR-T, ICI, and mTOR-based therapies. A study conducted by Zhigang Nain and
co-workers reported that by utilizing rapamycin as a pretreatment to reduce mTORC1
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activity, the ability of CAR-T cells to penetrate the bone marrow was enhanced, resulting in
an increased elimination of acute myeloid leukaemia (AML) cells in the bone marrow of
leukemia xenograft mouse models [162].

Similarly, the combination of mTOR inhibitors with immunotherapies like ICI has
been the subject of numerous preclinical studies, which have underscored the potential
anticancer advantages of such combinations. In their study, Moore and coworkers revealed
that combining rapamycin and anti-PD-L1, a monoclonal antibody (mAb), resulted in
increase in survival rate of mice with murine oral cancer cell line immunogenic (MOC1)
tumour when compared to the monotherapy [163].

In a similar manner to rapamycin, the targeting of mTOR using kinase inhibitors
enhances the anti-cancer effects of checkpoint inhibitors. In fact, the combination of the
mTORC1/mTORC2 inhibitor vistusertib with anti-CTLA-4, anti-PD-L1, and anti-PD-1,
demonstrated a significant decrease in the growth of MC38 or CT-26 (murine colorectal
cancer cell lines) tumours compared to individual therapies [164].

Collectively, these studies provide ample evidence that combining mTOR inhibitors
with immune checkpoint modulators and CAR-T therapy have advantages over monother-
apy in the context of cancer treatment.

13. Clinical Application of mTOR Inhibitors against Various Cancers

Due to the observed anti-cancer effectiveness of mTOR inhibitors in preclinical studies,
either as standalone treatments or in combination with chemotherapy, radiotherapy, and
targeted therapy, numerous clinical trials have been completed or are currently underway
to assess the efficacy of mTOR inhibitors in the treatment of various types of human can-
cers. Multiple mTOR inhibitors have received approval for the treatment of human cancers.
Many more studies/clinical trials are currently underway to assess the efficacy of mTOR
inhibitors [165]. The published data support that use of mTOR inhibitors against oesophageal
cancer (everolimus, NCT00985192 by translational oncology research international, USA
in 2009) [165], gastric cancer (everolimus, NCT00519324 by Novartis pharmaceuticals in
2009) [166], everolimus plus cisplatin, NCT00632268 by National Taiwan University Hospital
in 2008 [167], hepatocellular carcinoma, pancreatic cancer, and colorectal cancer, where a
number of mTOR inhibitors have been tested and found safe and effective against the disease.

Based on the clinical data that have been published, the efficacy of using mTOR in-
hibitors alone against gastrointestinal cancers is restricted and might be due to the feedback
regulation mechanisms, which impede the therapeutic impact of mTOR inhibitors. Conse-
quently, the most promising approach for utilizing mTOR inhibitors in the future would
involve combining them with other types of drugs such as radiation therapy, antibody
drugs, and other cytotoxic drugs.

14. Conclusions

mTOR is the critical pathway in modulating cellular proliferation, apoptosis, and au-
tophagy of cells by influencing transcription and protein synthesis through the integration
of diverse extracellular and intracellular signal stimuli. mTORC1 and mTORC2 are two sep-
arate complexes, which are cross-talked with each other. Understanding the role of mTOR
downstream regulators, 4E-BP1 and S6K1 is important in treating cancer at later stages
because of their active role in cellular proliferation, protein synthesis, tumour angiogenesis,
and metastasis. Since major developments in understanding this crucial signalling pathway
are primarily focused on the use of rapamycin or rapalogues, which primarily inhibit
mTORC1 activity, novel dual PI3K/mTOR inhibitors, and selective mTORC1/mTORC2
inhibitors are being evaluated at clinical levels to overcome the challenges like resistance
and feedback effects of already known mTOR inhibitors. Also, several studies provide
ample evidence that combining mTOR inhibitors with immune checkpoint modulators
and CAR-T therapy have advantage over monotherapy in the context of cancer treatment.
However, the toxicity and adverse effects of these mTOR inhibitors make it difficult to treat
cancer, which has significant negative effects on the patients. As a result, it is important to



Pharmaceuticals 2023, 16, 1004 17 of 24

conduct more clinical trials to understand the underlying mechanisms associated with the
use of mTOR inhibitors so that they can be used to counteract these toxicities for their safe
and effective treatments.
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